JP3157095B2 - Powder paint - Google Patents

Powder paint

Info

Publication number
JP3157095B2
JP3157095B2 JP25430095A JP25430095A JP3157095B2 JP 3157095 B2 JP3157095 B2 JP 3157095B2 JP 25430095 A JP25430095 A JP 25430095A JP 25430095 A JP25430095 A JP 25430095A JP 3157095 B2 JP3157095 B2 JP 3157095B2
Authority
JP
Japan
Prior art keywords
powder
powder coating
charge amount
spray gun
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25430095A
Other languages
Japanese (ja)
Other versions
JPH0995628A (en
Inventor
祐一 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP25430095A priority Critical patent/JP3157095B2/en
Publication of JPH0995628A publication Critical patent/JPH0995628A/en
Application granted granted Critical
Publication of JP3157095B2 publication Critical patent/JP3157095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トリボ帯電方式の
スプレーガンに適した粉体塗料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder coating suitable for a triboelectric spray gun.

【0002】[0002]

【従来の技術】粉体塗料は、溶剤塗料に比べ揮発分、臭
気とも少なく、公害対策および環境規制の面で非常に有
益であることは周知である。ところで、従来よりコロナ
帯電方式スプレーガンが粉体塗料塗装方式として一般的
に使用されてきた。この方式では、スプレーガンの先端
に設けられたコロナ電極から生成されたコロナイオンに
よって帯電された粉体塗料が、導電体である被塗物と電
極との間に形成された電界及び空気流にそって飛翔し、
被塗物に付着する。
2. Description of the Related Art It is well known that powder coatings have less volatile components and odors than solvent coatings and are very useful in terms of pollution control and environmental regulations. By the way, conventionally, a corona charging type spray gun has been generally used as a powder coating method. In this method, the powder coating charged by corona ions generated from the corona electrode provided at the tip of the spray gun converts the powder coating into the electric field and air flow formed between the electrode and the object to be coated. Fly along,
Attaches to substrate.

【0003】このコロナ帯電方式には、2つの大きな技
術的課題があることが分かっている。1つはファラデー
ケージ効果と呼ばれ、電界(電気力線)が被塗物の凹部
に形成されないため、凹部には粉体塗料が少量しか付着
せず、逆に電気力線が集中するエッジ部には多量に付着
するという現象である。もう1つは逆電離現象と呼ば
れ、被塗物上に堆積された粉体塗料及び遊離コロナイオ
ンの蓄積電荷が大きくなりすぎて火花放電を生じ、塗装
面にクレータ状の不良箇所を生じる現象である。
It has been found that this corona charging method has two major technical problems. One is called the Faraday cage effect, in which an electric field (line of electric force) is not formed in a concave portion of an object to be coated, so that only a small amount of powder paint adheres to the concave portion, and conversely, an edge portion where the electric line of electric force is concentrated. Is a phenomenon that a large amount adheres. The other is a phenomenon called reverse ionization, in which the accumulated charge of the powder paint and free corona ions deposited on the object to be coated becomes too large, causing spark discharge, resulting in a crater-like defective portion on the painted surface. It is.

【0004】これら技術的課題を解決するため、近年ト
リボ帯電方式スプレーガンを使用したトリボ帯電方式が
採用されてきている。この方式では、空気流によって搬
送される粉体塗料がスプレーガン内部の粉体塗料搬送部
との摩擦によって帯電し、空気流のみによって被塗物ま
で飛翔して付着する。
In order to solve these technical problems, in recent years, a triboelectric charging system using a triboelectric charging spray gun has been adopted. In this method, the powder paint conveyed by the air flow is charged by friction with the powder paint conveying section inside the spray gun, and flies to and adheres to the object only by the air flow.

【0005】トリボ帯電方式スプレーガン内部の粉体塗
料搬送部は、一般的にフッ素原子を含有する部材で形成
あるいは表面処理されている。フッ素原子を含有する部
材は長期間の継続使用において物理的劣化が少ないとい
う利点がある。また、イオン化ポテンシャルが大きく、
強い負帯電性を有するため、この部材と粉体塗料との摩
擦によって塗料側を正極性に帯電することができる。
[0005] The powder coating material conveying section inside the tribo-charging type spray gun is generally formed or surface-treated with a member containing fluorine atoms. A member containing a fluorine atom has an advantage that physical deterioration is small after long-term continuous use. In addition, the ionization potential is large,
Since it has a strong negative charge, the paint side can be charged to a positive polarity by friction between the member and the powder paint.

【0006】上記フッ素原子を含有する部材としては、
ポリテトラフルオロエチレン、ポリトリフルオロクロル
エチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、
ポリジクロルジフルオロエチレンなどが使用される。
As the above-mentioned member containing a fluorine atom,
Polytetrafluoroethylene, polytrifluorochloroethylene, polyvinyl fluoride, polyvinylidene fluoride,
For example, polydichlorodifluoroethylene is used.

【0007】トリボ帯電方式ではコロナ帯電方式のよう
な電界が形成されないので、凹部にも粉体塗料が良好に
付着する。また、遊離イオンが発生しないので逆電離現
象も起きにくい。
In the tribocharging method, an electric field is not formed unlike the corona charging method, so that the powder coating adheres well to the concave portions. Further, since no free ions are generated, the reverse ionization phenomenon is less likely to occur.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、粉体塗
料の帯電が摩擦だけによるため、絶対的な帯電量はコロ
ナ帯電方式よりも低いこと、粉体塗料のスプレーガンか
らの吐出速度を上げると十分な帯電量が得られないこ
と、および連続して使用するとスプレーガン内壁に摩擦
電荷が蓄積されるため粉体塗料の摩擦帯電量が低下して
被塗物への付着(塗着効率)が不十分になることなどの
問題点が明らかになっている。
However, since the charging of the powder coating is due to friction alone, the absolute charge amount is lower than that of the corona charging system, and it is sufficient to increase the discharge speed of the powder coating from the spray gun. And that when used continuously, triboelectric charges accumulate on the inner wall of the spray gun, so that the triboelectric charge of the powder coating decreases and the adhesion to the substrate (coating efficiency) becomes poor. Problems, such as becoming sufficient, are clarified.

【0009】本発明は、上記の問題を改善し、トリボ帯
電方式のスプレーガンに適用した場合に十分な摩擦帯電
量を得ることができ、しかもスプレーガン内壁への電荷
の蓄積を事実上問題ない範囲にとどめることができる粉
体塗料を提供することを目的とする。
The present invention solves the above-mentioned problems, and when applied to a tribo-charging type spray gun, it is possible to obtain a sufficient amount of triboelectric charging, and there is practically no problem in accumulating charge on the inner wall of the spray gun. It is an object of the present invention to provide a powder coating that can be kept in a range.

【0010】[0010]

【課題を解決するための手段】本発明は、少なくとも結
着樹脂および硬化剤からなり、塗料搬送部にフッ素系樹
脂を用いたトリボ帯電方式のスプレーガンに使用される
粉体塗料であって、マグネットブローオフ法による帯電
量Q(μC/g) と、コールターカウンター法による個数平
均粒子径P(μm) との間に、下記の関係 2P−30≦Q≦2P かつ +10≦Q≦+30 が成立することを特徴とする粉体塗料により上記目的を
達成した。
SUMMARY OF THE INVENTION The present invention relates to a powder coating composition comprising at least a binder resin and a curing agent and used for a tribo-charging type spray gun using a fluorine-based resin in a coating material transport section, The following relationship 2P-30 ≦ Q ≦ 2P and + 10 ≦ Q ≦ + 30 is established between the charge amount Q (μC / g) by the magnet blow-off method and the number average particle diameter P (μm) by the Coulter counter method. The above object has been achieved by a powder coating characterized by the above.

【0011】[0011]

【発明の実施の形態】以下、本発明の粉体塗料を詳細に
説明する。本発明の粉体塗料は、少なくとも結着樹脂お
よび硬化剤を含有してなる粉体粒子からなる粉体塗料で
ある。該結着樹脂としては、ポリエステル樹脂、アクリ
ル樹脂、エポキシ樹脂、フェノール樹脂、シリコン樹
脂、フッ素樹脂等が使用できる。硬化剤としては、イソ
シアネート、アミン、ポリアミド、酸無水物、ポリスル
フィド、三フッ化ホウ素酸、酸ジヒドラジド、イミダゾ
ール等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the powder coating of the present invention will be described in detail. The powder coating of the present invention is a powder coating composed of powder particles containing at least a binder resin and a curing agent. As the binder resin, a polyester resin, an acrylic resin, an epoxy resin, a phenol resin, a silicon resin, a fluororesin, or the like can be used. Examples of the curing agent include isocyanate, amine, polyamide, acid anhydride, polysulfide, boron trifluoride, acid dihydrazide, imidazole and the like.

【0012】また、粉体粒子には、必要に応じてその他
の添加剤を添加することもできる。例えば、硫酸バリウ
ム、炭酸カルシウム、酸化アルミニウム、およびケイ酸
カルシウム等の充填剤、アクリルオリゴマー、およびシ
リコーン等の流展剤、酸化チタン、酸化クロム、酸化
鉄、およびカーボンブラック等の着色剤、および発泡防
止剤等を適宜添加してもよい。
Further, other additives can be added to the powder particles as needed. For example, fillers such as barium sulfate, calcium carbonate, aluminum oxide, and calcium silicate, spreading agents such as acrylic oligomers and silicones, coloring agents such as titanium oxide, chromium oxide, iron oxide, and carbon black, and foaming An inhibitor or the like may be appropriately added.

【0013】本発明の粉体塗料に使用される粉体粒子
は、上記結着剤等からなる組成物を乾式混合し、熱溶融
混練後、粉砕、分級することによって得られる。また、
組成物をスプレードライ法、各種重合法により直接得る
こともできる。
The powder particles used in the powder coating material of the present invention can be obtained by dry-mixing the composition comprising the above-mentioned binder and the like, kneading with hot melt, pulverizing and classifying. Also,
The composition can be directly obtained by a spray drying method or various polymerization methods.

【0014】また、本発明の粉体塗料の個数平均粒子径
P(μm)と、マグネットブローオフ法による帯電量Q
(μC/g) とは上記関係を満たさねばならない。上記P
と、Qとの関係をグラフ化すると図1のようになる。
The number average particle diameter P (μm) of the powder coating material of the present invention and the charge amount Q by the magnet blow-off method
(ΜC / g) must satisfy the above relationship. The above P
FIG. 1 is a graph of the relationship between Q and Q.

【0015】以下、マグネットブローオフ法による帯電
量Q(μC/g) について説明する。本来、粉体塗料の帯
電量を測定するには、塗料搬送部に設置されたフッ素樹
脂との摩擦によって帯電した粉体塗料をファラデーケー
ジに入れて帯電量を測定すれば良い。しかしながら、実
際使用する際の粉体塗料の帯電量は、トリボ帯電方式の
スプレーガンの構造や塗料のフィード量などによって数
値が変動してしまう。また、測定する際は、帯電して空
気中に浮遊している微小な粉体塗料を有効に回収するの
が非常に困難であるという問題がある。
The charge amount Q (μC / g) by the magnet blow-off method will be described below. Originally, in order to measure the charge amount of the powder paint, the charge amount may be measured by putting the powder paint charged by friction with the fluororesin installed in the paint transport unit into a Faraday cage. However, the amount of charge of the powder coating in actual use varies depending on the structure of the spray gun of the tribo-charging system, the feed amount of the coating, and the like. In addition, when measuring, there is a problem that it is very difficult to effectively collect the fine powder paint that is charged and floated in the air.

【0016】そこで、上記問題を解決すべく、本発明で
はマグネットブローオフ法により帯電量Qを測定した。
以下、図2を使用して、マグネットブローオフ法につい
て説明する。マグネットブローオフ法では、スプレーガ
ンの摩擦帯電部材の代わりに、電子写真に用いられるシ
リコン樹脂でコートされたフェライト粉を使用する。具
体的には、正極性に帯電するトナーに一般的に用いられ
ている、シリコン樹脂でコートされたフェライト粉(パ
ウダーテック社製 商品名:FL921−1530)を
使用する。測定には、図2に示される装置を使用する。
この装置は、頭頂部4に例えばアルミシートなどの導電
性シート3が接着されている、非導電性磁石1が保持装
置2に挟まれてなる装置であり、上記導電性シート3に
は、コード6を介して、コンデンサ7が接続されてい
る。このコンデンサ7にはその充電量Cを測る電圧計8
が取付られ、電荷量検出路が形成されている。
Therefore, in order to solve the above problem, in the present invention, the charge amount Q was measured by a magnet blow-off method.
Hereinafter, the magnet blow-off method will be described with reference to FIG. In the magnet blow-off method, a ferrite powder coated with a silicone resin used for electrophotography is used instead of a frictional charging member of a spray gun. Specifically, a ferrite powder coated with a silicon resin (trade name: FL921-1530, manufactured by Powder Tech), which is generally used for a toner charged to a positive polarity, is used. The apparatus shown in FIG. 2 is used for the measurement.
This device is a device in which a non-conductive magnet 1 in which a conductive sheet 3 such as an aluminum sheet is adhered to a crown 4 is sandwiched between holding devices 2. The capacitor 7 is connected via 6. This capacitor 7 has a voltmeter 8 for measuring its charge amount C.
There mounting only is the charge amount detection path is formed.

【0017】粉体塗料の帯電量Qを測定するには、ま
ず、上記フェライト粉と粉体塗料とからなる混合物を撹
拌して、フェライト粉で粉体塗料を帯電させる。つい
で、得られた混合物を上記磁石1の頭頂部4に吸着させ
る。磁石1に吸着した混合物は、フェライト粉が磁石1
の磁気力により、ブラシにしっかりと穂立ちしてお
り、このフェライト粉の表面に静電気を帯びた粉体塗料
が弱い力で付着している。この状態では、電荷の総和は
正負ゼロである。ついで、混合物に高圧気体がよく当た
るように、磁石を回転または平行移動を繰り返しなが
ら、上方からノズル5を介して空気、窒素などの高圧気
体を吹き付ける。具体的には、穂立ちの上方の粉体塗料
をフェライト粉から吹き飛ばして分離した後、ノズル5
と磁石1との間隔を適宜狭めることにより、粉体塗料を
吹き飛ばされた後のフェライト粉を残し、より導電性シ
ート3よりの粉体塗料をも吹き飛ばすものである。高圧
気体により粉体塗料をフェライト粉から分離すると、フ
ェライト粉が負となり、この負電荷により導電性シート
3が負に帯電する。この導電性シート3の負電荷Q’
を、コンデンサ7の容量Cと、コンデンサ7に加わる電
圧Vから、式Q’=C・Vにより算出する。ついで、算
出された導電性シート3の電荷量Q’を粉体塗料の重量
Mで割って、粉体塗料の単位重量の帯電量Q(Q’/
M)を算出する。
In order to measure the charge amount Q of the powder coating, first, a mixture of the above ferrite powder and the powder coating is stirred, and the powder coating is charged with the ferrite powder. Next, the obtained mixture is adsorbed to the top portion 4 of the magnet 1. The mixture adsorbed on the magnet 1 is such that the ferrite powder is
Due to the magnetic force of the ferrite powder, ears are firmly formed in a brush shape , and a powder coating charged with static electricity adheres to the surface of the ferrite powder with a weak force. In this state, the sum of the charges is zero. Then, a high-pressure gas, such as air or nitrogen, is blown from above through the nozzle 5 while repeating rotation or translation of the magnet so that the high-pressure gas is applied to the mixture well. Specifically, after the powder paint above the ears is blown off and separated from the ferrite powder, the nozzle 5
By appropriately narrowing the distance between the magnet and the magnet 1, the ferrite powder after the powder coating has been blown away remains , and the powder coating from the conductive sheet 3 is also blown off. When the powder coating material is separated from the ferrite powder by the high-pressure gas, the ferrite powder becomes negative, and the negative charge charges the conductive sheet 3 negatively. The negative charge Q ′ of this conductive sheet 3
Is calculated from the capacitance C of the capacitor 7 and the voltage V applied to the capacitor 7 according to the formula Q ′ = C · V. Then, the charge amount Q of the calculated conductive sheet 3 'to be divided by the weight M of the powder coating, the unit weight of the powder coating charge amount Q (Q' /
M) is calculated.

【0018】このようにして得られた帯電量Qが+10
μC/g よりも低い粉体塗料では、スプレーガン内壁との
摩擦が十分なされた場合でも、塗着に十分な帯電が確保
されず、結果として塗着効率が低くなるため好ましくな
い。また、+30μC/g よりも高い粉体塗料では、スプ
レーガン内壁に摩擦電荷が蓄積しやすく、場合によって
は粉体塗料自体が内壁に付着するため、連続噴霧時に粉
体塗料の帯電が低下し易くなり、結果的に塗着効率が低
下してしまうため好ましくない。また、帯電量Qが+1
0μC/g 以上、+30μC/g 以下であっても、個数平均
粒子径Pと、帯電量Qとの関係において、Q>2pの場
合には、塗料粒子が搬送空気流の影響を受け易くなるた
め、スプレーガン内壁で摩擦されずにノズルから噴霧さ
れる塗料が多くなり、結果として着効率が低くなる。
また、個数平均粒子径Pと、帯電量Qとの関係におい
て、Q<2p−30の場合には、スプレーガン内部での
摩擦は充分になされるが、塗料粒子の比表面積が小さく
なるため、帯電量Qは低くなり易いし、何より粗大粒子
による塗面の荒れやムラが問題になる。
The charge amount Q thus obtained is +10
Powder coatings lower than μC / g are not preferred because, even when friction with the inner wall of the spray gun is sufficient, sufficient electrification for coating is not ensured, resulting in low coating efficiency. Further, in the case of powder paint higher than +30 μC / g, triboelectric charges easily accumulate on the inner wall of the spray gun, and in some cases, the powder paint itself adheres to the inner wall. And, as a result, the coating efficiency is lowered, which is not preferable. The charge amount Q is +1.
Even if it is 0 μC / g or more and +30 μC / g or less, in the case of Q> 2p, the paint particles are easily affected by the flow of the conveying air in the relationship between the number average particle diameter P and the charge amount Q. As a result, the amount of paint sprayed from the nozzle without being rubbed on the inner wall of the spray gun increases, and as a result, the coating efficiency decreases.
Further, in the relationship between the number average particle diameter P and the charge amount Q, when Q <2p−30, the friction inside the spray gun is sufficient, but the specific surface area of the paint particles is small. The charge amount Q tends to be low, and above all, there is a problem that the coated surface is rough or uneven due to coarse particles.

【0019】粉体塗料の帯電量を上記範囲内に設定する
には、粉体塗料の原料である結着樹脂、硬化剤を選択し
たり、添加剤を添加すればよい。一般的に、粉体塗料の
主原料である結着樹脂はプラス帯電性が低いため、プラ
ス帯電性の強い添加剤を適正量添加することによって帯
電量Qを本発明で特定する範囲内に設定することができ
る。プラス帯電性の強い添加剤としては、第4級アンモ
ニウム塩化合物、ニグロシン染料、およびトリフェニル
メタン化合物などの化合物、およびアミノ基やアミド基
などの窒素を有してなる官能基を有する表面処理剤で表
面処理されたシリカ微粒子、アルミナ微粒子、および酸
化チタン微粒子などの微粒子が挙げられる。前者化合物
は、結着樹脂中に硬化剤とともに分散させて用いること
ができる。後者の微粒子はヘンシェルミキサやスーパー
ミキサなどの回転羽根を有する攪拌混合器を用いて粉体
粒子表面に適正量付着させて用いることができる。
In order to set the charge amount of the powder coating within the above range, a binder resin and a curing agent, which are raw materials of the powder coating, may be selected or additives may be added. In general, the binder resin, which is the main raw material of the powder coating, has a low positive chargeability. Therefore, the charge amount Q is set within the range specified in the present invention by adding an appropriate amount of an additive having a strong positive chargeability. can do. Compounds such as quaternary ammonium salt compounds, nigrosine dyes, and triphenylmethane compounds, and surface treatment agents having a functional group having a nitrogen atom such as an amino group or an amide group include strong positively chargeable additives. And fine particles such as silica fine particles, alumina fine particles, and titanium oxide fine particles surface-treated with. The former compound can be used by being dispersed together with a curing agent in a binder resin. The latter fine particles can be used by being adhered to the surface of the powder particles in an appropriate amount using a stirring mixer having a rotating blade such as a Henschel mixer or a super mixer.

【0020】また、上記個数平均粒子径P(μm)は、
コールターカウンターTAII型で測定された個数50
%径を意味する。
The above number average particle diameter P (μm) is
50 measured by Coulter Counter TAII
% Means diameter.

【0021】なお、本発明の粉体塗料を使用するトリボ
帯電方式のスプレーガンの塗料搬送部は、フッ素原子を
含有する部材で形成されていてもよいし、またフッ素原
子を含有する物質で表面処理されていてもよい。
The coating material transporting portion of the spray gun of the triboelectric charging system using the powder coating material of the present invention may be formed of a member containing fluorine atoms, or may be made of a material containing fluorine atoms. It may have been processed.

【0022】[0022]

【実施例】以下、実施例および比較例に基づき本発明の
粉体塗料についてより詳しく説明する。 <実施例1> 粉体塗料の製造
EXAMPLES The powder coating material of the present invention will be described in more detail with reference to Examples and Comparative Examples. <Example 1> Production of powder coating

【表1】 上記の配合比からなる原料をスーパーミキサーで混合
し、加圧ニーダーを用いて120℃で熱溶融混練後、ジ
ェットミルで粉砕し、その後乾式気流分級機で個数平均
粒子径Pが12μmとなるように分級した。この粉体1
00重量部に対し、窒素原子を含有する表面処理剤(N
−(2−アミノエチル)−3−アミノプロピルトリメト
キシシラン)で表面処理された疎水性シリカ微粉末0.
4重量部をヘンシェルミキサーで混合して実施例1の粉
体塗料を得た。
[Table 1] The raw materials having the above mixing ratios are mixed by a super mixer, hot-melt kneaded at 120 ° C. using a pressure kneader, pulverized by a jet mill, and then dried with a dry air classifier so that the number average particle diameter P becomes 12 μm. Was classified. This powder 1
Per 100 parts by weight of a surface treatment agent containing a nitrogen atom (N
-(2-aminoethyl) -3-aminopropyltrimethoxysilane) hydrophobic silica fine powder
4 parts by weight were mixed with a Henschel mixer to obtain a powder coating material of Example 1.

【0023】<実施例2> 粉体塗料の製造Example 2 Production of Powder Coating

【表2】 上記の配合比からなる原料をスーパーミキサーで混合
し、加圧ニーダーで120℃で熱溶融混練後、ジェット
ミルで粉砕し、その後乾式気流分級機で個数50%径が
20μmとなるように分級した。この粉体100重量部
に対し、ジメチルジクロルシランで表面処理された疎水
性シリカ微粉末0.4重量部をヘンシェルミキサーで混
合して実施例2の粉体塗料を得た。
[Table 2] The raw materials having the above mixing ratios were mixed by a super mixer, hot-melt kneaded at 120 ° C. by a pressure kneader, pulverized by a jet mill, and then classified by a dry air classifier so that the 50% diameter became 20 μm. . To 100 parts by weight of this powder, 0.4 part by weight of hydrophobic silica fine powder surface-treated with dimethyldichlorosilane was mixed with a Henschel mixer to obtain a powder coating material of Example 2.

【0024】<実施例3> 粉体塗料の製造Example 3 Production of Powder Coating

【表3】 上記の配合比からなる原料をスーパーミキサーで混合
し、加圧ニーダーで120℃で熱溶融混練後、ジェット
ミルで粉砕し、その後乾式気流分級機で個数50%径が
26μmとなるように分級した。この粉体100重量部
に対し、ジメチルジクロルシランで表面処理された疎水
性シリカ微粉末0.2重量部をヘンシェルミキサーで混
合して実施例の粉体塗料を得た。
[Table 3] The raw materials having the above mixing ratios were mixed by a super mixer, hot-melt kneaded at 120 ° C. by a pressure kneader, pulverized by a jet mill, and then classified by a dry air classifier so that the 50% diameter became 26 μm. . To 100 parts by weight of this powder, 0.2 part by weight of hydrophobic silica fine powder surface-treated with dimethyldichlorosilane was mixed with a Henschel mixer to obtain a powder coating material of Example 3 .

【0025】<比較例1> 実施例1では個数平均粒子径Pを12μm、添加する疎
水性シリカ量を0.重量部としたのに対して、分級後
の個数平均粒子径Pを4.5μmとし、疎水性シリカ量
を0.8重量部とした以外は、実施例1と同様にして比
較例1の粉体塗料を得た。 <比較例2> 実施例1では個数平均粒子径Pを12μm、添加する疎
水性シリカ量を0.重量部としたのに対して、分級後
の個数平均粒子径Pを27.0μmとし、疎水性シリカ
量を0.2重量部とした以外は、実施例1と同様にして
比較例2の粉体塗料を得た。 <比較例3> 実施例1では窒素原子を含有する表面処理剤(N−(2
−アミノエチル)−3−アミノプロピルトリメトキシシ
ラン)で表面処理された疎水性シリカを使用したのに対
して、ジメチルジクロルシランで表面処理された疎水性
シリカ微粉末を使用した以外は実施例1と同様にして比
較例3の粉体塗料を得た。
Comparative Example 1 In Example 1, the number average particle diameter P was 12 μm, and the amount of hydrophobic silica to be added was 0.1 μm. In contrast to 4 parts by weight, the number average particle diameter P after classification was 4.5 μm, and the amount of hydrophobic silica was 0.8 parts by weight. A powder coating was obtained. Comparative Example 2 In Example 1, the number average particle diameter P was 12 μm, and the amount of hydrophobic silica to be added was 0.1 μm. In contrast to 4 parts by weight, the number average particle diameter P after classification was 27.0 μm, and the amount of hydrophobic silica was 0.2 parts by weight. A powder coating was obtained. <Comparative Example 3> In Example 1, the surface treatment agent containing a nitrogen atom (N- (2
Example 1 except that hydrophobic silica surface-treated with dimethyldichlorosilane was used while hydrophobic silica surface-treated with -aminoethyl) -3-aminopropyltrimethoxysilane) was used. In the same manner as in Example 1, a powder coating material of Comparative Example 3 was obtained.

【0026】<比較例4> 粉体塗料の製造Comparative Example 4 Production of Powder Coating

【表4】 上記の配合比からなる原料をスーパーミキサーで混合
し、加圧ニーダーで120℃で熱溶融混練後、ジェット
ミルで粉砕し、その後乾式気流分級機で個数50%径が
12μmとなるように分級した。この粉体100重量部
に対し、窒素原子を含有する表面処理剤(N−(2−ア
ミノエチル)−3−アミノプロピルトリメトキシシラ
ン)で表面処理された疎水性シリカ微粉末0.4重量部
をヘンシェルミキサーで混合して比較例4の粉体塗料を
得た。
[Table 4] The raw materials having the above mixing ratios were mixed by a super mixer, kneaded with heat in a pressure kneader at 120 ° C., pulverized by a jet mill, and then classified by a dry air classifier so that the 50% diameter became 12 μm. . 0.4 parts by weight of hydrophobic silica fine powder surface-treated with a surface treatment agent containing a nitrogen atom (N- (2-aminoethyl) -3-aminopropyltrimethoxysilane) based on 100 parts by weight of this powder Was mixed with a Henschel mixer to obtain a powder coating material of Comparative Example 4.

【0027】<比較例5>個数平均粒子径が26μmに
なるよう粉砕分級し、疎水性シリカ量を0.2重量部と
した以外は比較例4と同様にして比較例5の粉体塗料を
得た。
<Comparative Example 5> The powder coating material of Comparative Example 5 was prepared in the same manner as in Comparative Example 4 except that the particles were pulverized and classified so that the number average particle diameter became 26 μm, and the amount of hydrophobic silica was changed to 0.2 part by weight. Obtained.

【0028】ついで、<実施例1>〜<実施例3>、お
よび<比較例1>〜<比較例5>で得られたの粉体塗料
の帯電量Qおよび塗着効率を下記方法により測定した。 (1)粉体塗料の帯電量Q 実施例および比較例で得られた粉体塗料4重量部と、フ
ェライト粉(パウダーテック社製、商品名:FL921
−1530)96重量部とをV型ブレンダーで10分間
混合し、先に説明したマグネットブローオフ法によって
粉体塗料の帯電量Qを測定した。その結果を下記表5
示す。 (2)塗着効率 実施例および比較例で得た粉体塗料をトリボ帯電方式の
スプレーガン(松尾社製)に適用し、下記塗装条件に
て、吐出量を80、100、120、そして150g/
min.と変化させて鋼板に粉体塗料を塗着させた。ま
た、吐出量を100g/min.に設定して、10分間
連続噴霧して鋼板に粉体塗料を塗着させた。使用した鋼
板は、1000mm四方のブライト仕上げされたリン酸
亜鉛処理鋼板(SPCC−SB板)の中央部に、当該鋼
板の面に対して垂直方向に位置するように300mm四
方の同鋼板が仮着してなるものである。 コンベアスピード 2.0 m/min. レシプロケーター ストローク 1000 mm スピード 20 m/min. ガン距離 200 mm 次に、仮着された300mm四方の鋼板を剥離し、鋼板
上の粉体塗料の付着量(X)と、吐出量から得られる理
論上の全付着量(Y)とから、下記式にしたがって塗着
効率を導出した。 塗着効率(%)=(X/Y)×100
Next, the charge amount Q and the coating efficiency of the powder coatings obtained in <Example 1> to <Example 3> and <Comparative Example 1> to <Comparative Example 5> were measured by the following methods. did. (1) Charge amount Q of powder coating material 4 parts by weight of powder coating materials obtained in Examples and Comparative Examples, and ferrite powder (manufactured by Powder Tech Co., trade name: FL921)
-1530) and 96 parts by weight were mixed in a V-type blender for 10 minutes, and the charge amount Q of the powder coating was measured by the magnet blow-off method described above. The results are shown in Table 5 below. (2) Coating Efficiency The powder coatings obtained in the Examples and Comparative Examples were applied to a tribo-charging type spray gun (manufactured by Matsuo), and the discharge amounts were 80, 100, 120, and 150 g under the following coating conditions. /
min. And the powder coating was applied to the steel sheet. In addition, the discharge rate was 100 g / min. And sprayed continuously for 10 minutes to apply the powder coating to the steel plate. The steel plate used was a 300-mm square zinc-phosphated steel plate (SPCC-SB plate) that had been subjected to a bright finish and a 300-mm square steel plate was temporarily attached to the center of the steel plate so as to be positioned perpendicular to the surface of the steel plate. It is made. Conveyor speed 2.0 m / min. Reciprocator Stroke 1000 mm Speed 20 m / min. Gun distance 200 mm Next, the 300 mm square steel plate which was temporarily attached was peeled off, and from the adhesion amount (X) of the powder paint on the steel plate and the theoretical total adhesion amount (Y) obtained from the discharge amount, The coating efficiency was derived according to the following equation. Coating efficiency (%) = (X / Y) × 100

【0029】[0029]

【表5】 ただし、上記表5中、*1は、トリボ帯電方式のスプレー
ガンからの粉体塗料の吐出量を100g/min.に設
定して10分間連続噴霧した場合を意味する。
[Table 5] In Table 5 , * 1 indicates that the discharge amount of the powder coating from the spray gun of the tribo-charging method was 100 g / min. Means continuous spraying for 10 minutes.

【0030】上記表の結果をグラフに示したものが図
3である。表および図3から明らかなように、粉体塗
料の個数平均粒子径Pと帯電量Qとを、2P−30≦Q
≦2Pかつ+10≦Q≦+30を満たすように設定する
ことにより、粉体塗料の噴霧量に対する被塗物への塗着
効率の変化が少なく、連続噴霧時も塗着効率が低下しな
い粉体塗料を得ることができる。
FIG. 3 is a graph showing the results of Table 5 above. As is clear from Table 5 and FIG. 3, the number average particle diameter P and the charge amount Q of the powder coating material were calculated as follows: 2P−30 ≦ Q
By setting so as to satisfy ≦ 2P and + 10 ≦ Q ≦ + 30, the powder coating material has a small change in the coating efficiency with respect to the spray amount of the powder coating material and does not decrease the coating efficiency even during continuous spraying. Can be obtained.

【0031】[0031]

【発明の効果】本発明の粉体塗料は、少なくとも結着樹
脂および硬化剤からなり、塗料搬送部にフッ素系樹脂を
用いたトリボ帯電方式のスプレーガンに使用される粉体
塗料であって、マグネットブローオフ法による帯電量Q
(μC/g) と、コールターカウンター法による個数平均粒
子径P(μm) との間に、2P−30≦Q≦2P、かつ+
10≦Q≦+30が成立することを特徴とする粉体塗料
である。粉体塗料のマグネットブローオフ法による帯電
量Qと個数平均粒子径Pを上記範囲に限定することによ
って、トリボ帯電方式のスプレーガンに適用した場合に
良好な帯電性が得られると同時に、スプレーガン内壁へ
の電荷の蓄積を事実上問題ない範囲にとどめることがで
きるため、粉体塗料の噴霧量に対する被塗物への塗着効
率の変化が少ない粉体塗料を得ることができる。
The powder coating composition of the present invention is a powder coating composition comprising at least a binder resin and a curing agent and used for a spray gun of a tribo-charging system using a fluorine-based resin in a coating material conveying section, Charge amount Q by magnet blow-off method
(μC / g) and the number average particle diameter P (μm) by the Coulter counter method, 2P−30 ≦ Q ≦ 2P, and +
A powder coating material characterized by satisfying 10 ≦ Q ≦ + 30. By limiting the charge amount Q and the number average particle diameter P of the powder coating by the magnet blow-off method to the above ranges, good chargeability can be obtained when applied to a tribo-charge type spray gun, and at the same time, the spray gun inner wall can be obtained. Since the accumulation of charge on the substrate can be kept within a practically acceptable range, it is possible to obtain a powder coating material in which there is little change in the efficiency of application to the object with respect to the spray amount of the powder coating material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明における帯電量Qと、個数平
均粒子径Pとの関係を示す図である。
FIG. 1 is a diagram showing a relationship between a charge amount Q and a number average particle diameter P in the present invention.

【図2】 図2は、マグネットブローオフ法の概略を示
す図である。
FIG. 2 is a view schematically showing a magnet blow-off method.

【図3】 図3は、実施例1〜3、および比較例1〜5
で得られた粉体塗料の帯電量Qと個数平均粒子径Pとの
関係を示す図である。
FIG. 3 shows Examples 1 to 3 and Comparative Examples 1 to 5.
FIG. 5 is a view showing the relationship between the charge amount Q and the number average particle diameter P of the powder coating obtained in the step (a).

【符号の説明】[Explanation of symbols]

1 磁石 6 コード 2 保持装置 7 コンデンサ 3 導電性シート 8 電圧計 4 頭頂部 5 ノズル DESCRIPTION OF SYMBOLS 1 Magnet 6 Code 2 Holding device 7 Capacitor 3 Conductive sheet 8 Voltmeter 4 Head 5 Nozzle

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−207197(JP,A) 特開 平5−271584(JP,A) 特開 平3−775(JP,A) 特開 平4−249585(JP,A) 特開 平1−153773(JP,A) 特開 平8−20735(JP,A) 特開 平8−24786(JP,A) 特開 平3−120570(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09D 5/03 C09D 201/00 - 201/10 WPIDS(STN)──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-7-207197 (JP, A) JP-A-5-271584 (JP, A) JP-A-3-775 (JP, A) JP-A-4-207 249585 (JP, A) JP-A-1-153773 (JP, A) JP-A-8-20735 (JP, A) JP-A-8-24786 (JP, A) JP-A-3-120570 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C09D 5/03 C09D 201/00-201/10 WPIDS (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも結着樹脂および硬化剤からな
り、塗料搬送部にフッ素系樹脂を用いたトリボ帯電方式
のスプレーガンに使用される粉体塗料であって、 マグネットブローオフ法による帯電量Q(μC/g) と、コ
ールターカウンター法による個数平均粒子径P(μm) と
の間に、下記の関係 2P−30≦Q≦2P かつ +10≦Q≦+30 が成立することを特徴とする粉体塗料。
1. A powder paint comprising at least a binder resin and a curing agent and used for a spray gun of a tribo-charging method using a fluorine-based resin in a paint conveying section, wherein a charge amount Q ( powder coating, wherein the following relationship 2P-30 ≦ Q ≦ 2P and + 10 ≦ Q ≦ + 30 is established between μC / g) and the number average particle diameter P (μm) determined by the Coulter counter method. .
JP25430095A 1995-09-29 1995-09-29 Powder paint Expired - Fee Related JP3157095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25430095A JP3157095B2 (en) 1995-09-29 1995-09-29 Powder paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25430095A JP3157095B2 (en) 1995-09-29 1995-09-29 Powder paint

Publications (2)

Publication Number Publication Date
JPH0995628A JPH0995628A (en) 1997-04-08
JP3157095B2 true JP3157095B2 (en) 2001-04-16

Family

ID=17263074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25430095A Expired - Fee Related JP3157095B2 (en) 1995-09-29 1995-09-29 Powder paint

Country Status (1)

Country Link
JP (1) JP3157095B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047423A (en) * 2016-09-21 2018-03-29 富士ゼロックス株式会社 Electrostatic powder coating method

Also Published As

Publication number Publication date
JPH0995628A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
JP2825129B2 (en) Method for improving electrostatic chargeability of powder paint or powder, and method for using it for surface coating of solid object
US5637136A (en) Triboelectric coating powder and process
CZ200417A3 (en) Process for producing coatings on electrically conducting substrates and apparatus for making the same
JP3157095B2 (en) Powder paint
JP2909881B2 (en) Powder paint
JP2913377B2 (en) Powder paint
EP0792325B2 (en) Process for coating a substrate with a powder paint composition
JP2983868B2 (en) Powder coating and powder coating method using the same
JP2996604B2 (en) Powder paint
JP2949561B2 (en) Powder coating and coating method using the same
JP3759196B2 (en) Powder coating for tribo-charging spray gun
JP3437973B2 (en) Powder coating for glass surface coating and coating method
JPH09279058A (en) Powder coating material and coating method using the same
JP2982112B2 (en) Powder coating and coating method using the same
JP3225198B2 (en) How to apply powder paint
JP3325728B2 (en) Powder coating, production method thereof, and powder coating method using the same
JPH08176469A (en) Powder coating and method of coating therewith
JP3000304B2 (en) Resin composition for electrostatic powder coating
JPH105635A (en) Electrostatic powder spray coating method and apparatus therefor
JPH10231446A (en) Powder coating material and powder coating method
US6298209B1 (en) Electrostatic powder coated wire for hybrid scavengeless development applications
JP3619010B2 (en) How to apply powder paint
JP2716356B2 (en) Charge control method in triboelectric powder coating equipment
JPH1176919A (en) Reusing of powder coating material
JPH09324140A (en) Powder coating and its coating

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees