JP3258256B2 - Powder coating suitable for electrostatic fluidized immersion method - Google Patents

Powder coating suitable for electrostatic fluidized immersion method

Info

Publication number
JP3258256B2
JP3258256B2 JP13027097A JP13027097A JP3258256B2 JP 3258256 B2 JP3258256 B2 JP 3258256B2 JP 13027097 A JP13027097 A JP 13027097A JP 13027097 A JP13027097 A JP 13027097A JP 3258256 B2 JP3258256 B2 JP 3258256B2
Authority
JP
Japan
Prior art keywords
particles
powder coating
coating
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13027097A
Other languages
Japanese (ja)
Other versions
JPH10298452A (en
Inventor
修司 三谷
利夫 西
晃 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP13027097A priority Critical patent/JP3258256B2/en
Publication of JPH10298452A publication Critical patent/JPH10298452A/en
Application granted granted Critical
Publication of JP3258256B2 publication Critical patent/JP3258256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、静電流動浸漬法に用い
るための粉体塗料であり、特に薄膜の絶縁性の皮膜が要
求される小型の被塗装物への薄膜粉体塗装に適する。こ
こで言う小型の被塗装物とは、小型のモーターコアや磁
石を始め、各種工作機械、車両、船舶、飛行機、家電、
事務機器等の小型部品、電気・電子部品等が挙げられ
る。また、被塗装物の材質としては、導電性の各種金属
が挙げられる。
BACKGROUND OF THE INVENTION The present invention uses the electrostatic fluidized-bed coating
A because of powder coatings, particularly suitable for thin film powder coating to an object to be coated of compact insulating coating film is required. Here, small objects to be coated include small motor cores and magnets, various machine tools, vehicles, ships, airplanes, home appliances,
Small parts such as office equipment, electric and electronic parts, and the like. Examples of the material of the object to be coated include various conductive metals.

【0002】[0002]

【従来の技術】粉体塗料は、溶剤塗料に比べ揮発分、臭
気とも少なく、公害対策および環境規制の面で非常に有
益であることは周知である。従来、静電流動浸漬法に用
いられていた絶縁塗装用の粉体塗料は、体積平均粒子径
が30〜40μm程度であり、厳密な分級が施されてお
らず、粒子径が25μm以上である粒子の体積割合が4
0〜90%程度で、粒子径が5μm以下である粒子の個
数割合が60〜80%程度であった。また、絶縁塗装用
の粉体塗料では、被塗装物のエッジ部の被覆性を高める
目的で、熱処理時に溶融した粉体塗料のフロ−性を以下
のような方法で低下させている。 無機微粒子の増粘剤を添加する。 硬化速度の速い硬化剤を用いて、溶融後に即座に硬化
させる。 ととを組み合わせる。 従って、従来の粉体塗料は体積平均粒子径が大きく、か
つ、溶融時のフロー性が悪いため熱処理後の皮膜の凹凸
が大きくなる。そのため、平均膜厚が40μm程度の薄
膜の粉体塗装では、ピンホールや極端に膜厚の薄い箇所
が生じやすく、良好な絶縁性を有する皮膜を得ることが
困難であった。そのため、絶縁性が要求される薄膜の皮
膜形成は、一般に、溶剤塗装で行われるケ−スが多かっ
た。
2. Description of the Related Art It is well known that powder coatings have less volatile components and odors than solvent coatings and are very useful in terms of pollution control and environmental regulations. Conventionally, the powder coating for insulating coating used in the electrostatic flow immersion method has a volume average particle diameter of about 30 to 40 μm, is not strictly classified, and has a particle diameter of 25 μm or more. Particle volume ratio of 4
About 0 to 90%, the number ratio of particles having a particle diameter of 5 μm or less was about 60 to 80%. In the case of a powder coating for insulating coating, the flowability of the powder coating melted during the heat treatment is reduced by the following method in order to enhance the coverage of the edge portion of the object to be coated. A thickener of inorganic fine particles is added. Immediately after being melted, it is cured using a curing agent having a high curing speed. Combine with. Therefore, the conventional powder coating has a large volume average particle diameter and poor flowability at the time of melting, so that the unevenness of the coating after heat treatment becomes large. Therefore, in powder coating of a thin film having an average film thickness of about 40 μm, pinholes and extremely thin portions are easily generated, and it has been difficult to obtain a film having good insulating properties. For this reason, in many cases, the formation of a thin film that requires insulating properties is performed by solvent coating.

【0003】[0003]

【発明が解決しようとする課題】従来の絶縁塗装用の粉
体塗料では、良好な絶縁性を有する皮膜を形成するため
には、平均膜厚が100μm程度の厚膜塗装を施す必要
があり、薄膜塗装が要求される小型の部品への塗装には
不適であった。また、絶縁塗装用の粉体塗料では細部ま
で均一な皮膜形成が必要となるが、被塗装物のエッジ部
の被覆性を考慮すると、溶融時のフロー性を高めること
は好ましくない。そのため、薄膜塗装を可能にするため
には、粉体塗料の粒子の体積平均粒子径を小さくするこ
とが好ましい。しかしながら、単に粉体塗料を微粉砕し
ただけでは、粉体塗料の流動性が悪化し、塗装機の流動
槽内で粉体塗料を流動化状態にすることができない。そ
のため、被塗装物上に皮膜を形成することができない。
本発明の目的は、上記従来の粉体塗料の問題点を解決し
絶縁性に優れる薄膜の皮膜を静電流動浸漬法によって得
ることができる粉体塗料を提供することにある。
In the conventional powder coating for insulating coating, in order to form a film having good insulating properties, it is necessary to apply a thick coating having an average film thickness of about 100 μm. It was unsuitable for coating on small parts requiring thin film coating. Also, powder coatings for insulating coating require uniform formation of fine details, but it is not preferable to enhance the flowability at the time of melting in consideration of the covering properties of the edges of the object to be coated. Therefore, in order to enable thin film coating, it is preferable to reduce the volume average particle diameter of the particles of the powder coating. However, the mere pulverization of the powder coating deteriorates the fluidity of the powder coating, making it impossible to bring the powder coating into a fluidized state in the fluidizing tank of the coating machine. Therefore, a film cannot be formed on the object to be coated.
An object of the present invention is to solve the above-mentioned problems of the conventional powder coating and to provide a powder coating capable of obtaining a thin film having excellent insulation properties by an electrostatic flow immersion method.

【0004】[0004]

【課題を解決するための手段】上述の問題点を改良する
ために検討を行った結果、絶縁塗装用の粉体塗料を用い
て、静電流動浸漬法により粉体塗装を行う場合、下記の
粒子径を有し、(イ)体積平均粒子径が10〜20μ
m、(ロ)全粒子中に占める25μm以上の粒子の体積
割合が25%以下、(ハ)全粒子中に占める5μm以下
の粒子の個数割合が45%以下、かつ、シリカ微粒子が
粉体粒子の表面に付着しており、該粉体粒子は、結着樹
脂100重量部に対して50〜150重量部の水酸化ア
ルミニウム又は炭酸カルシウムが添加された粉体塗料
は、塗装機の流動槽内で均一な流動化状態になり、良好
な絶縁性を有する薄膜の皮膜を形成でき得ることを見い
だした。
As a result of investigations to improve the above-mentioned problems, when powder coating is performed by an electrostatic fluidized immersion method using a powder coating for insulating coating, the following is required. Having a particle diameter, and (a) a volume average particle diameter of 10 to 20 μm.
m, (b) the volume ratio of particles of 25 μm or more in all particles is 25% or less, (c) the number ratio of particles of 5 μm or less in all particles is 45% or less, and the silica fine particles are powder particles. The powder particles adhere to the surface of the binder tree
50 to 150 parts by weight of hydroxide
It has been found that the powder coating to which luminium or calcium carbonate is added becomes a uniform fluidized state in a fluidizing tank of a coating machine and can form a thin film having good insulating properties.

【0005】まず、本発明の粉体塗料が用いられる静電
流動浸漬法について図1を用いて説明する。静電流動浸
漬法においては、多孔板2が底面に設置された流動槽1
内に粉体塗料3を投入し、チャージングゾーン4でマイ
ナスにイオン化された流動化エアー5が多孔板2から噴
出されることにより、流動槽内の粉体塗料は、流動化状
態になると同時にマイナス荷電される。この流動化状態
になった粉体塗料3の雲の中に、アースが取り付けられ
た被塗装物6を潜らせることにより、荷電された粉体塗
料3が被塗装物6表面上に電気的引力により付着する。
なお、静電流動浸漬法としては図1で説明したもの以外
にチャージングゾーンを多孔板内に設置したものもある
が、本発明の粉体塗料が用いられる静電流動浸漬法はチ
ャージングゾーン方式の違いで限定されるものではな
い。
First, an electrostatic flow immersion method using the powder coating of the present invention will be described with reference to FIG. In the electrostatic flow immersion method, a fluidized tank 1 in which a perforated plate 2 is provided on the bottom surface is used.
The powder paint 3 in the fluidized tank is put into a fluidized state when the powder paint 3 in the fluidizing tank is put into the fluidized state by the fluidized air 5 which is ionized negatively in the charging zone 4 and is jetted from the porous plate 2. It is negatively charged. By dipping the object 6 to which the ground is attached into the cloud of the powdered coating material 3 in the fluidized state, the charged powder coating material 3 is electrically attracted on the surface of the coating object 6. To adhere.
As the electrostatic fluid immersion method, there is a method in which a charging zone is provided in a perforated plate in addition to the method described with reference to FIG. 1, but the electrostatic fluid immersion method using the powder coating of the present invention employs a charging zone. It is not limited by the difference in the method.

【0006】以下、本発明の粉体塗料について詳細に説
明する。本発明の粉体塗料は、家電や電気・電子等の絶
縁性が必要な部品用の粉体塗料であるため、電気が導通
した場合に生じる熱に耐えうるように熱硬化性であるこ
とが好ましく、少なくとも結着樹脂と硬化剤とからなる
ものが好適である。該結着樹脂としては、エポキシ樹
脂、フェノール樹脂等が挙げられる。また、該硬化剤と
しては、アミド、酸ジヒドラジド、酸無水物、イミダゾ
ール等が挙げられるほか、フェノール樹脂をエポキシ樹
脂の硬化剤として用いても良い。そして、該硬化剤は、
単独或いは2種以上を併用して使用することができる。
そして、絶縁塗装用の粉体塗料である本発明の粉体塗料
は、被塗装物のエッジ部の被覆性を高める目的で、熱処
理時に溶融した粉体塗料のフロー性が低下させられてい
ることが重要であり、以下の手法のうちのとが用い
られる。無機微粒子よりなる増粘剤を添加する。硬
化速度の速い硬化剤を用いて、溶融後に即座に硬化させ
る。ととを組み合わせる。本発明の粉体塗料の場
合、該無機微粒子としては水酸化アルミニウムまたは炭
酸カルシウムが用いられ、その添加量としては結着樹脂
100重量部に対して50〜150重量部、より好まし
くは75〜125重量部添加される。また、硬化速度の
速い硬化剤としては酸無水物、イミダゾール等が挙げら
る。また、本発明の粉体塗料には酸化チタン、カーボ
ンブラック、酸化鉄、銅フタロシアニン、アゾ顔料、縮
合多環顔料等の各種着色剤、アクリルオリゴマー、シリ
コーン等の流展剤、ベンゾイン等の発泡防止剤、カップ
リング剤、酸化防止剤、ワックス等の各種添加剤を適宜
添加してもよい。
Hereinafter, the powder coating of the present invention will be described in detail. Since the powder coating of the present invention is a powder coating for components that require insulation such as home appliances and electric / electronic devices, the powder coating may be thermosetting so as to withstand heat generated when electricity is conducted. Preferably, at least one comprising a binder resin and a curing agent is suitable. Examples of the binder resin include an epoxy resin and a phenol resin. Examples of the curing agent include amide, acid dihydrazide, acid anhydride, imidazole and the like, and a phenol resin may be used as a curing agent for the epoxy resin. And the curing agent is
They can be used alone or in combination of two or more.
In the powder coating of the present invention, which is a powder coating for insulating coating, the flowability of the powder coating melted during the heat treatment is reduced for the purpose of enhancing the coverage of the edge portion of the object to be coated. Is important and is used by any of the following approaches:
Can be A thickener composed of inorganic fine particles is added. Immediately after being melted, it is cured using a curing agent having a high curing speed. Combine with. Field of the powder coating of the present invention
If, as it is the inorganic fine particles used is aluminum hydroxide or calcium carbonate, 50 to 150 parts by weight per 100 parts by weight of the binder resin as the addition amount thereof, and more preferably is added 75-125 parts by weight. Also, acid anhydrides as fast hardeners hardening rate, that Re et imidazole and the like <br/>. Also, titanium oxide in powder coating of the present invention, carbon black, iron oxide, copper phthalocyanine, azo pigments, condensed polycyclic various colorants such as pigments, an acrylic oligomer, leveling agents such as silicone, foam benzoin such Various additives such as an inhibitor, a coupling agent, an antioxidant, and a wax may be appropriately added.

【0007】本発明では上記の材料から構成される粉体
塗料組成物をミキサー或いはブレンダー等を用いて乾式
混合した後に、ニーダーにより溶融混練し冷却する。そ
の後、機械式或いは気流式の粉砕機を用いて粉砕した
後、気流式の分級機を用いて分級することにより粉体粒
子を得る。そして、該粉体粒子の表面に後述するシリカ
微粒子を付着させることにより本発明の粉体塗料を得る
ことができる。尚、上記粉体粒子の製造は、上述の方法
に限定されず、例えば、スプレードライ法によって製造
することもできる。
In the present invention, the powder coating composition composed of the above materials is dry-mixed using a mixer or a blender, and then melt-kneaded by a kneader and cooled. Then, after pulverizing using a mechanical or air-flow type pulverizer, powder particles are obtained by classifying using a pneumatic-type classifier. Then, the powder coating of the present invention can be obtained by attaching silica fine particles described below to the surfaces of the powder particles. The production of the powder particles is not limited to the above-mentioned method, but may be, for example, a spray-dry method.

【0008】本発明では粉体粒子の表面にシリカ微粒子
を付着させた粉体塗料の体積平均粒子径および粒子径分
布は以下の条件を満たしていなければならない。 (イ)体積平均粒子径が10〜20μm (ロ)全粒子中に占める25μm以上の粒子の体積割合
が25%以下 (ハ)全粒子中に占める5μm以下の粒子の個数割合が
45%以下 まず、体積平均粒子径が20μmより大きい場合、平均
膜厚が40μm程度の薄膜塗装では、被塗装物上の粉体
粒子付着層の表面の凹凸が大きくなる。そのため、熱処
理後の皮膜の表面の凹凸が大きくなり、ピンホ−ルや部
分的に極端に膜厚の薄い箇所ができ易く、皮膜の絶縁性
が低下するので好ましくない。一方、体積平均粒子径が
10μm未満の場合、粉体塗料の粒子の比表面積の増加
によりファンデルワールス力等の粒子間力が大きくな
り、粒子同士が凝集しやすくなるため、粉体塗料の流動
性が低下する。そのため、塗装機の流動槽内で粉体塗料
を流動化状態にさせることができなくなり、被塗装物上
に皮膜を形成することができない。また、この場合、後
述する流動性付与剤であるシリカ微粒子を添加しても、
粉体塗料を流動槽内で均一に流動化させることは困難で
ある。
In the present invention, the volume average particle diameter and the particle diameter distribution of the powder coating material having silica particles adhered to the surface of the powder particles must satisfy the following conditions. (B) The volume average particle diameter is 10 to 20 μm. (B) The volume ratio of particles of 25 μm or more in all particles is 25% or less. (C) The number ratio of particles of 5 μm or less in all particles is 45% or less. When the volume average particle diameter is larger than 20 μm, in a thin film coating having an average film thickness of about 40 μm, the unevenness of the surface of the powder particle adhesion layer on the object to be coated becomes large. Therefore, unevenness of the surface of the film after the heat treatment becomes large, and pinholes or portions having an extremely small thickness are easily formed, and the insulating property of the film is unfavorably reduced. On the other hand, when the volume average particle diameter is less than 10 μm, the interparticle force such as van der Waals force increases due to an increase in the specific surface area of the particles of the powder coating, and the particles are easily aggregated. Is reduced. For this reason, the powder coating cannot be fluidized in the fluidizing tank of the coating machine, and a film cannot be formed on the object to be coated. Further, in this case, even if silica fine particles as a fluidity imparting agent described below are added,
It is difficult to uniformly fluidize the powder coating in a fluidized tank.

【0009】また、本発明の粉体塗料は、粒子径が25
μm以上である粒子の体積割合は25%以下でなければ
ならない。粒子径が25μm以上である粒子の体積割合
が25%を越えて多いと被塗装物上の粉体粒子付着層の
表面の凹凸が大きくなる。その結果、熱処理後の皮膜の
凹凸が大きくなり、平均膜厚が40μm程度の薄膜塗装
では、極端に膜厚が薄い箇所ができやすく、皮膜の絶縁
性が低下する。このような理由から薄膜塗装を施す場
合、粒子径が25μm以上である粒子の体積割合は25
%以下でなければならない。
The powder coating of the present invention has a particle diameter of 25.
The volume fraction of particles that are greater than or equal to μm must be less than or equal to 25%. If the volume ratio of the particles having a particle diameter of 25 μm or more exceeds 25%, the unevenness of the surface of the powder particle adhesion layer on the object to be coated becomes large. As a result, the unevenness of the film after the heat treatment becomes large, and in the case of the thin film coating having an average film thickness of about 40 μm, an extremely thin portion is easily formed, and the insulating property of the film is deteriorated. For this reason, when a thin film is applied, the volume ratio of particles having a particle size of 25 μm or more is 25%.
%.

【0010】また、本発明の粉体塗料は、粒子径が5μ
m以下である粒子の個数割合は45%以下でなければな
らない。粒子径が5μm以下である粒子は、前述の体積
平均粒子径が10μm未満の場合と同じ理由で、粒子同
士が凝集しやすく、粉体塗料の流動性を低下させる。そ
のため、塗装機の流動槽内で粉体塗料の流動化を阻害す
る。また、粒子径が5μm以下である粒子は、個々の粒
子の表面積が小さく荷電されにくいため、被塗装物へ付
着しにくい。そのため、その個数割合が多いと粉体塗料
の塗着効率が低下する。このような理由から、粒子径が
5μm以下である粒子の個数割合が45%を越えて多い
場合は粉体塗料の流動性および付着性が悪化し、被塗装
物上に均一な薄膜の皮膜を形成することが困難となる。
The powder coating of the present invention has a particle diameter of 5 μm.
The number proportion of particles less than m must be less than 45%. Particles having a particle diameter of 5 μm or less tend to agglomerate with each other for the same reason as in the case where the volume average particle diameter is less than 10 μm, and lower the fluidity of the powder coating. Therefore, fluidization of the powder coating in the fluidizing tank of the coating machine is impeded. Further, particles having a particle size of 5 μm or less have a small surface area of each particle and are difficult to be charged, so that they are difficult to adhere to the object to be coated. Therefore, when the number ratio is large, the coating efficiency of the powder coating decreases. For these reasons, when the number ratio of particles having a particle diameter of 5 μm or less exceeds 45%, the fluidity and adhesion of the powder coating deteriorate, and a uniform thin film is formed on the object to be coated. It is difficult to form.

【0011】なお、本発明における粒子径とは、コール
ターエレクトロニクス社製のコールターマルチサイザー
IIを用い、粉体塗料を界面活性剤を添加した水中に、
超音波分散器を用いて十分に分散させた後に、粉体塗料
の濃度を5〜10%に調整し、粉体塗料の沈降防止のた
め小型スクリューにより撹拌させた状態で、直径100
μmのアパチャーを用いて測定した測定値である。
In the present invention, the particle size is determined by using a Coulter Multisizer II manufactured by Coulter Electronics Co., Ltd. to prepare a powder coating in water to which a surfactant is added.
After sufficiently dispersing using an ultrasonic disperser, the concentration of the powder coating was adjusted to 5 to 10%, and the mixture was stirred with a small screw to prevent sedimentation of the powder coating.
This is a measurement value measured using a μm aperture.

【0012】また、前記の通り本発明の粉体塗料は、シ
リカ微粒子が粉体粒子の表面に付着していなければなら
ない。シリカ微粒子を粉体粒子の表面に付着させること
により、粉体塗料は凝集しにくくなり、その流動性が向
上し、塗装機の流動槽内で粉体塗料を均一な流動化状態
にさせ易くなる。また、シリカ微粒子は粉体粒子100
重量部に対して0.2〜0.8重量部の割合で表面に付
着することが好ましい。シリカ微粒子の添加量が0.2
重量部未満の場合、流動性付与効果が不十分であり、塗
装機の流動槽内で粉体塗料を均一に流動化させることが
できない場合がある。一方、シリカ微粒子の添加量が
0.8重量部より多い場合は、粉体塗料の流動性が高く
なりすぎるため、塗装機の流動槽内に堆積している粉体
塗料の充填密度が高くなり、粒子間の間隙が非常に少な
くなる。そのため、流動槽の底面の多孔板から噴出され
る流動化エアーが粒子の間隙に均一に行き渡らなくな
り、行き場を失った流動化エアーは粉体塗料の堆積層中
に垂直にストロー状の気道を形成し、そこから粉体塗料
の堆積層の表面に抜けてしまう。そのため、粉体塗料は
流動化状態にならない場合がある。
As described above, in the powder coating of the present invention, the silica fine particles must adhere to the surface of the powder particles. By adhering the silica fine particles to the surface of the powder particles, the powder coating is hardly agglomerated, its flowability is improved, and the powder coating is easily made to be in a uniform fluidized state in the fluidizing tank of the coating machine. . The silica fine particles are powder particles 100
It is preferable to adhere to the surface at a ratio of 0.2 to 0.8 parts by weight with respect to parts by weight. When the added amount of silica fine particles is 0.2
When the amount is less than part by weight, the effect of imparting fluidity is insufficient, and the powder coating may not be fluidized uniformly in the fluidizing tank of the coating machine. On the other hand, when the addition amount of the silica fine particles is more than 0.8 parts by weight, the fluidity of the powder coating material becomes too high, so that the filling density of the powder coating material deposited in the fluidizing tank of the coating machine becomes high. In addition, the gap between the particles becomes very small. As a result, the fluidized air ejected from the perforated plate at the bottom of the fluidized tank does not evenly spread to the gap between the particles, and the fluidized air that has lost its place forms a straw-shaped airway vertically in the powder paint deposition layer Then, it escapes to the surface of the deposited layer of the powder coating. Therefore, the powder coating may not be in a fluidized state.

【0013】また、該シリカ微粒子の1次粒子の平均粒
子径は50nm以下であることが好ましい。シリカ微粒
子の1次粒子の平均粒子径が50nmより大きい場合、
シリカ微粒子の凝集粉および粗大粉により、熱処理後の
皮膜の表面にプツ(凸)が生じ易くなる。このとき、該
凸部は、皮膜の他の箇所よりも絶縁性が低くなるので好
ましくない。これは、被塗装物の表面から皮膜中のシリ
カの凝集粉および粗大粉の表面を通り、皮膜の表面まで
電気が流れるためであり、体積抵抗率よりも表面抵抗率
が低いことに起因する。尚、該シリカ微粒子は、その表
面にシランカップリング剤、或いは、チタンカップリン
グ剤等のカップリング剤により疎水化処理された疎水性
シリカ、または、表面処理の施されていない親水性シリ
カのどちらを用いても良い。
The average particle diameter of the primary particles of the silica fine particles is preferably 50 nm or less. When the average particle diameter of the primary particles of the silica fine particles is larger than 50 nm,
Due to the agglomerated powder and coarse powder of the silica fine particles, the surface of the film after the heat treatment tends to have a pit (convex). At this time, the convex portion is not preferable because the insulating property is lower than other portions of the film. This is because electricity flows from the surface of the object to be coated to the surface of the film through the surface of the agglomerated powder and coarse powder of silica in the film, and is caused by the fact that the surface resistivity is lower than the volume resistivity. The silica fine particles may be made of either a silane coupling agent or a hydrophobic silica that has been subjected to a hydrophobic treatment with a coupling agent such as a titanium coupling agent, or a hydrophilic silica that has not been subjected to a surface treatment. May be used.

【0014】上述のシリカ微粒子を粉体粒子の表面に付
着させるには、ブレンダー、或いはミキサーを用いて、
粉体粒子とシリカ微粒子とをドライブレンドしても良い
し、或いは、粉砕前の粉体塗料混練物に該シリカ微粒子
をドライブレンドにより添加した後に、粉砕しても良
い。
In order to attach the above-mentioned silica fine particles to the surface of the powder particles, a blender or a mixer is used.
The powder particles and the silica fine particles may be dry-blended, or the silica fine particles may be added to the powder coating kneaded material before pulverization by dry blending and then pulverized.

【0015】尚、該シリカ微粒子の添加量はEDX(エ
ネルギー分散型X線マイクロアナライザー)を用いて測
定することができ、また、該シリカ微粒子の粒子径は電
子顕微鏡を用いることにより測定することができる。
The addition amount of the silica fine particles can be measured by using an EDX (energy dispersive X-ray microanalyzer), and the particle size of the silica fine particles can be measured by using an electron microscope. it can.

【0016】[0016]

【実施例】以下、実施例および比較例に基づき本発明の
粉体塗料を説明する。ただし、本発明の適用範囲はこれ
らに限定されるものではない。 <実施例および比較例> 粉体粒子の製造 ・エポキシ樹脂 49.5重量% (油化シェルエポキシ社製 商品名:エピコ−ト1004) ・硬化剤(ジシアンジアミド) 1.3重量% ・硬化促進剤(イミダゾ−ル) 0.2重量% ・流展剤(アクリルコポリマ−) 0.7重量% ・発砲防止剤(ベンゾイン) 0.3重量% ・着色剤(二酸化チタン) 11.0重量% ・増粘剤(水酸化アルミニウム) 37.0重量% 上記の配合比からなる原料をスパ−ミキサ−で混合した
後に、120℃の温度条件下で、ニ−ダ−で溶融混練
し、冷却後に気流式の粉砕機を用いて粉砕した。その
後、気流式の分級機を用いて、体積平均粒子径および粒
子径分布の異なるA〜Gの粉体粒子を得た。
EXAMPLES The powder coating of the present invention will be described below based on examples and comparative examples. However, the scope of the present invention is not limited to these. <Examples and Comparative Examples> Production of powder particles ・ Epoxy resin 49.5% by weight (product name: Epicoat 1004 manufactured by Yuka Shell Epoxy) ・ Curing agent (dicyandiamide) 1.3% by weight ・ Curing accelerator (Imidazole) 0.2% by weight-Flow-off agent (acrylic copolymer) 0.7% by weight-Antifoaming agent (benzoin) 0.3% by weight-Colorant (titanium dioxide) 11.0% by weight-Increase Viscous agent (aluminum hydroxide) 37.0% by weight After the raw materials having the above mixing ratios were mixed with a super mixer, the mixture was melt-kneaded with a kneader at a temperature of 120 ° C., cooled and then cooled. Was crushed using a crusher. Thereafter, powder particles A to G having different volume average particle diameters and particle diameter distributions were obtained using an airflow classifier.

【0017】粉体塗料の製造 上記のA〜Gの粉体粒子に親水性シリカ(日本アエロジ
ル社製、商品名:アエロジル200、1次粒子の平均粒
子径:12nm)を該粉体粒子100重量部に対して
0.2重量部、0.4重量部、0.6重量部、0.8重
量部の割合で、それぞれヘンシェルミキサーを用いてド
ライブレンドにより粉体粒子の表面に付着せしめて粉体
塗料を得た。また、比較用のものについては前記親水性
シリカを付着しないものも比較用の粉体塗料とした。そ
して、シリカ微粒子を付着させた後の各粉体塗料の体積
平均粒子径および粒子径分布をコールターマルチサイザ
ーIIを用いて測定し、その測定結果を表1に示した。
Production of Powder Coating A hydrophilic silica (manufactured by Nippon Aerosil Co., Ltd., trade name: Aerosil 200, average particle diameter of primary particles: 12 nm) was added to the above powder particles A to G by 100 weight of the powder particles. Parts by weight of 0.2 parts by weight, 0.4 parts by weight, 0.6 parts by weight, and 0.8 parts by weight by dry blending using a Henschel mixer. A body paint was obtained. In addition, a comparative powder coating to which the hydrophilic silica was not attached was used as a comparative powder coating. The volume average particle size and the particle size distribution of each powder coating after the silica fine particles were adhered were measured using a Coulter Multisizer II, and the measurement results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】次に表1の各粉体塗料を図1の構成を有す
るELECTROSTATIC TECNOLOGY
INC.社製の静電流動浸積塗装機(商品名:C−3
0)の流動槽内に150g投入し、流動化エアー流量を
40L/min.にセットし、1時間放置した後に、塗
装機の流動槽内の粉体塗料の流動化状態を観察し、その
状態を表2に示した。粉体塗料の流動化試験の評価基準
は次の通りである。 ○:均一な流動化状態 ×:部分的もしくは全面的に流動化していない 尚、表2の粉体塗料の流動化試験結果が×であった粉体
塗料について流動化エアー流量を40L/min.から
80L/min.に増加させても均一な流動化状態には
ならなかった。また、塗装機の流動槽内で粉体塗料が均
一な流動化状態になり得た粉体塗料については、10m
mW×10mmH×40mmLの鉄製の角柱の片端にア
−スを兼ねた治具を取り付け、印可電圧を60KVで、
熱処理後の平面部分の平均膜厚が40μmになるように
塗装した。そして、熱風乾燥炉を用いて該被塗装物を1
80℃で20分間熱処理し、粉体塗料を硬化させ皮膜を
得た。該被塗装物を常温で24時間放置した後に、得ら
れた皮膜の絶縁性を以下の試験方法により評価した。被
塗装物の皮膜が形成されていない箇所(塗装時にア−ス
を兼ねた治具が取り付けられていた箇所)に耐圧試験器
(菊水電子社製、商品名:TOS−5030)のテスト
リード(黒)を取り付け、該角柱側面の4面の平面部分
および側面の4辺のエッジ部分にテストリード(赤)を
接触させて30mm走査し、皮膜の絶縁性を評価し、そ
の測定結果を表2に示した。尚、本試験は印可電圧50
0Vで行い、0.5mA以上の電流が流れたときにブザ
ーがなるようにセットして行った。皮膜の絶縁性試験の
評価基準は次の通りである。 ○:導電箇所無し ×:導電箇所有り −:粉体塗料が流動槽内で流動化しないため皮膜形成不
可能
Next, each of the powder coating materials shown in Table 1 was applied to ELECTROSTATIC TECHNOLOGY having the structure shown in FIG.
INC. Electrostatic Flow Immersion Coating Machine (trade name: C-3)
0) was charged into the fluidizing tank of (0), and the fluidizing air flow rate was 40 L / min. , And allowed to stand for 1 hour. Then, the fluidized state of the powder coating in the fluidizing tank of the coating machine was observed, and the state is shown in Table 2. The evaluation criteria for the fluidization test of the powder coating are as follows. :: Uniform fluidized state ×: Not partially or completely fluidized Note that the fluidized air flow rate was 40 L / min. To 80 L / min. Did not result in a uniform fluidized state. In addition, the powder coating material that could be in a uniform fluidized state in the fluidizing tank of the coating machine was 10 m
A jig also serving as an earth was attached to one end of an iron prism of mW × 10 mmH × 40 mmL, and the applied voltage was 60 KV.
Coating was performed so that the average film thickness of the flat portion after the heat treatment became 40 μm. Then, the object to be coated is placed in a hot air drying oven for 1 hour.
Heat treatment was carried out at 80 ° C. for 20 minutes to cure the powder coating to obtain a film. After the object to be coated was allowed to stand at room temperature for 24 hours, the insulating property of the obtained film was evaluated by the following test method. A test lead of a pressure resistance tester (manufactured by Kikusui Electronics Co., Ltd., trade name: TOS-5030) is applied to a portion where the coating of the object is not formed (a portion where a jig also serving as an earth was attached at the time of coating). Black) was attached, and a test lead (red) was brought into contact with the four flat portions of the side surface of the prism and the edge portions of the four sides of the side surface to scan 30 mm, and the insulation of the coating was evaluated. It was shown to. In this test, the applied voltage was 50
The measurement was performed at 0 V, and the buzzer was set when a current of 0.5 mA or more flowed. The evaluation criteria for the insulation test of the film are as follows. ○: No conductive part ×: Conductive part-: Powder coating does not flow in the fluidizing tank, so film formation is not possible

【0020】[0020]

【表2】 [Table 2]

【0021】表1および表2から明らかなように、薄膜
塗装用の小粒径粉体塗料を塗装機の流動槽内で均一な流
動化状態にするには、粉体塗料の粒子同士が凝集しない
だけの流動性と、流動化エアーが粉体塗料の粒子の堆積
層内に均一に行き渡るための粒子の間隙が存在すること
が必要であり、本発明の粉体塗料はこれらの条件を満た
している。また、表2より本発明の粉体塗料を用いて、
静電流動浸漬法により形成した薄膜の皮膜は、平面部、
エッジ部共に良好な絶縁性を有していことがわかる。
As is clear from Tables 1 and 2, in order to make the small particle size powder coating for thin film coating into a uniform fluidized state in the fluidizing tank of the coating machine, the particles of the powder coating are agglomerated. It is necessary that there be a gap between the particles so that the fluidizing air can be distributed evenly within the layer of the particles of the powder coating, and the powder coating of the present invention satisfies these conditions. ing. From Table 2, using the powder coating of the present invention,
The thin film formed by the electrostatic flow immersion method
It can be seen that both edges have good insulating properties.

【0022】更に、D−3の粉体塗料を用いて、前記塗
装機で適宜粉体塗料を継ぎ足しながら前記被塗装物30
0本に連続塗装した後、塗装機の流動槽内の粉体塗料を
取り出し、その体積平均粒子径および粒子径分布を測定
した結果、体積平均粒子径は14.9μm、全粒子中に
占める25μm以上の粒子の体積割合は15.0%、全
粒子中に占める5μm以下の粒子の個数割合が32.0
%であった。このように、D−3の粉体塗料の体積平均
粒子径および粒子径分布は連続塗装スタート時と終了時
とを比較してほとんど変化がない。これは、静電粉体塗
装時に、粉体塗料の粒子の選択付着がほとんど発生して
いないことを意味し、すなわち、シャープな粒子径分布
と適度な流動性を併せ持つことにより、連続塗装時に塗
着効率の低下等の問題が発生せず、安定した皮膜形成が
でき得ることの証となる。
Further, using the powder coating of D-3, the above-mentioned object 30
After continuous coating on 0 pieces, the powder coating in the fluidizing tank of the coating machine was taken out, and the volume average particle diameter and the particle diameter distribution were measured. As a result, the volume average particle diameter was 14.9 μm, and 25 μm in all particles. The volume ratio of the above particles was 15.0%, and the number ratio of particles of 5 μm or less to all particles was 32.0%.
%Met. As described above, the volume average particle size and the particle size distribution of the powder coating D-3 hardly change between the start and the end of the continuous coating. This means that there is almost no selective adhesion of particles of the powder coating during electrostatic powder coating.That is, by having both a sharp particle size distribution and appropriate fluidity, coating can be performed during continuous coating. This proves that a stable film can be formed without problems such as a decrease in deposition efficiency.

【0023】[0023]

【発明の効果】本発明の粉体塗料を静電流動浸漬法に用
いることにより、従来、困難とされていた絶縁性の要求
される薄膜の皮膜を、粉体塗装により形成することが可
能となった。また、本発明の粉体塗料は、静電粉体塗装
の欠点である被塗装物への選択付着が起こりにくく、連
続塗装による流動槽内の粉体塗料の粒子径分布の変化が
殆どない。そのため、塗着効率の低下等の塗装性の悪化
がない。
By using the powder coating material of the present invention in the electrostatic fluidization immersion method, it has become possible to form a thin film, which has conventionally been considered difficult, requiring an insulating property by powder coating. became. In addition, the powder coating of the present invention hardly causes selective adhesion to an object to be coated, which is a drawback of electrostatic powder coating, and there is almost no change in the particle size distribution of the powder coating in a fluidized tank due to continuous coating. Therefore, there is no deterioration in paintability such as a decrease in coating efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、静電流動浸漬法について説明する概要
図である。
FIG. 1 is a schematic diagram illustrating an electrostatic flow immersion method.

【符号の説明】[Explanation of symbols]

1 流動槽 2 多孔板 3 粉体塗料 4 チャージングゾーン 5 流動化エアー 6 被塗装物 DESCRIPTION OF SYMBOLS 1 Fluid tank 2 Perforated plate 3 Powder coating material 4 Charging zone 5 Fluidized air 6 Workpiece

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C09D 5/03 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C09D 5/03

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 静電流動浸漬法による絶縁塗装用の粉体
塗料であり、下記の粒子径を有し、(イ)体積平均粒子
径が10〜20μm、(ロ)全粒子中に占める25μm
以上の粒子の体積割合が25%以下、(ハ)全粒子中に
占める5μm以下の粒子の個数割合が45%以下、か
つ、シリカ微粒子が粉体粒子の表面に付着しており、該
粉体粒子は、結着樹脂100重量部に対して50〜15
0重量部の水酸化アルミニウム又は炭酸カルシウムが添
加されたものであることを特徴とする粉体塗料。
1. A is a powder coating for insulation coating by electrostatic fluidized-bed coating, have a particle size below (b) the volume average particle diameter of 10 to 20 [mu] m, the total particles (b) 25 μm
Volume fraction of particles larger than 25% or less, (c) the number ratio of 5μm or smaller particles in the total particles 45% or less, and the silica fine particles are adhered to the surface of the powder particles, the
The powder particles are 50 to 15 parts by weight based on 100 parts by weight of the binder resin.
0 parts by weight of aluminum hydroxide or calcium carbonate
Powder coating, characterized in der Rukoto those pressure.
【請求項2】 シリカ微粒子が粉体粒子100重量部に
対して0.2〜0.8重量部の割合で付着していること
を特徴とする請求項1記載の粉体塗料。
2. The powder coating according to claim 1, wherein the silica fine particles are attached at a ratio of 0.2 to 0.8 parts by weight based on 100 parts by weight of the powder particles.
【請求項3】 シリカ微粒子の1次粒子の平均粒子径が
50nm以下である請求項1記載の粉体塗料。
3. The powder coating according to claim 1, wherein the primary particle of the silica fine particles has an average particle diameter of 50 nm or less.
JP13027097A 1997-05-01 1997-05-01 Powder coating suitable for electrostatic fluidized immersion method Expired - Fee Related JP3258256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13027097A JP3258256B2 (en) 1997-05-01 1997-05-01 Powder coating suitable for electrostatic fluidized immersion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13027097A JP3258256B2 (en) 1997-05-01 1997-05-01 Powder coating suitable for electrostatic fluidized immersion method

Publications (2)

Publication Number Publication Date
JPH10298452A JPH10298452A (en) 1998-11-10
JP3258256B2 true JP3258256B2 (en) 2002-02-18

Family

ID=15030289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13027097A Expired - Fee Related JP3258256B2 (en) 1997-05-01 1997-05-01 Powder coating suitable for electrostatic fluidized immersion method

Country Status (1)

Country Link
JP (1) JP3258256B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010034188A (en) * 1998-01-16 2001-04-25 마싸 앤 피네간 Powder Coating Composition

Also Published As

Publication number Publication date
JPH10298452A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JP2711036B2 (en) Powder coatings and raw materials for powder coatings
JP3258256B2 (en) Powder coating suitable for electrostatic fluidized immersion method
JP4002638B2 (en) Film forming method using powder coating material
JPH0394078A (en) Production of electrically conductive particles
JPH08283617A (en) Powder coating material
CN115667422B (en) One-component powder coating composition and substrate coated with the powder coating composition
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
JP3437973B2 (en) Powder coating for glass surface coating and coating method
JP2849353B2 (en) Powder paint
JP3779047B2 (en) Film forming method and powder coating used therefor
JP3100931B2 (en) Epoxy powder coating
EP4162000A1 (en) Powder coating composition and substrate coated with such powder coating composition
JP2010132794A (en) Epoxy resin powder coating
KR19980024309A (en) Powder coating, coating method thereof and coating film prepared therefrom
JP2688849B2 (en) Powder coating composition
JP5151365B2 (en) Articles painted with epoxy resin powder paint
JP2996604B2 (en) Powder paint
JP4005183B2 (en) Powder coating and film forming method using the powder coating
JPS61151274A (en) Powder coating
JP5317400B2 (en) Epoxy resin powder coating
JP3759196B2 (en) Powder coating for tribo-charging spray gun
JP4169826B2 (en) Powder film forming method
JPH10231446A (en) Powder coating material and powder coating method
JP2003003123A (en) Filling powder coating for regenerating recovered powder and method for regenerating recovered powder by using the same
JP2004231764A (en) Metallic powder coating material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees