JP3779047B2 - Film forming method and powder coating used therefor - Google Patents

Film forming method and powder coating used therefor Download PDF

Info

Publication number
JP3779047B2
JP3779047B2 JP27794497A JP27794497A JP3779047B2 JP 3779047 B2 JP3779047 B2 JP 3779047B2 JP 27794497 A JP27794497 A JP 27794497A JP 27794497 A JP27794497 A JP 27794497A JP 3779047 B2 JP3779047 B2 JP 3779047B2
Authority
JP
Japan
Prior art keywords
powder
powder coating
particles
coated
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27794497A
Other languages
Japanese (ja)
Other versions
JPH1199355A (en
Inventor
眞人 佐川
修 板谷
晃 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermetallics Co Ltd
Tomoegawa Co Ltd
Original Assignee
Intermetallics Co Ltd
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermetallics Co Ltd, Tomoegawa Paper Co Ltd filed Critical Intermetallics Co Ltd
Priority to JP27794497A priority Critical patent/JP3779047B2/en
Publication of JPH1199355A publication Critical patent/JPH1199355A/en
Application granted granted Critical
Publication of JP3779047B2 publication Critical patent/JP3779047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、予め表面に粘着層を有する被塗装物上に粉体塗料を付着させる皮膜形成法及びそれに使用される粉体塗料に関するものである。
【0002】
【従来の技術】
従来、粉体塗料を用いた皮膜形成は、一般に、予め表面に燐酸亜鉛処理、燐酸鉄処理、クロメート処理またはサンドブラスト処理等の前処理が施された金属の被塗装物に、以下のような方法により粉体塗料を付着させた後、熱処理を行うことにより行われていた。
▲1▼粉体塗料粒子がエアーの力により流動化している流動槽内に、粉体塗料の融点以上に加熱された被塗装物を通過させることにより、粉体塗料の粒子を瞬時に溶融させて被塗装物の表面に付着させる流動浸漬法。
▲2▼荷電された粉体塗料粒子がエアーの力により流動化している流動槽内に、アースを取り付けた被塗装物を通過させて、粉体塗料粒子を被塗装物の表面に電気的付着力により付着させる静電流動浸漬法。
▲3▼粉体塗料粒子をスプレーガンの内部または吐出部で荷電させてアースを取りつけた被塗装物に吹き付けて、被塗装物の表面に電気的付着力により付着させる静電スプレー塗装法。
【0003】
【発明が解決しようとする課題】
しかしながら、上記した従来の流動浸漬法では、粉体塗料粒子を被塗装物に付着させるには、予め被塗装物を300〜350℃程度の高温に加熱する工程を設けることが不可欠であること等から経済性及び作業性等に劣るものであり生産性が低下するという問題がある。一方、従来の静電流動浸漬法及び静電スプレー塗装法では、電気的付着力により粉体塗料を被塗装物上に付着させるため、被塗装物の材質は導電性材料に制限されることになり、かつ、複雑な形状の被塗装物を塗装する場合、粉体塗料は被塗装物上の凸部に選択的に付着し易くなり、その凹部への付着性が悪いという問題がある。
本発明は、従来の技術における上記した実情に鑑みてなされたものである。すなわち、本発明の目的は、複雑な形状を有する被塗装物上にも、粉体塗料を用いて均一な皮膜を容易に形成できる作業性に優れた皮膜形成法及びその方法に使用される粉体塗料を提供することにある。
【0004】
【課題を解決するための手段】
本発明の皮膜形成法は、予め表面に粘着層を有する被塗装物を、外力を与えた粉体塗料中に浸漬させ、被塗装物上に粉体塗料を付着させる皮膜形成方法であって、この粉体塗料の流動度が0.40以上(流動度≧0.40)であることを特徴とする。なお、本発明における粉体塗料の流動度とは、嵩比重/真比重により求められる値をいう。
また、本発明の粉体塗料は、上記の皮膜形成方法に使用するためのものであって、この粉体塗料は、流動度が0.40以上であり、かつ体積平均粒径が25.4〜100μmであることを特徴とする。この粉体塗料は、無機微粒子又は架橋樹脂微粒子を乾式混合により添加されていることが好ましい。
なお、本発明における外力とは、粉体塗料を構成する粒子と被塗装物とを攪拌し、それらを接触又は衝突させる力を包含するものであり、具体的には、例えば、振動、回転、落下等が挙げられる。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
まず、図1を参照して、本発明の粉体塗料が使用される皮膜形成法について説明する。図1は、本発明の皮膜形成法の一例として、外力に振動を用いる加震塗装機の一例を示す概略断面図である。
図1に示されているように、加震装置V上に配置された容器Cに、表面に未硬化樹脂やその他の液状樹脂或いは液状物質等により粘着層が形成された被塗装物Wと後述する粉体塗料Tを入れ、加震装置Vにより容器Cに振動を与えて被塗装物Wの表面に皮膜を形成するものである。
【0006】
上記の容器Cは、硬質合成樹脂又は金属等の硬質材等からなっており、上部に開口部c1を有する碗状に形成されており、また、その底部c2の中央部を上方に膨出させることにより、開口部c1と同程度の高さに到達する柱状部c3が突設されている。
加震装置Vは、機台Fの上に振動板f3が配置されているものであり、その機台Fにはコイルスプリングf1及びf2を設けて振動板f3と連結されている。振動板f3の中央部から上部に突設して設けられた垂直軸f4の上端部に、容器Cの柱状部c3が取着されている。また、振動板f3の中央部から下部にはモーターf5が取着され、そのモーターf5の出力軸f6には、重錘f7が偏心して取着されている。従って、モーターf5を回転させることにより、偏心した重錘f7が回転されて、振動板f3上に取着された垂直軸f4を介して容器Cが加震されるように設定されている。
【0007】
本発明の加震塗装機は、図1に示されているものに限定されるものではなく、容器として円筒状容器、箱形容器、螺旋管状容器等の種々の容器を使用することができる。また、容器を振動させる代わりに、容器内に振動体を配置し、粉体塗料を振動させることによっても、または、被塗装物自体を振動させることによっても皮膜を形成することができる。
【0008】
上述の塗装機内においては、被塗装物は粉体塗料と共に加震されることにより、表面に粘着層が形成された被塗装物に粉体塗料の粒子(以後、これを「粉体粒子」ともいう。)が付着する。この付着した粉体粒子は、振動により他の粉体粒子に叩かれて、粘着層に圧接または圧入され強固に付着することになる。その後、さらに粉体粒子に繰り返し叩かれることにより、粘着剤が粉体粒子付着層の表面に押し出され、その押し出された粘着剤に更に粉体粒子が付着する。このようにして、被塗装物の表面に粉体粒子の付着が徐々に進行する。そして、被塗装物の表面の粉体粒子付着層が粉体粒子により叩かれても、もはや粘着剤が粉体粒子付着層の表面に押し出されなくなった時点で、実質的な粉体粒子の付着工程、即ち、皮膜形成が終了する。このようにして形成された粉体粒子付着層には、粉体粒子が多層に、しかも高密度に充填されているという特徴を有しており、複雑な形状をした被塗装物の凸部及び凹部にも、均一な膜厚を有する粉体粒子付着層を形成させることができる。
【0009】
そして、本発明の皮膜形成法には、上述のように外力として振動を用いる他に、例えば、回転や落下等を用いることができる。
その外力として回転を用いる方法としては、例えば、内側に攪拌羽を有する容器の攪拌羽を回転させたり、或いは、容器自体を回転させる方法が挙げられる。また、外力として落下を用いる方法としては、例えば、Vブレンダーを用いる方法が挙げられる。さらに、外力として回転や落下を用いる場合も、振動を用いる場合と同様に、被塗装物自体を回転させたり、落下させることによっても被塗装物上の粘着層に粉体粒子を付着させることができる。
本発明の皮膜形成法に使用される被塗装物としては、工作機械、車両、船舶及び飛行機等の各種部品、家電部品、電気・電子部品、事務機器部品、家具、建材、装飾用品、金具、磁石及び玩具等が挙げられる。また、それらの被塗装物の材質としては、各種金属類、従来では静電粉体塗装が困難とされていた絶縁材料であるセラミックス、ガラス、プラスチック、木材、紙及び無機化合物等が挙げられる。
【0010】
また、上記した皮膜形成法において、被塗装物の表面には、粉体粒子を付着させるために予め粘着剤による粘着層が形成されていなければならない。その粘着剤には、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、フェノール樹脂等の一般的な未硬化状態の液状または半液状の樹脂のみならず、アミン類、エーテル類、グリコール類、タール類、及びスチレン系、アクリル系、フェノール系、イソシアネート系の化合物等のモノマー、オリゴマーまたはポリマー等の一般的な液状または半液状物質を用いることもできる。
その粘着剤としては、熱処理時に溶融した粉体塗料との相溶性が良好であるとともに、被塗装物との密着性に優れているものが好適である。そのためには、粘着剤中にカップリング剤等の各種添加剤を適宜添加してもよい。また、粘着剤が、官能基を持つ物質を含む場合には、その官能基と架橋反応できる官能基を持つ硬化剤を添加することが好ましい。その粘着剤が被塗装物と強固に密着すれば、熱処理後の皮膜と被塗装物との間で接着剤的な働きをするため、被塗装物の表面処理を省くことも可能であり極めて有益である。さらに、粘着剤には、後述する粉体塗料と同様に、充填剤、増粘剤、着色剤、流展剤、酸化防止剤、金属粉等の各種添加剤及び各種機能性材料を適宜添加してもよい。
【0011】
被塗装物の表面に粘着層を形成するには、被塗装物を粘着剤中に浸漬するか、粘着剤をスプレー等により被塗装物に吹き付けるか、または刷毛やローラー等により粘着剤を被塗装物に塗布することにより行う。その際、この粘着剤が高粘度のものであれば、エーテル類、アルコール類、ケトン類、芳香族化合物等の一般的な希釈剤を添加して希釈して使用してもよい。また、その際、希釈剤として溶解力の高い溶剤を用いると、被塗装物の脱脂等の洗浄と粘着層の形成とを同時に行うことができるから効率的である。
また、被塗装物上に形成する粉体粒子付着層の層厚は、粘着層の層厚及び粘度を調整することにより任意に調整することが可能である。
【0012】
次に、上記した塗装機等を用いる粉体塗装により、被塗装物の表面に粉体粒子付着層が形成された後、その被塗装物を塗装機より取り出し、所定の温度及び時間熱処理することにより成膜が形成される。
この所定の温度及び時間とは、粉体塗料及び粘着剤の構成物質により好適な膜が形成される条件によって適宜決定される温度及び時間である。粉体塗料または粘着剤として熱硬化性の樹脂が用いられていれば、その樹脂の持っている官能基が、硬化剤の官能基と十分に架橋反応する温度及び時間であり、また、粉体塗料及び粘着剤が熱可塑性樹脂であれば、粉体塗料の融点以上であって、かつ熱分解温度以下の任意の温度及び時間である。
【0013】
次に、本発明の皮膜形成法に使用される粉体塗料について説明する。
本発明における粉体塗料は、予め表面に粘着層が形成された被塗装物を、流動度が0.40以上(≧0.40)の粉体塗料中に浸漬させて、それに外力を与えて粉体塗料を被塗装物上に付着させた後、その被塗装物を熱処理して皮膜を形成させる皮膜形成法に使用するものである。
本発明の粉体塗料には公知の樹脂を含むものであり、例えば、エポキシ樹脂、アクリル樹脂、フェノール樹脂、キシレン樹脂、ユリア樹脂、メラニン樹脂、ポリエステル樹脂、ポリエチレン樹脂、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂等の粉体塗料に通常用いられている樹脂を単独で、または混合して用いられる。これらの粉体塗料中の樹脂の主成分が熱硬化性樹脂の場合には、熱硬化性樹脂が持つ官能基と架橋反応し得る官能基を持つ硬化剤を用いることが好ましい。このような硬化剤としては、例えば、アミン、アミド、ジシアンジアミド、カルボン酸、酸無水物、イソシアネート、ポリスルフィド、酸ジヒドラジド、イミダゾール等の粉体塗料に用いられている公知の硬化剤を、単独でまたは混合して用いられる。
また、その粉体塗料には、必要に応じて、炭酸カルシウム、硫酸バリウム、タルク等の各種充填剤、シリカ、アルミナ、水酸化アルミニウム等の各種増粘剤、酸化チタン、カーボンブラック、酸化鉄、銅フタロシアニン、アゾ顔料、縮合多環式化合物顔料等の各種着色剤、ポリアクリル酸ブチルエステル等のアクリルオリゴマー、シリコーン等の各種流展剤、ベンゾイン等の各種発泡防止剤、さらには硬化促進剤、ワックス、カップリング剤、酸化防止剤、磁性粉、各種金属粉等の各種添加剤及び各種機能性材料を適宜添加することができる。
【0014】
本発明の皮膜形成法に用いる粉体塗料を製造するには、例えば、上記した材料から構成される粉体塗料組成物をミキサーまたはブレンダー等を用いて乾式混合した後、ニーダーにより溶融混練して冷却する。次に、機械式または気流式の粉砕機を用いて粉砕した後、分級することにより粉体塗料の粒子を得ることができる。また、本発明においては、上述の方法により製造されるものの他に、例えば、スプレードライ法または重合法等により得られる粉体塗料の粒子も使用することができる。
【0015】
本発明の粉体塗料は、上記したように、外力を付与することにより、予め粘着層が形成された被塗装物上に粉体塗料を付着させる皮膜形成法に使用するものであり、その粉体塗料は流動度が0.40以上でなければならない。
本発明において、粉体塗料を規定する流動度とは、嵩比重/真比重により求められる値であり、粉体塗料の粒子同士の凝集力を表しているものであり、その値が大きい程、凝集力は小さくなり凝集し難いものであることを意味している。
なお、嵩比重は、JIS K 5101.20.1の静置法に準じて測定し、また、真比重は、JIS K 0061.5.2 比重瓶法に準じて測定した。
本発明の皮膜形成法により平滑な皮膜を得るためには、被塗装物上の粉体粒子付着層の表面に、粘着剤により固定されていない粉体粒子が付着してないことが必要であり、そのために流動度が0.40以上の高い粉体塗料を用いることが重要である。
その流動度が0.40未満の粉体塗料を本発明の皮膜形成法に用いて皮膜形成を行うと、粉体粒子の衝突力により、被塗装物上の粉体粒子付着層の表面に、丘状(凸状)に粉体粒子の凝集物(ソフトケーキング)が発生し易くなる。この粉体塗料の凝集物は、指で触れると崩れる程度の軟らかいソフトケーキングであっても、ひとたび被塗装物上に付着すると、被塗装物に振動を与えても、あるいは、僅かに加圧したエアーを吹きかけても除去することは困難であり、この凝集物が付着した状態で熱処理されると、熱処理後の皮膜表面に丘状の凸部が形成されて皮膜表面の平滑性が低下するという現象が発生する。
また、流動度が0.40未満の粉体塗料を用いると、粉体塗料の自重と外力による粉体粒子の衝撃力とによって、塗装機底面で粉体塗料の凝集が発生し易くなり、やがて、その凝集物が剥がれて粉体塗料中に混入すると、その凝集物が被塗装物の表面に付着し、皮膜表面の平滑性を低下させることになる。
これらの理由から、本発明の皮膜形成法に用いる粉体塗料は、流動度が0.40以上の高いものでなければならない。
【0016】
一般に、粉体塗料の流動度が0.40以上の高いものを得るには、次のような方法により行われる。
(1)粉体塗料の平均粒子径を大きくする。
(2)全粉体塗料粒子中の微粒子の割合を小さくする。
(3)粉体塗料の粒子を球形にする。
(4)粉体塗料の粒子の表面を改質する。
【0017】
上記(1)の方法では、粉体塗料の平均粒子径が大きくなると流動度は高くなるが、被塗装物上の粉体粒子付着層の表面における凹凸(付着粒子の山と谷との高低差)が大きくなり、熱処理後の皮膜表面の平滑性が低下するという欠点がある。本発明の皮膜形成法では、使用される粉体塗料の平均粒子径は、体積平均粒子径で10〜100μmの範囲のものが好ましく、より好ましくは15〜50μmである。
【0018】
また、(2)の方法では、粉体塗料は5μm以下の微粒子数の割合が少ない程流動度は向上する。通常、粉体塗料の粒子が微細になる程、その比表面積が増加してファンデルワールス力等の分子間力が大きくなり、微粒子は凝集して流動度を低下させるようになる。そのため、気流式の分級機等を用いて微粒子を除去すると、粉体塗料の流動度を高くすることができる。本発明の皮膜形成法に使用される粉体塗料は、5μm以下の微粒子の割合が個数割合で60%以下であることが好ましい。
【0019】
また、(3)の方法では、粉体塗料は、その粒子の形状が球形に近くなるほど流動度が高くなる。一般に、粉体塗料組成物を溶融混練した後、粉砕及び分級して得られる粉体塗料の粒子は、不定形であって、その状態では比表面積が大きく、ファンデルワールス力等の粒子間力や粒子同士の摩擦抵抗が大きいため、流動度は低いものである。この粉体粒子を球形化させるには、熱や衝撃力等を利用する方法がある。その熱を利用する方法としては、例えば、粉体塗料の融点以上の熱気流中に粉体塗料の粒子を噴射し、一瞬に溶融させた後、冷却して球形化させるサーフュージングシステム(日本ニューマチック社製)がある。また、熱及び衝撃力を利用する方法としては、例えば、高速で回転するローターに粉体塗料の粒子を衝突させ、粉体塗料の粒子の衝撃力とそれにより発生する熱とにより球形化処理を行うナラ・ハイブリダイゼーション・システム(奈良機械製作所製)または粉体塗料をヘンシェルミキサー内で粉体塗料のガラス転移温度(Tg)より約10〜15℃高い温度に加温し、それを高速で撹拌して球形化させる方法等がある。
一方、懸濁重合や乳化重合等の重合法及びスプレードライ法による粉体塗料は、球形化処理を行わずとも、その製造工程で球形に近い形状の粉体塗料を得ることができ、粉砕法で得られたものよりも流動度の高いものである。
【0020】
また、(4)の方法では、粉体塗料は、その粒子の表面改質を行うことにより、流動度を高めることができる。粉体粒子の表面改質法には、例えば、粉体粒子の表面に流動性付与剤を付着させる方法があり、その流動性付与剤としては、例えば、シリカ、アルミナ、二酸化チタン等の無機微粒子、メチルメタクリレート等の架橋樹脂微粒子またはステアリン酸亜鉛、ラウリン酸リチウム等の金属石鹸等が用いられる。
上記の流動性付与剤を粉体粒子の表面に付着させるには、例えば、ブレンダーやミキサー等を用いて、粉体粒子と流動性付与剤とを乾式混合する方法が一般的である。その付着とは、粉体粒子の表面に流動性付与剤が単に付着しているのみでよく、または粉体粒子の内部に埋め込まれていてもよい。
【0021】
本発明における粉体塗料としては、流動度が0.40以上のものである限り、上記した方法又はこれらを組み合せる方法等のいずれの方法により流動度を向上させたものも使用可能である。
【0022】
【実施例】
以下、実施例に基づいて本発明の粉体塗料及びそれを用いる皮膜形成法について説明するが、本発明はこれらにより限定されるものではない。
実施例1
エポキシ樹脂 96.1重量%
(商品名:エピコート1004、油化シェルエポキシ社製)
硬化剤(ジシアンジアミド) 2.1重量%
硬化促進剤(イミダゾール) 0.3重量%
流展剤(ポリアクリル酸ブチルエステル) 1.0重量%
発泡防止剤(ベンゾイン) 0.5重量%
上記の配合比からなる原料をスーパーミキサーで混合した後、110℃の温度条件下でニーダーを用いて溶融混練し、これらを冷却させた後、気流式の粉砕機により粉砕させた。次いで、気流式の分級機を用いて粒子径の大きな粒子を除去することにより粉体粒子aを得た。この粉体粒子aは、嵩比重が0.45g/cm3 、真比重が1.19g/cm3 であり、流動度は0.38であった。
次に、得られた粉体粒子a100重量部に対して、シリカ微粒子(X−37、トクヤマ社製)1.0重量部を乾式混合することにより、嵩比重が0.51g/cm3 、真比重が1.19g/cm3 であり、流動度が0.43の粉体塗料Aを得た。
【0023】
実施例2
ポリエステル樹脂 56.0重量%
(商品名:ER−6680、日本エステル社製)
硬化剤(ブロックドイソシアネート) 10.0重量%
硬化促進剤(ジブチル錫マレート) 0.2重量%
流展剤(ポリアクリル酸ブチルエステル) 0.5重量%
発泡防止剤(ベンゾイン) 0.3重量%
着色剤(二酸化チタン) 33.0重量%
上記の配合比からなる原料をスーパーミキサーで混合した後、110℃の温度条件下でニーダーを用いて溶融混練し、これらを冷却させた後、気流式の粉砕機により粉砕させた。次いで、気流式の分級機を用いて粒子径の小さな粒子及び大きな粒子を除去することにより粉体粒子bを得た。この粉体粒子bは、嵩比重が0.59g/cm3 、真比重が1.57g/cm3 であり、流動度は0.38であった。
得られた粉体粒子b100重量部に対して、シリカ微粒子(H3004、ヘキスト社製)1.0重量部を乾式混合することにより、嵩比重が0.66g/cm3 、真比重が1.57g/cm3 であり、流動度が0.42の粉体塗料Bを得た。
【0024】
実施例3
アクリル樹脂 80.0重量%
(商品名:PD−7690、三井東圧社製)
硬化剤(ドデカン二酸) 18.5重量%
流展剤(ポリアクリル酸ブチルエステル) 1.0重量%
発泡防止剤(ベンゾイン) 0.5重量%
上記の配合比からなる原料をスーパーミキサーで混合した後、110℃の温度条件下でニーダーを用いて溶融混練し、これらを冷却させた後、気流式の粉砕機により粉砕させた。次いで、気流式の分級機を用いて粒子径の小さな粒子を除去することにより粉体粒子cを得た。この粉体粒子cは、嵩比重が0.43g/cm3 、真比重が1.11g/cm3 であり、流動度は0.39であった。
得られた粉体粒子100重量部に対して、アルミナ微粒子(日本アエロジル社製:アルミナC)0.3重量部を乾式混合することにより、嵩比重が0.50g/cm3 、真比重が1.11g/cm3 であり、流動度が0.45の粉体塗料Cを得た。
【0025】
実施例4
実施例1で得られた粉体粒子aを、ナラ・ハイブリダイゼーション・システム(NHS−1型、奈良機械製作所製)に投入し、機内温度が75℃になるように、7500rpmで3分間球形化処理を施すことにより、嵩比重が0.48g/cm3 、真比重が1.19g/cm3 であり、流動度が0.40の粉体塗料Dを得た。
【0026】
実施例5
実施例3で得られた粉体粒子c100重量部に対して、メチルメタクリルレートの架橋樹脂微粒子(綜研化学社製:MP−5500)1.0重量部を乾式混合することにより、嵩比重が0.48g/cm3 、真比重が1.11g/cm3 であり、流動度が0.43の粉体塗料Eを得た。
【0027】
実施例6
実施例3で得られた粉体粒子cを、気流式の分級機を用いて更に分級を施し、粒子径の小さな粒子を除去することにより、嵩比重が0.46g/cm3 、真比重が1.11g/cm3 であり、流動度が0.41の粉体塗料Fを得た。
【0028】
比較例1
実施例1で得られた粉体粒子a(流動度 0.38)を粉体塗料Gとした。
比較例2
実施例2で得られた粉体粒子b(流動度 0.38)を粉体塗料Hとした。
比較例3
実施例3で得られた粉体粒子c(流動度 0.39)を粉体塗料Iとした。
【0029】
上記の各実施例及び比較例において得られた粉体塗料について、体積平均粒子径、5μm以下の粒子の個数割合、嵩比重及び真比重の測定結果及び流動度を表1に示す。
【表1】

Figure 0003779047
【0030】
実施例7
実施例1で得られた粉体塗料Aを用いて、下記のとおり、皮膜形成の塗装試験を行うとともに、被塗装物上に形成された皮膜の評価を行った。
(1)被塗装物
被塗装物は、表面処理していない厚さ0.8mmの鋼板を40×40mmに切断したものを使用した。
(2)洗浄及び粘着層の形成
粘着剤は、液状エポキシ樹脂(YD−127、東都化成社製)と硬化剤(C11Z、四国化成社製)とを95:5の比率で混合したものをアセトンで5%に希釈したものを使用した。その粘着剤の5%溶液中に上記の切断した鋼板を、その鋼板の洗浄を兼ねて浸漬した後、ドライヤーの温風で30秒間乾燥させて鋼板の表面に粘着層を形成した。
(3)塗装機
塗装機は、図1に示すものと同じ構造のものを使用し、容器Cには容積2.8リットルで、深さ150mmのものを用いた。
【0031】
(4)皮膜形成
粉体塗料Aを1kg容器Cに投入して加震し、次いで表面に粘着層が形成された上記鋼板を容器Cに投入して2分間皮膜の形成を行った。その後、その鋼板を取り出して、目視により鋼板上の粉体粒子付着層表面における凝集の発生の有無を評価した。
次に、その鋼板を熱風乾燥炉に入れて180℃で20分間熱処理を行って成膜させ、これを十分に冷却した後、皮膜の膜厚、表面の平滑性、被塗装物との密着性について以下の方法により測定した。
膜厚:膜厚計(商品名:LZ−200、KETT社製)で被塗装物1枚につき5点測定し、その平均値を皮膜の膜厚とした。
表面の平滑性:目視により皮膜表面の平滑性を評価した。
密着性:JIS K5400 8.5.2の碁盤目テープ法に準じて測定した。
【0032】
実施例8〜12
実施例2〜6で得られた粉体塗料B〜Fを順次使用したこと以外は、実施例7と全く同様にして、それぞれ皮膜形成の塗装試験を行うとともに、被塗装物上に形成された皮膜の評価を行った。
【0033】
比較例4〜6
比較例1〜3における粉体塗料G〜Iを順次使用したこと以外は、実施例7と全く同様にして、それぞれ皮膜形成の塗装試験を行うとともに、被塗装物上に形成された皮膜の評価を行った。
【0034】
上記実施例7〜12及び比較例4〜6において得られた評価結果を、表2に示す。
【表2】
Figure 0003779047
表中、○は粉体粒子付着層の表面に凝集物が付着していないものであり、×は凝集物が付着しているものである。また、膜厚中の( )内は、丘状の凸部の膜厚の測定値である。
【0035】
表1及び表2より明らかなように、実施例のものは、いずれも流動度が0.40以上の粉体塗料を用いて前述の皮膜形成法により皮膜形成を行っているから、被塗装物上に均一な皮膜が形成されるとともに、熱処理後の皮膜の被塗装物への密着性は全て良好であった。
さらに、上記の実施例1〜5の粉体塗料A〜Eを用いて、25mmに切断した内径28mmφで厚さ1.0mmの鉄製パイプを直径方向に切断して、本発明の皮膜形成法により皮膜を形成して熱処理した後、内面及び外面の皮膜の膜厚及び平滑性を調べたところ、均一な膜厚の平滑な皮膜が形成されていた。
【0036】
【発明の効果】
本発明によれば、予め表面に粘着層を有する被塗装物を、流動度が0.40以上の粉体塗料中に浸漬させて外力を付与して被塗装物上に粉体塗料を付着させるから、複雑な形状を有する被塗装物の凹部にも、均一な膜厚の平滑な粉体塗装を施すことが可能となった。また、本発明の粉体塗装法は、従来の粉体塗装では困難とされていた絶縁性の被塗装物に対しても容易に粉体塗装を行うことができるので、工業的に極めて有用なものであり各種物品の塗装に応用可能である。
【図面の簡単な説明】
【図1】 本発明の粉体塗料を用いて皮膜形成を行う塗装機の一例の概略断面図である。
【符号の説明】
C…容器、c1…開口部、c2…底部、c3…柱状部、V…加震装置、F…機台、f1及びf2…コイルスプリング、f3…振動板、f4…垂直軸、f5…モーター、f6…出力軸、f7…重錘、T…混合体、W…被塗装物。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film forming method in which a powder coating is adhered to an object to be coated having an adhesive layer on the surface in advance, and a powder coating used therefor.
[0002]
[Prior art]
Conventionally, film formation using a powder coating is generally performed on a metal object whose surface has been previously subjected to pretreatment such as zinc phosphate treatment, iron phosphate treatment, chromate treatment, or sandblast treatment as follows. After the powder coating was adhered by the above method, the heat treatment was performed.
(1) By passing an object heated above the melting point of the powder paint through a fluidized tank where the powder paint particles are fluidized by the force of air, the powder paint particles are instantaneously melted. Fluid dipping method to adhere to the surface of the object to be painted.
(2) The object to be coated with the ground is passed through the fluidized tank in which the charged powder paint particles are fluidized by the force of air, and the powder paint particles are electrically attached to the surface of the object to be coated. Electrostatic flow dipping method to attach by adhesion.
(3) An electrostatic spray coating method in which powder coating particles are charged inside a spray gun or at a discharge unit and sprayed onto an object to be grounded and attached to the surface of the object by electrical adhesion.
[0003]
[Problems to be solved by the invention]
However, in the conventional fluidized immersion method described above, in order to attach the powder coating particles to the object to be coated, it is indispensable to provide a process for heating the object to be coated at a high temperature of about 300 to 350 ° C. in advance. Therefore, it is inferior in economic efficiency and workability, and there is a problem that productivity is lowered. On the other hand, in the conventional electrostatic fluid dipping method and electrostatic spray coating method, the powder coating material is adhered onto the object to be coated by electric adhesion force, so that the material of the object to be coated is limited to the conductive material. In the case of coating an object having a complicated shape, there is a problem that the powder coating tends to selectively adhere to the convex portion on the object to be coated and the adhesion to the concave portion is poor.
The present invention has been made in view of the above-described actual situation in the prior art. That is, an object of the present invention is to provide a film forming method excellent in workability that can easily form a uniform film using a powder paint on an object having a complicated shape, and a powder used in the method. It is to provide body paint.
[0004]
[Means for Solving the Problems]
In the film forming method of the present invention, an object to be coated having an adhesive layer on the surface in advance, A film forming method of dipping in a powder coating to which an external force is applied and attaching the powder coating onto an object to be coated. Fluidity is 0.40 or more (fluidity ≧ 0.40) Is It is characterized by that. In addition, the fluidity of the powder coating in the present invention refers to a value obtained by bulk specific gravity / true specific gravity.
The powder coating of the present invention is above Used for film formation method in order to And This powder paint Fluidity of 0.40 or more And a volume average particle size of 25.4-100 μm It is characterized by being. In this powder coating material, it is preferable that inorganic fine particles or crosslinked resin fine particles are added by dry mixing.
The external force in the present invention includes a force that agitates the particles constituting the powder coating material and the object to be coated, and makes them contact or collide. Specifically, for example, vibration, rotation, Fall and the like.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
First, with reference to FIG. 1, the film formation method using the powder coating material of this invention is demonstrated. FIG. 1 is a schematic cross-sectional view showing an example of a vibration coating machine using vibration as an external force as an example of the film forming method of the present invention.
As shown in FIG. 1, an object to be coated W in which an adhesive layer is formed on a surface of an uncured resin, other liquid resin, or a liquid substance on a container C disposed on a shaker device V, and will be described later. The powder coating T to be applied is placed, and the container C is vibrated by the shaking device V to form a film on the surface of the article W to be coated.
[0006]
Said container C consists of hard materials, such as hard synthetic resin or a metal, is formed in the bowl shape which has the opening part c1 in the upper part, and bulges the center part of the bottom part c2 upwards. Thus, a columnar part c3 that reaches the same height as the opening part c1 is projected.
The vibration device V has a diaphragm f3 disposed on a machine base F, and the machine base F is provided with coil springs f1 and f2 and connected to the diaphragm f3. A columnar portion c3 of the container C is attached to an upper end portion of a vertical shaft f4 provided so as to project upward from the center portion of the diaphragm f3. A motor f5 is attached to the lower part of the diaphragm f3 from the center, and a weight f7 is eccentrically attached to the output shaft f6 of the motor f5. Accordingly, by rotating the motor f5, the eccentric weight f7 is rotated, and the container C is set to be vibrated via the vertical shaft f4 attached on the diaphragm f3.
[0007]
The seismic painting machine of the present invention is not limited to the one shown in FIG. 1, and various containers such as a cylindrical container, a box-shaped container, and a spiral tubular container can be used as the container. Further, instead of vibrating the container, the film can be formed by arranging a vibrating body in the container and vibrating the powder coating, or by vibrating the object to be coated itself.
[0008]
In the above-described coating machine, the object to be coated is vibrated together with the powder paint, so that the powder paint particles (hereinafter referred to as “powder particles”) are formed on the object having an adhesive layer formed on the surface. Say). The adhering powder particles are struck by other powder particles by vibration and pressed or pressed into the adhesive layer to adhere firmly. Thereafter, the pressure-sensitive adhesive is further struck by the powder particles, whereby the pressure-sensitive adhesive is pushed out onto the surface of the powder-particle adhesion layer, and the powder particles further adhere to the pushed-out pressure-sensitive adhesive. In this way, the adhesion of the powder particles gradually proceeds on the surface of the object to be coated. Even when the powder particle adhesion layer on the surface of the object to be coated is struck by the powder particles, when the adhesive is no longer pushed out to the surface of the powder particle adhesion layer, the substantial powder particle adhesion The process, that is, film formation is completed. The powder particle adhesion layer formed in this way has a feature that powder particles are packed in multiple layers and at a high density, and the convex portions of the object to be coated having a complicated shape and A powder particle adhesion layer having a uniform film thickness can also be formed in the recess.
[0009]
And in the film formation method of this invention, besides using vibration as an external force as mentioned above, rotation, a fall, etc. can be used, for example.
As a method of using rotation as the external force, for example, a method of rotating a stirring blade of a container having a stirring blade inside, or a method of rotating the container itself can be mentioned. Moreover, as a method of using a drop as an external force, for example, a method of using a V blender can be cited. Further, when rotation or dropping is used as an external force, powder particles can be attached to the adhesive layer on the object to be coated by rotating or dropping the object itself, as in the case of using vibration. it can.
As objects to be coated used in the film forming method of the present invention, various parts such as machine tools, vehicles, ships and airplanes, home appliance parts, electric / electronic parts, office equipment parts, furniture, building materials, decorative articles, metal fittings, Examples include magnets and toys. In addition, examples of the material of the objects to be coated include various metals, ceramics, glass, plastic, wood, paper, and inorganic compounds, which are insulating materials that have conventionally been difficult to apply electrostatic powder.
[0010]
Further, in the above-described film forming method, an adhesive layer made of an adhesive must be formed in advance on the surface of the object to be coated in order to adhere the powder particles. The adhesive includes not only general uncured liquid or semi-liquid resins such as epoxy resin, acrylic resin, polyester resin, phenol resin, but also amines, ethers, glycols, tars, and styrene. General liquid or semi-liquid substances such as monomers, oligomers or polymers such as acryl-based, acrylic-based, phenol-based, and isocyanate-based compounds can also be used.
As the pressure-sensitive adhesive, those having good compatibility with the powder coating melted at the time of heat treatment and excellent adhesion to an object to be coated are suitable. For that purpose, various additives such as a coupling agent may be appropriately added to the pressure-sensitive adhesive. When the pressure-sensitive adhesive contains a substance having a functional group, it is preferable to add a curing agent having a functional group capable of undergoing a crosslinking reaction with the functional group. If the pressure-sensitive adhesive adheres firmly to the object to be coated, it acts as an adhesive between the heat-treated film and the object to be coated, so it is possible to omit the surface treatment of the object to be coated, which is extremely beneficial. It is. Furthermore, as in the powder coating described later, various additives such as fillers, thickeners, colorants, spreading agents, antioxidants, metal powders, and various functional materials are added to the adhesive as appropriate. May be.
[0011]
To form an adhesive layer on the surface of the object to be coated, immerse the object in the adhesive, spray the adhesive onto the object by spraying, or apply the adhesive with a brush or roller. This is done by applying to the object. At this time, if the pressure-sensitive adhesive has a high viscosity, a general diluent such as ethers, alcohols, ketones, and aromatic compounds may be added for dilution. At that time, if a solvent having a high dissolving power is used as the diluent, it is efficient because cleaning such as degreasing of the object to be coated and formation of the adhesive layer can be performed simultaneously.
Further, the layer thickness of the powder particle adhesion layer formed on the object to be coated can be arbitrarily adjusted by adjusting the layer thickness and viscosity of the adhesive layer.
[0012]
Next, after a powder particle adhesion layer is formed on the surface of the object to be coated by powder coating using the above-described coating machine or the like, the object to be coated is taken out from the coating machine and heat-treated at a predetermined temperature and time. As a result, a film is formed.
The predetermined temperature and time are a temperature and time that are appropriately determined depending on conditions under which a suitable film is formed by the constituent materials of the powder coating material and the pressure-sensitive adhesive. If a thermosetting resin is used as the powder coating or adhesive, the temperature and time at which the functional group of the resin has a sufficient crosslinking reaction with the functional group of the curing agent, and the powder If the coating material and the pressure-sensitive adhesive are thermoplastic resins, they are at an arbitrary temperature and time not lower than the melting point of the powder coating material and not higher than the thermal decomposition temperature.
[0013]
Next, the powder coating used for the film forming method of the present invention will be described.
In the powder coating material of the present invention, an object to be coated with an adhesive layer formed on the surface in advance is immersed in a powder coating material having a fluidity of 0.40 or more (≧ 0.40), and external force is applied thereto. It is used in a film forming method in which a powder coating is deposited on an object to be coated, and then the object to be coated is heat-treated to form a film.
The powder paint of the present invention contains a known resin, for example, epoxy resin, acrylic resin, phenol resin, xylene resin, urea resin, melanin resin, polyester resin, polyethylene resin, silicone resin, polyurethane resin, polyamide Resins that are usually used in powder coating materials such as resins are used alone or in combination. When the main component of the resin in these powder coating materials is a thermosetting resin, it is preferable to use a curing agent having a functional group capable of undergoing a crosslinking reaction with the functional group of the thermosetting resin. As such a curing agent, for example, known curing agents used for powder coatings such as amines, amides, dicyandiamides, carboxylic acids, acid anhydrides, isocyanates, polysulfides, acid dihydrazides, imidazoles, etc., alone or Used as a mixture.
In addition, the powder coating, if necessary, various fillers such as calcium carbonate, barium sulfate, talc, various thickeners such as silica, alumina, aluminum hydroxide, titanium oxide, carbon black, iron oxide, Various colorants such as copper phthalocyanine, azo pigments, condensed polycyclic compound pigments, acrylic oligomers such as polybutyl acrylate, various spreading agents such as silicone, various antifoaming agents such as benzoin, and further curing accelerators, Various additives such as wax, coupling agent, antioxidant, magnetic powder, various metal powders, and various functional materials can be appropriately added.
[0014]
In order to produce a powder coating material used in the film forming method of the present invention, for example, a powder coating composition composed of the above materials is dry-mixed using a mixer or a blender, and then melt-kneaded by a kneader. Cooling. Next, after pulverization using a mechanical or airflow type pulverizer, particles of the powder coating material can be obtained by classification. In the present invention, in addition to those produced by the above-described method, for example, particles of a powder coating obtained by a spray drying method or a polymerization method can also be used.
[0015]
As described above, the powder coating material of the present invention is used in a film forming method in which a powder coating material is adhered onto an object to be coated on which an adhesive layer has been previously formed by applying an external force. Body paint must have a fluidity of 0.40 or higher.
In the present invention, the fluidity defining the powder coating is a value determined by bulk specific gravity / true specific gravity, and represents the cohesive force between particles of the powder coating, the larger the value, It means that the cohesive force is small and hardly coagulates.
The bulk specific gravity was measured according to the stationary method of JIS K 5101.20.1, and the true specific gravity was measured according to the JIS K 0061.5.2 specific gravity bottle method.
In order to obtain a smooth film by the film forming method of the present invention, it is necessary that powder particles that are not fixed by an adhesive do not adhere to the surface of the powder particle adhesion layer on the object to be coated. Therefore, it is important to use a powder coating having a high fluidity of 0.40 or more.
When film formation is performed using a powder paint having a fluidity of less than 0.40 in the film formation method of the present invention, due to the impact force of the powder particles, Aggregates (soft caking) of powder particles are likely to occur in a hill shape (convex shape). Even if the powder coating agglomerates are soft soft caking that breaks down when touched with a finger, once adhered to the object to be coated, the object to be coated is vibrated or slightly pressurized. It is difficult to remove even if air is blown, and if heat treatment is performed with this agglomerate attached, hill-shaped projections are formed on the surface of the film after heat treatment, and the smoothness of the film surface is reduced. The phenomenon occurs.
In addition, when a powder coating having a fluidity of less than 0.40 is used, the powder coating tends to agglomerate at the bottom of the coating machine due to the weight of the powder coating and the impact force of the powder particles due to external force. When the aggregate is peeled off and mixed in the powder coating material, the aggregate adheres to the surface of the object to be coated, and the smoothness of the coating surface is lowered.
For these reasons, the powder coating used in the film forming method of the present invention must have a high fluidity of 0.40 or more.
[0016]
Generally, in order to obtain a powder coating having a high fluidity of 0.40 or more, the following method is used.
(1) Increase the average particle size of the powder coating.
(2) The proportion of fine particles in all powder coating particles is reduced.
(3) The powder coating particles are made spherical.
(4) The surface of the powder coating particle is modified.
[0017]
In the above method (1), the fluidity increases as the average particle diameter of the powder coating increases, but the unevenness on the surface of the powder particle adhesion layer on the object to be coated (the difference in height between peaks and valleys of the adhesion particles). ) Increases and the smoothness of the coating surface after heat treatment is reduced. In the film forming method of the present invention, the average particle diameter of the powder coating used is preferably in the range of 10 to 100 μm, more preferably 15 to 50 μm in terms of volume average particle diameter.
[0018]
In the method (2), the fluidity of the powder coating improves as the proportion of the number of fine particles of 5 μm or less decreases. Usually, the finer the particles of the powder coating, the greater the specific surface area and the greater the intermolecular force such as van der Waals force, and the fine particles aggregate to lower the fluidity. Therefore, if fine particles are removed using an airflow classifier or the like, the fluidity of the powder coating can be increased. In the powder coating used in the film forming method of the present invention, the proportion of fine particles of 5 μm or less is preferably 60% or less in number.
[0019]
In the method (3), the fluidity of the powder coating increases as the particle shape approaches a sphere. Generally, powder coating particles obtained by melt-kneading a powder coating composition, and then pulverizing and classifying the particles are indefinite, have a large specific surface area, and interparticle forces such as van der Waals force. Since the frictional resistance between particles and particles is large, the fluidity is low. In order to spheroidize the powder particles, there is a method using heat, impact force or the like. As a method of utilizing the heat, for example, a surfing system (Nippon New Co., Ltd.) in which particles of powder paint are sprayed into a hot air flow above the melting point of the powder paint, melted for a moment, and then cooled to form a sphere. (Matic). As a method of using heat and impact force, for example, powder coating particles are collided with a rotor rotating at high speed, and spheroidization treatment is performed by impact force of the powder coating particles and heat generated thereby. The Nara Hybridization System (Nara Machinery Co., Ltd.) or powder paint to be heated in a Henschel mixer to a temperature about 10-15 ° C higher than the glass transition temperature (Tg) of the powder paint, and stirred at high speed Then, there is a method of making it spherical.
On the other hand, powder coating materials by polymerization methods such as suspension polymerization and emulsion polymerization and spray drying methods can obtain a powder coating material having a nearly spherical shape in the manufacturing process without performing spheroidizing treatment. The fluidity is higher than that obtained in the above.
[0020]
In the method (4), the powder coating material can be improved in fluidity by surface modification of the particles. Examples of the surface modification method of the powder particles include a method of attaching a fluidity imparting agent to the surface of the powder particles. Examples of the fluidity imparting agent include inorganic fine particles such as silica, alumina, and titanium dioxide. Cross-linked resin fine particles such as methyl methacrylate or metal soap such as zinc stearate and lithium laurate are used.
In order to attach the fluidity-imparting agent to the surface of the powder particles, for example, a method of dry-mixing the powder particles and the fluidity-imparting agent using a blender or a mixer is common. The adhesion may be that the fluidity imparting agent is simply adhered to the surface of the powder particle, or may be embedded in the powder particle.
[0021]
As the powder coating in the present invention, as long as the fluidity is 0.40 or more, those having improved fluidity by any method such as the above-described method or a method of combining them can be used.
[0022]
【Example】
Hereinafter, although the powder coating material of this invention and the film formation method using the same are demonstrated based on an Example, this invention is not limited by these.
Example 1
Epoxy resin 96.1% by weight
(Product name: Epicoat 1004, manufactured by Yuka Shell Epoxy)
Curing agent (dicyandiamide) 2.1% by weight
Curing accelerator (imidazole) 0.3% by weight
Flow agent (polyacrylic acid butyl ester) 1.0% by weight
Antifoaming agent (benzoin) 0.5% by weight
The raw materials having the above blending ratio were mixed with a super mixer, then melt kneaded using a kneader under a temperature condition of 110 ° C., cooled, and then pulverized with an airflow type pulverizer. Next, powder particles a were obtained by removing particles having a large particle diameter using an airflow classifier. The powder particles a have a bulk specific gravity of 0.45 g / cm. Three True specific gravity is 1.19 g / cm Three And the fluidity was 0.38.
Next, 1.0 part by weight of silica fine particles (X-37, manufactured by Tokuyama Corporation) is dry-mixed with respect to 100 parts by weight of the obtained powder particles a, so that the bulk specific gravity is 0.51 g / cm. Three True specific gravity is 1.19 g / cm Three A powder coating material A having a fluidity of 0.43 was obtained.
[0023]
Example 2
Polyester resin 56.0% by weight
(Product name: ER-6680, manufactured by Nippon Estelle Co., Ltd.)
Curing agent (blocked isocyanate) 10.0% by weight
Curing accelerator (dibutyltin malate) 0.2% by weight
Flowing agent (polyacrylic acid butyl ester) 0.5% by weight
Antifoaming agent (benzoin) 0.3% by weight
Colorant (titanium dioxide) 33.0% by weight
The raw materials having the above blending ratio were mixed with a super mixer, then melt kneaded using a kneader under a temperature condition of 110 ° C., cooled, and then pulverized with an airflow type pulverizer. Subsequently, powder particles b were obtained by removing small particles and large particles using an airflow classifier. The powder particles b have a bulk specific gravity of 0.59 g / cm. Three True specific gravity is 1.57 g / cm Three And the fluidity was 0.38.
By dry-mixing 1.0 part by weight of silica fine particles (H3004, manufactured by Hoechst) with respect to 100 parts by weight of the obtained powder particles b, the bulk specific gravity is 0.66 g / cm. Three True specific gravity is 1.57 g / cm Three A powder coating material B having a fluidity of 0.42 was obtained.
[0024]
Example 3
Acrylic resin 80.0% by weight
(Product name: PD-7690, manufactured by Mitsui Toatsu)
Curing agent (dodecanedioic acid) 18.5% by weight
Flow agent (polyacrylic acid butyl ester) 1.0% by weight
Antifoaming agent (benzoin) 0.5% by weight
The raw materials having the above blending ratio were mixed with a super mixer, then melt kneaded using a kneader under a temperature condition of 110 ° C., cooled, and then pulverized with an airflow type pulverizer. Subsequently, powder particles c were obtained by removing particles having a small particle diameter using an airflow classifier. The powder particles c have a bulk specific gravity of 0.43 g / cm. Three True specific gravity is 1.11 g / cm Three The fluidity was 0.39.
A bulk specific gravity of 0.50 g / cm is obtained by dry-mixing 0.3 parts by weight of alumina fine particles (manufactured by Nippon Aerosil Co., Ltd .: Alumina C) with respect to 100 parts by weight of the obtained powder particles. Three True specific gravity is 1.11 g / cm Three A powder coating material C having a fluidity of 0.45 was obtained.
[0025]
Example 4
The powder particles a obtained in Example 1 are put into a Nara hybridization system (NHS-1 type, manufactured by Nara Machinery Co., Ltd.) and spheroidized at 7500 rpm for 3 minutes so that the temperature inside the apparatus becomes 75 ° C. By performing the treatment, the bulk specific gravity is 0.48 g / cm. Three True specific gravity is 1.19 g / cm Three A powder coating material D having a fluidity of 0.40 was obtained.
[0026]
Example 5
A bulk specific gravity of 0 is obtained by dry-mixing 1.0 parts by weight of methyl methacrylate cross-linked resin fine particles (manufactured by Soken Chemical Co., Ltd .: MP-5500) with respect to 100 parts by weight of the powder particles c obtained in Example 3. .48g / cm Three True specific gravity is 1.11 g / cm Three And a powder coating E having a fluidity of 0.43 was obtained.
[0027]
Example 6
The powder particles c obtained in Example 3 are further classified using an airflow classifier to remove particles having a small particle diameter, whereby the bulk specific gravity is 0.46 g / cm. Three True specific gravity is 1.11 g / cm Three A powder coating material F having a fluidity of 0.41 was obtained.
[0028]
Comparative Example 1
Powder powder a (fluidity 0.38) obtained in Example 1 was designated as powder coating material G.
Comparative Example 2
Powder particle b (fluidity 0.38) obtained in Example 2 was designated as powder coating material H.
Comparative Example 3
The powder particle c (fluidity 0.39) obtained in Example 3 was designated as powder coating material I.
[0029]
Table 1 shows the volume average particle diameter, the number ratio of particles having a particle size of 5 μm or less, the measurement results of bulk specific gravity and true specific gravity, and the fluidity of the powder coating materials obtained in the above Examples and Comparative Examples.
[Table 1]
Figure 0003779047
[0030]
Example 7
Using the powder coating material A obtained in Example 1, a coating test for film formation was performed as described below, and the coating formed on the object to be coated was evaluated.
(1) Objects to be painted
The object to be coated was obtained by cutting a steel plate having a thickness of 0.8 mm that was not surface-treated into 40 × 40 mm.
(2) Cleaning and adhesion layer formation
The adhesive is a liquid epoxy resin (YD-127, manufactured by Tohto Kasei Co., Ltd.) and a curing agent (C 11 Z, manufactured by Shikoku Kasei Co., Ltd.) at a ratio of 95: 5 and diluted with acetone to 5% were used. The cut steel plate was immersed in a 5% solution of the pressure-sensitive adhesive while also cleaning the steel plate, and then dried with warm air from a dryer for 30 seconds to form a pressure-sensitive adhesive layer on the surface of the steel plate.
(3) Coating machine
A coating machine having the same structure as that shown in FIG. 1 was used, and a container C having a volume of 2.8 liters and a depth of 150 mm was used.
[0031]
(4) Film formation
The powder coating material A was put into a 1 kg container C and shaken, and then the steel sheet with the adhesive layer formed on the surface was put into the container C to form a film for 2 minutes. Thereafter, the steel sheet was taken out, and the presence or absence of occurrence of aggregation on the surface of the powder particle adhesion layer on the steel sheet was visually evaluated.
Next, the steel sheet is placed in a hot air drying furnace and heat-treated at 180 ° C. for 20 minutes to form a film, and after sufficiently cooling, the film thickness, surface smoothness, and adhesion to the object to be coated Was measured by the following method.
Film thickness: A film thickness meter (trade name: LZ-200, manufactured by KETT) was used to measure 5 points per object to be coated, and the average value was taken as the film thickness of the film.
Surface smoothness: The film surface smoothness was evaluated by visual observation.
Adhesiveness: Measured according to the cross-cut tape method of JIS K5400 8.5.2.
[0032]
Examples 8-12
Except that the powder coatings B to F obtained in Examples 2 to 6 were used in sequence, the coating test for film formation was performed in the same manner as in Example 7 and formed on the object to be coated. The film was evaluated.
[0033]
Comparative Examples 4-6
Except that the powder coatings G to I in Comparative Examples 1 to 3 were sequentially used, the coating test for film formation was performed in the same manner as in Example 7, and the coating formed on the object to be coated was evaluated. Went.
[0034]
Table 2 shows the evaluation results obtained in Examples 7-12 and Comparative Examples 4-6.
[Table 2]
Figure 0003779047
In the table, ◯ indicates that no aggregate is attached to the surface of the powder particle adhesion layer, and x indicates that the aggregate is attached. Moreover, the inside of () in a film thickness is the measured value of the film thickness of a hill-shaped convex part.
[0035]
As is clear from Tables 1 and 2, since all of the examples are formed by the above-described film forming method using a powder coating having a fluidity of 0.40 or more, the article to be coated A uniform film was formed thereon, and the adhesion of the film after heat treatment to the object to be coated was all good.
Further, using the powder coatings A to E of Examples 1 to 5 described above, an iron pipe having an inner diameter of 28 mmφ and a thickness of 1.0 mm cut to 25 mm was cut in the diameter direction, and the film forming method of the present invention was used. After the film was formed and heat-treated, when the film thickness and smoothness of the inner and outer surfaces were examined, a smooth film having a uniform film thickness was formed.
[0036]
【The invention's effect】
According to the present invention, an object to be coated having a pressure-sensitive adhesive layer on the surface in advance is immersed in a powder paint having a fluidity of 0.40 or more to apply an external force to adhere the powder paint on the object to be coated. Therefore, it becomes possible to apply a smooth powder coating with a uniform film thickness to the concave portion of the object to be coated having a complicated shape. In addition, the powder coating method of the present invention is very useful industrially because powder coating can be easily performed even on insulating objects that have been difficult to achieve with conventional powder coating. It can be applied to the coating of various articles.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an example of a coating machine that forms a film using the powder coating material of the present invention.
[Explanation of symbols]
C ... container, c1 ... opening, c2 ... bottom, c3 ... columnar part, V ... shaking device, F ... machine base, f1 and f2 ... coil spring, f3 ... diaphragm, f4 ... vertical axis, f5 ... motor, f6: output shaft, f7: weight, T: mixture, W: object to be coated.

Claims (3)

予め表面に粘着層を有する被塗装物を、外力を与えた粉体塗料中に浸漬させ、被塗装物上に粉体塗料を付着させる皮膜形成方法であって、該粉体塗料の流動度が0.40以上であることを特徴とする皮膜形成方法。 A film forming method in which an object to be coated having a pressure-sensitive adhesive layer on the surface is dipped in a powder paint to which an external force has been applied, and the powder paint is deposited on the object to be coated, wherein the fluidity of the powder paint is A film forming method characterized by being 0.40 or more . 請求項1に記載の皮膜形成方法に使用するための粉体塗料であって、該粉体塗料は、流動度が0.40以上であり、かつ体積平均粒径が25.4〜100μmであることを特徴とする粉体塗料。 A powder coating for use in the film forming method according to claim 1, wherein the powder coating has a fluidity of 0.40 or more and a volume average particle diameter of 25.4 to 100 µm. Powder paint characterized by that. 粉体塗料が、無機微粒子又は架橋樹脂微粒子を乾式混合により添加されているものであることを特徴とする請求項2に記載の粉体塗料。The powder coating material according to claim 2, wherein the powder coating material comprises inorganic fine particles or crosslinked resin fine particles added by dry mixing.
JP27794497A 1997-09-26 1997-09-26 Film forming method and powder coating used therefor Expired - Fee Related JP3779047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27794497A JP3779047B2 (en) 1997-09-26 1997-09-26 Film forming method and powder coating used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27794497A JP3779047B2 (en) 1997-09-26 1997-09-26 Film forming method and powder coating used therefor

Publications (2)

Publication Number Publication Date
JPH1199355A JPH1199355A (en) 1999-04-13
JP3779047B2 true JP3779047B2 (en) 2006-05-24

Family

ID=17590460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27794497A Expired - Fee Related JP3779047B2 (en) 1997-09-26 1997-09-26 Film forming method and powder coating used therefor

Country Status (1)

Country Link
JP (1) JP3779047B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106132A (en) * 2006-10-25 2008-05-08 Nippon Zeon Co Ltd Powder coating
WO2008088600A1 (en) * 2006-10-30 2008-07-24 Suman Andrew W Abradable dry film lubricant and the method for applying same and article made therefrom
JP6132154B2 (en) * 2013-07-18 2017-05-24 株式会社ジェイテクト Sliding shaft and steering device
JP6132153B2 (en) 2013-07-18 2017-05-24 株式会社ジェイテクト Sliding shaft and steering device
JP2023006174A (en) * 2021-06-30 2023-01-18 本田技研工業株式会社 Powder paint device and powder paint method

Also Published As

Publication number Publication date
JPH1199355A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
US6166123A (en) Reflective composition of particles with resinous binder and process for preparing same
JP4005184B2 (en) Powder coating and film formation method using the powder coating
WO2007006777A1 (en) Powder coating materials
TWI243716B (en) Powder coating process
JP3779047B2 (en) Film forming method and powder coating used therefor
JP4002638B2 (en) Film forming method using powder coating material
EP0536791A1 (en) Powdered paint
US6130281A (en) Powder coating, method for coating same and coating film obtained therefrom
JP4005183B2 (en) Powder coating and film forming method using the powder coating
JP3437973B2 (en) Powder coating for glass surface coating and coating method
JP4169826B2 (en) Powder film forming method
JPH10287827A (en) Powder coating containing flat powder and formation of its coating film
JPH10287826A (en) Powder coating used for specific coating film-forming method and formation of its coating film
JPS5941367A (en) Polyester powder coating
JP3759196B2 (en) Powder coating for tribo-charging spray gun
JP3100931B2 (en) Epoxy powder coating
JP2008063581A (en) Method for manufacturing silver-metallic powder coating for tribocharging spray gun
JP3258256B2 (en) Powder coating suitable for electrostatic fluidized immersion method
KR100360049B1 (en) Self-adhesive compositions with improved resistance to creepage, usable for oating metal substrates
JP4820208B2 (en) Powder coating material, production method thereof, and coating film using the same
JP3619010B2 (en) How to apply powder paint
JPH0762559A (en) Formation of powder film
JP3225198B2 (en) How to apply powder paint
JP2004231764A (en) Metallic powder coating material
JP2001311045A (en) Designable powder coating composition, method for forming designed coating film and coated article having design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees