JP5317400B2 - Epoxy resin powder coating - Google Patents

Epoxy resin powder coating Download PDF

Info

Publication number
JP5317400B2
JP5317400B2 JP2006238369A JP2006238369A JP5317400B2 JP 5317400 B2 JP5317400 B2 JP 5317400B2 JP 2006238369 A JP2006238369 A JP 2006238369A JP 2006238369 A JP2006238369 A JP 2006238369A JP 5317400 B2 JP5317400 B2 JP 5317400B2
Authority
JP
Japan
Prior art keywords
powder coating
coating material
powder
insulating layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006238369A
Other languages
Japanese (ja)
Other versions
JP2008056865A (en
Inventor
亮 斎藤
文幸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somar Corp
Original Assignee
Somar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somar Corp filed Critical Somar Corp
Priority to JP2006238369A priority Critical patent/JP5317400B2/en
Publication of JP2008056865A publication Critical patent/JP2008056865A/en
Application granted granted Critical
Publication of JP5317400B2 publication Critical patent/JP5317400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、粉体塗料、その粉体塗料を用いる絶縁方法およびその粉体塗料を熱硬化させ絶縁層を形成した絶縁層付き金属製被塗物に関する。   The present invention relates to a powder coating, an insulating method using the powder coating, and a metal coating with an insulating layer in which the powder coating is thermally cured to form an insulating layer.

近年のVOC(揮発性有機化合物)排出規制に対応する塗料として組成中に有機溶剤を含まない粉体塗料が注目されており、使用量が著しく増加の傾向にある。代表的な利用分野として、ハードディスク、DVD、CD−ROMなどに用いられるマイクロモータのスロット絶縁用や各種携帯器機をはじめとするデジタル家電などに使用される各種部品の絶縁用に粉体塗料を用いることは広く行われている。マイクロモータのスロット絶縁用の粉体塗料は、一般に平均粒子径が50μm程度であり、そして硬化後の絶縁被膜の厚さは、概略100μm程度である。近年、ハードディスクなどに用いられるマイクロモータなどの被塗装物の小型化に伴い、絶縁被膜を50μm以下の薄膜にすることが産業界から切望されている。また、上述する情報家電の高機能化に伴い用いられる部品の小型軽量化の達成とともに絶縁層の薄膜化も求められている。   Powder paints that do not contain an organic solvent in the composition are attracting attention as paints that meet recent VOC (volatile organic compound) emission regulations, and the amount of use tends to increase remarkably. Typical applications include powder coatings for slot insulation of micromotors used in hard disks, DVDs, CD-ROMs, etc., and insulation of various parts used in digital home appliances such as various portable devices. Things are widely done. The powder coating material for slot insulation of a micromotor generally has an average particle size of about 50 μm, and the thickness of the insulating coating after curing is about 100 μm. In recent years, with the miniaturization of objects to be coated such as micro motors used in hard disks and the like, it has been eagerly desired by the industry to reduce the thickness of the insulating coating to 50 μm or less. In addition, with the achievement of higher functionality of information home appliances described above, there is a demand for reducing the size and weight of components used and reducing the thickness of the insulating layer.

前記のような利用分野で使用される粉体塗料は、一般に熱硬化性樹脂を主要成分としており、通常、塗装ガンを通して静電塗装により、アースした被塗物上に静電的に付着させた後に加熱・溶融して塗膜が形成される。静電塗装法としては、コロナ荷電法および摩擦荷電法が知られている。   The powder coating used in the above-mentioned fields of use generally has a thermosetting resin as a main component, and is usually electrostatically attached to a grounded object by electrostatic coating through a coating gun. Later, it is heated and melted to form a coating film. As the electrostatic coating method, a corona charging method and a friction charging method are known.

上述した静電塗装では、金属製被塗物に対して均一な塗膜を形成するために、帯電した粉体塗料を被塗物全体に均一に付着させる必要がある。一般に平面な被塗物上には十分均一な塗膜を形成できるが、非平面部(特に、凹凸形状の凹部等)上には、粉体塗料粒子が入り込みにくく、非平面部に付着する粉体塗料の量が他の部分と比較して少なくなる場合が多い。この場合には、非平面部に形成される塗膜の膜厚が他の部分の膜厚と比較して薄くなるため、均一な塗膜が得られにくい。この現象はコロナ荷電法において顕著に見られるものであり、ファラデーケージ効果に起因するものである。ファラデーケージ効果とは、電界(電気力線)が被塗物の凹部に形成されず、凸部に集中する現象をいうものである。また、粉体塗料は、液状塗料の場合と比較して、塗料自体が粒状のため、塗装後の溶融および焼付けによっても塗膜の表面の凹凸を平滑化するのが困難であった。   In the electrostatic coating described above, in order to form a uniform coating film on a metal object, it is necessary to uniformly apply a charged powder coating material to the entire object. In general, a sufficiently uniform coating film can be formed on a flat object, but powder coating particles are difficult to enter on non-planar parts (particularly concave and convex parts), and adhere to non-planar parts. In many cases, the amount of body paint is reduced compared to other parts. In this case, since the film thickness of the coating film formed on the non-planar part becomes thinner than the film thickness of other parts, it is difficult to obtain a uniform coating film. This phenomenon is noticeable in the corona charging method, and is caused by the Faraday cage effect. The Faraday cage effect is a phenomenon in which an electric field (lines of electric force) is not formed in a concave portion of an object to be coated but concentrated on the convex portion. Further, since the coating material itself is granular as compared with the case of the liquid coating material, it is difficult to smooth the unevenness on the surface of the coating film even by melting and baking after coating.

これらの問題を解決する手段として、以下のような方法が提案されている。
第一の方法として、平面部には従来通りの手段で粉体塗装を行った後、粉体塗装では均一な塗膜が形成できない前記非平面部には電着塗料を塗装する積層塗膜形成方法が提案されている(例えば特許文献1)。この方法では、粉体塗料塗装後に電着塗装を行うため、粉体塗料の塗装面に電着塗料を塗着させることが困難であり、前記粉体塗膜と電着塗膜との境界部分に十分な膜厚が確保できず、防食性の劣る箇所が生じる場合があった。
第二の方法として、粉体塗料の平均粒子径を小さくさせ、かつ、小粒子径の粒子の比率に上限を設けた粉体塗料が提案されている(例えば特許文献2)。
第三の方法として、粉体塗料の平均粒子径が20〜50μmであり、粒径分布標準偏差が20μm以下である粉体塗料を使用することが提案されている(例えば特許文献3)。
第四の方法として、本願出願人は先にビスフェノールA型エポキシ樹脂を主体とする特定の性状を有するエポキシ樹脂に、ポリビニルブチラール、触媒系硬化剤、アクリル酸エステルオリゴマーとともに特定の粒径範囲の無機充填剤を配合したエポキシ樹脂組成物を使用することを提案した(特許文献4)。
第二から第四の方法においては、いずれも粒子径の均一化を図ることにより、塗膜の平滑性を向上することを目的としているものである。言い換えるならば、粒子径の小さいもしくは大きい粒子を分級により取り除くことを本来の目的とするものである。
The following methods have been proposed as means for solving these problems.
As a first method, after the powder coating is applied to the flat surface by conventional means, a uniform coating film cannot be formed by powder coating. A method has been proposed (for example, Patent Document 1). In this method, since the electrodeposition coating is performed after the powder coating, it is difficult to apply the electrodeposition coating to the coated surface of the powder coating, and the boundary portion between the powder coating and the electrodeposition coating is difficult. In some cases, a sufficient film thickness could not be ensured, and a portion with poor corrosion resistance was generated.
As a second method, a powder coating material has been proposed in which the average particle size of the powder coating material is reduced and an upper limit is set for the ratio of particles having a small particle size (for example, Patent Document 2).
As a third method, it has been proposed to use a powder coating material having an average particle size of 20 to 50 μm and a particle size distribution standard deviation of 20 μm or less (for example, Patent Document 3).
As a fourth method, the applicant of the present application previously described an epoxy resin having a specific property mainly composed of a bisphenol A type epoxy resin, an inorganic resin having a specific particle size range together with polyvinyl butyral, a catalyst curing agent, and an acrylate oligomer. It has been proposed to use an epoxy resin composition containing a filler (Patent Document 4).
Each of the second to fourth methods aims to improve the smoothness of the coating film by making the particle diameter uniform. In other words, the original purpose is to remove small or large particles by classification.

しかしながら、第二から第四の方法においては、粒子径の均一化において、粒子径の小さいものを含むことが好ましくない旨、開示されているにすぎず、例えば5μm以下の粒子について具体的開示は全くない。
使用される金属製被塗物が更に小型化されたことにより、粒径の小さいものを除去し、粒子径を均一化するだけでは塗膜の平滑性は未だ満足できるものではなかった。
However, in the second to fourth methods, it is merely disclosed that it is not preferable to include particles having a small particle size in the homogenization of the particle size. For example, specific disclosure of particles of 5 μm or less is provided. Not at all.
Since the metal object to be used was further downsized, the smoothness of the coating film was not yet satisfactory only by removing the small particle diameter and making the particle diameter uniform.

特開昭49―111947号公報JP-A-49-111947 特開平5−98193号公報Japanese Patent Laid-Open No. 5-98193 特開平8−41384号公報JP-A-8-41384 特開平10−265714号公報JP-A-10-265714

本発明は、塗膜の薄膜化及び平滑化することによる高外観の塗膜を形成することができる粉体塗料を提供することを目的とする。
また、本発明は、上記粉体塗料を用いて絶縁層を形成する金属製被塗物の絶縁方法、及び該方法により得られる絶縁層付金属製被塗物を提供することを目的とする。
An object of this invention is to provide the powder coating material which can form the coating film of the high external appearance by thinning and smoothing a coating film.
Another object of the present invention is to provide a method for insulating a metal object to be formed with an insulating layer using the powder coating material, and a metal object with an insulating layer obtained by the method.

本発明者等は、上記の課題を解決するために鋭意検討した結果、少なくともエポキシ樹脂、硬化剤および充填剤を含有する粉体塗料において、その平均粒子径が特定の範囲にあり、かつ、5μm以下の粒子(以下、小粒子径の粒子ともいう)を所定量含んでいる場合に粉体塗装後熱硬化させた塗膜は高外観のものが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the average particle diameter is at a specific range in a powder coating containing at least an epoxy resin, a curing agent and a filler, and 5 μm. In order to complete the present invention, it has been found that when a predetermined amount of the following particles (hereinafter also referred to as particles having a small particle size) is contained, a coating film thermally cured after powder coating can have a high appearance. It came.

即ち、本発明は以下の粉体塗料、その粉体塗料を用いる絶縁方法、及びその粉体塗料を熱硬化させ絶縁層を形成した絶縁層付き金属製被塗物を提供するものである。
(1)エポキシ樹脂、硬化剤及び充填剤を含有する粉体塗料であって、前記充填剤は、溶融シリカ及び結晶性シリカを含有するものであり、前記粉体塗料は、平均粒子径が10〜30μmであり、5μm以下の粒子を3.0〜6.0体積%含み、かつ、粉体塗料1.0gを内径16mmφの錠剤整形用金型に入れ、90MPaの圧力を60秒間加圧して成型した錠剤の直径を(A)、該錠剤をスライドグラスにのせ、140℃の熱風乾燥炉に10分間放置後の錠剤の直径を(B)としたとき、下記式(I)より求められる水平流れ率が、1.0〜5.0%であることを特徴とする粉体塗料

Figure 0005317400
(2)前記充填剤を、エポキシ樹脂100重量部当たり20〜150重量部含むことを特徴とする特徴とする前記(1)に記載の粉体塗料。
(3)電子部品の表面に絶縁層を形成する絶縁方法であって、該絶縁層は、前記(1)または(2)に記載の粉体塗料を金属製被塗物に静電塗装した後に熱硬化することにより塗膜を形成することを特徴とする絶縁方法。
(4)電子部品の表面に絶縁層を形成した絶縁層付き金属製被塗物であって、該絶縁層は、前記(3)に記載の方法により形成された塗膜であることを特徴とする絶縁層付き金属製被塗物。
That is, the present invention provides the following powder coating, an insulating method using the powder coating, and a metal object with an insulating layer in which the powder coating is thermally cured to form an insulating layer.
(1) A powder paint containing an epoxy resin, a curing agent and a filler , wherein the filler contains fused silica and crystalline silica, and the powder paint has an average particle size of 10 is 30 .mu.m, particles below 5μm viewed 3.0-6.0 vol% free, and put powder coating 1.0g tablet shaping mold having an inner diameter of diameter of 16 mm, the pressure for 60 seconds pressurizes 90MPa When the diameter of the tablet formed in this way is (A), the tablet is placed on a slide glass and left in a hot air drying oven at 140 ° C. for 10 minutes and the diameter of the tablet is (B), it can be obtained from the following formula (I). A powder coating material having a horizontal flow rate of 1.0 to 5.0% ;
Figure 0005317400
(2) The powder coating material as described in (1) above , wherein the filler is contained in an amount of 20 to 150 parts by weight per 100 parts by weight of the epoxy resin .
(3) An insulating method for forming an insulating layer on the surface of an electronic component, wherein the insulating layer is formed by electrostatically applying the powder coating according to (1) or (2) on a metal object. An insulating method comprising forming a coating film by thermosetting.
(4) A metal article with an insulating layer in which an insulating layer is formed on the surface of an electronic component, wherein the insulating layer is a coating film formed by the method described in (3) above. Metal object to be coated with an insulating layer.

本発明の粉体塗料は、その平均粒子径が特定の範囲にあり、かつ、小粒子径の粒子を所定量含んでいるため、静電塗装後の膜厚と硬化後の膜厚の差を減少させることができる。このため、硬化塗膜の平滑性を向上することができ、高外観の塗膜を形成することができる。
また、上記粉体塗料の水平流れ率が特定の範囲のものは、塗膜の形状安定という点で優れている。
さらに、本発明は、上記粉体塗料を用いて静電塗装、次いで熱硬化させることにより、高外観の塗膜を形成する絶縁方法、該方法により塗膜を形成した絶縁層付金属製被塗物が提供される。
The powder paint of the present invention has an average particle diameter in a specific range and contains a predetermined amount of particles having a small particle diameter, so that the difference between the film thickness after electrostatic coating and the film thickness after curing is determined. Can be reduced. For this reason, the smoothness of a cured coating film can be improved and a coating film having a high appearance can be formed.
In addition, the powder coating having a horizontal flow rate in a specific range is excellent in terms of stable shape of the coating film.
Furthermore, the present invention provides an insulating method for forming a coating film having a high appearance by electrostatic coating using the powder coating, followed by thermosetting, and a metal coating with an insulating layer formed with the coating method. Things are provided.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し、適宜変更、改良等が加えられたものも本発明の範囲のものである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. Those in which the following embodiments are appropriately modified and improved are also within the scope of the present invention.

本発明の粉体塗料は、エポキシ樹脂、硬化剤および充填剤を含有する粉体塗料である。   The powder coating material of the present invention is a powder coating material containing an epoxy resin, a curing agent and a filler.

本発明において使用されるエポキシ樹脂としては従来から知られているエポキシ樹脂をその使用目的に応じて適宜使用することができる。例えば、分子内に2個以上のオキシラン基を有する化合物が好ましく使用できる。そのようなエポキシ樹脂としては、グリシジルエステル樹脂、ビスフェノール型エポキシ樹脂等が挙げられ、具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、フェノール−ノボラック型またはクレゾール−ノボラック型のエポキシ樹脂、臭素化ノボラック型エポキシ樹脂、水添ビスフェノールA型もしくはAD型エポキシ樹脂、プロピレングリコールジグリシジルエーテル、ペンタエリストールポリグリシジルエーテル等の脂肪族系エポキシ樹脂、脂肪族若しくは芳香族アミンとエピクロルヒドリンから得られるエポキシ樹脂、脂肪族若しくは芳香族カルボン酸エピクロルヒドリンから得られるエポキシ樹脂、複素環エポキシ樹脂、ビフェノール型エポキシ樹脂等を使用することができる。これらのエポキシ樹脂は1種類だけ使用してもよいし、2種類以上使用してもよい。
このなかでも、コンデンサー等の電子部品に使用する場合には難燃性の観点から臭素化エポキシ樹脂を含有することが好ましい。
また、マイクロモーター用に使用する場合には塗膜密着性やじん性の観点からビスフェノールA型エポキシ樹脂を含有することが好ましい。
As the epoxy resin used in the present invention, a conventionally known epoxy resin can be appropriately used depending on the purpose of use. For example, a compound having two or more oxirane groups in the molecule can be preferably used. Examples of such epoxy resins include glycidyl ester resins, bisphenol type epoxy resins, and the like. Specific examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, bromines. Bisphenol A type epoxy resin, phenol-novolak type or cresol-novolak type epoxy resin, brominated novolak type epoxy resin, hydrogenated bisphenol A type or AD type epoxy resin, propylene glycol diglycidyl ether, pentaerythritol polyglycidyl ether Aliphatic epoxy resins such as epoxy resins obtained from aliphatic or aromatic amines and epichlorohydrin, epoxy resins obtained from aliphatic or aromatic carboxylic acid epichlorohydrin, complex Epoxy resins, may be used biphenol type epoxy resin or the like. These epoxy resins may be used alone or in combination of two or more.
Among these, when used for electronic parts such as capacitors, it is preferable to contain a brominated epoxy resin from the viewpoint of flame retardancy.
Moreover, when using for micro motors, it is preferable to contain a bisphenol A type epoxy resin from the viewpoint of coating film adhesion and toughness.

本発明において使用される硬化剤としては、従来から公知の物を種々選択することができる。例えば、酸無水物、アミン類、イミダゾール類、ジヒドロジン類、ルイス酸、ブレンステッド酸塩類、ポリメルカプトン類、イソシアネート類、ブロックイソシアネート類、ジシアンジアミド、カルボン酸ジヒドラジド、メラミン樹脂、多価カルボン酸等を使用することができる。   Various conventionally known materials can be selected as the curing agent used in the present invention. For example, acid anhydrides, amines, imidazoles, dihydrogins, Lewis acids, Bronsted acid salts, polymercaptons, isocyanates, blocked isocyanates, dicyandiamide, carboxylic acid dihydrazide, melamine resins, polycarboxylic acids, etc. Can be used.

本発明において使用される硬化剤の使用割合は、前記エポキシ樹脂に含まれる官能基1当量に対して、その硬化剤中の官能基の当量数が0.3〜1.2当量が好ましく、より好ましくは0.4〜0.8当量なる割合である。   The proportion of the curing agent used in the present invention is preferably such that the equivalent number of functional groups in the curing agent is 0.3 to 1.2 equivalents relative to 1 equivalent of the functional group contained in the epoxy resin. The ratio is preferably 0.4 to 0.8 equivalent.

本発明において使用される充填剤としては、例えば、溶融シリカ、結晶性シリカ、アルミナ、炭酸カルシウム、珪酸カルシウム、マイカ、タルク、クレー、チタンホワイト、窒化ケイ素、炭化ケイ素等の無機化合物を使用することができる。
充填剤は耐ヒートサイクル性を向上させる点から線膨張係数は低い方が好ましく、線膨張係数を低くさせるためには、溶融シリカを使用することが好ましい。これらの充填剤は1種類だけ使用してもよいし、2種類以上使用してもよい。また、同じ種類の充填剤を2種以上使用してもよい。これらの充填剤において、その平均粒子径は0.1〜20μmが好ましく、より好ましくは0.1〜10μmであり、更に0.5〜3μmであることが好ましい。またその配合量は、エポキシ樹脂100重量部当り、20〜150重量部が好ましく、より好ましくは40〜100重量部の割合である。充填剤の配合量が20重量部未満だと、粉体組成物の溶融硬化工程での流動性が大きくなりすぎて塗膜を均一に形成することができなくなるという問題があるからである。一方、150重量部超だと、粉体塗料の溶融硬化工程での流動性が小さくなりすぎて被塗物との十分な密着性が得られず、十分な密着強度が得られないという問題があるからである。
As the filler used in the present invention, for example, an inorganic compound such as fused silica, crystalline silica, alumina, calcium carbonate, calcium silicate, mica, talc, clay, titanium white, silicon nitride, and silicon carbide is used. Can do.
The filler preferably has a lower linear expansion coefficient from the viewpoint of improving heat cycle resistance, and in order to lower the linear expansion coefficient, it is preferable to use fused silica. These fillers may be used alone or in combination of two or more. Two or more kinds of the same type of filler may be used. In these fillers, the average particle size is preferably 0.1 to 20 μm, more preferably 0.1 to 10 μm, and further preferably 0.5 to 3 μm. The blending amount is preferably 20 to 150 parts by weight, more preferably 40 to 100 parts by weight per 100 parts by weight of the epoxy resin. If the blending amount of the filler is less than 20 parts by weight, there is a problem that the fluidity in the melt-curing process of the powder composition becomes too large to form a coating film uniformly. On the other hand, if it exceeds 150 parts by weight, the fluidity of the powder coating in the melt-curing process becomes too small to obtain sufficient adhesion with the object to be coated, and there is a problem that sufficient adhesion strength cannot be obtained. Because there is.

本発明のエポキシ樹脂組成物には、前記成分の他、触媒、流展剤、難燃剤、顔料、カップリング剤、消泡剤等の慣用の補助成分を適宜配合することができる。   In addition to the above-mentioned components, conventional auxiliary components such as a catalyst, a spreading agent, a flame retardant, a pigment, a coupling agent, and an antifoaming agent can be appropriately added to the epoxy resin composition of the present invention.

次に、粉体塗料の製造方法において説明する。
粉体塗料は、エポキシ樹脂と無機充填剤等の充填剤をニーダなどによる溶融混錬処理を施すか、エクストルーダなどによる溶融混合処理を施した後、混合物を冷却固化し、粗粉砕し、この粗粉砕物に硬化剤、さらに必要により、硬化促進剤や補助成分を乾式混合し、この混合物に溶融混合処理を施した後、混合物を冷却固化し、微粉砕後、分級し、平均粒子径10〜30μmに調製することにより得られる。本発明において5μm以下の粒子を所定量含有させる必要があるが、分級時に所定量含有されるように分級してもよいし、分級時に5μm以下の粒子を取り除いたものに所定量含有させる方法によってもよい。
Next, the method for producing a powder coating will be described.
For powder coatings, either an epoxy resin or a filler such as an inorganic filler is melt-kneaded with a kneader or the like, or melt-mixed with an extruder or the like, and then the mixture is cooled and solidified, coarsely crushed, The pulverized product is dry-mixed with a curing agent and, if necessary, a curing accelerator and auxiliary components. After the mixture is melt-mixed, the mixture is cooled and solidified, finely pulverized, classified, and an average particle size of 10 to 10%. It can be obtained by adjusting to 30 μm. In the present invention, it is necessary to contain a predetermined amount of particles of 5 μm or less, but the particles may be classified so as to be contained in a predetermined amount at the time of classification, or by a method of containing a predetermined amount in the particles from which particles of 5 μm or less have been removed during classification. Also good.

本発明において、粉体塗料の平均粒子径は、10〜30μm、より好ましくは15〜25μmである。粉体塗料の平均粒子径を、従来公知の粉体塗料の平均粒子径(約50μm)よりも小さくすることにより、形成される塗膜の薄膜化を図ることができる。粉体塗料組成物中の粒子の平均粒子径が10μm未満であると、製造工程が複雑化するとともに、凝集しやすい5μm以下の粒子が相対的に増えるので流動化しにくくなり、粉体塗料が金属製被塗物に付着する効率が低下するため、歩留まりが悪く生産性が低下するからである。粉体塗料の平均粒子径が、30μmを超えると、硬化塗膜を50μm以下にすることが困難となるからである。   In the present invention, the average particle size of the powder coating material is 10 to 30 μm, more preferably 15 to 25 μm. By making the average particle size of the powder coating material smaller than the average particle size (about 50 μm) of conventionally known powder coating materials, it is possible to reduce the thickness of the formed coating film. When the average particle size of the particles in the powder coating composition is less than 10 μm, the manufacturing process becomes complicated, and the particles having a size of 5 μm or less that tend to aggregate relatively increase. This is because the efficiency of adhering to the article to be coated is lowered, so that the yield is poor and the productivity is lowered. This is because if the average particle diameter of the powder coating exceeds 30 μm, it becomes difficult to make the cured coating film 50 μm or less.

本発明における粉体塗料は、平均粒子径が10〜30μmであることが必要であることは前記したとおりであるが、それに加えて、粉体塗料中に5μm以下の粒子を3.0〜6.0体積%、より好ましくは3.5〜5.0体積%含有するものであり、これが重要な特徴である。5μm以下の粒子の含有率が3.0体積%未満であると、粒子同士の隙間に小粒子径の粒子が入り込むことが不十分となるため、硬化塗膜の膜厚が粉体塗装後の膜厚と比較して著しく減少し、表面の平滑性が損なわれるからである。また、6.0体積%より多く含有すると凝集しやすい5μm以下の粒子が増えるため粉体塗料の流動性が低下するといった不具合が生じることになるからである。   As described above, the powder coating material in the present invention needs to have an average particle diameter of 10 to 30 μm. In addition to this, particles of 5 μm or less are added to 3.0 to 6 particles in the powder coating material. This is an important feature because it is contained in an amount of 0.0% by volume, more preferably 3.5 to 5.0% by volume. If the content of the particles of 5 μm or less is less than 3.0% by volume, it is insufficient for small particles to enter the gaps between the particles. This is because the thickness is significantly reduced compared with the film thickness, and the surface smoothness is impaired. In addition, if the content is more than 6.0% by volume, there is a problem that the fluidity of the powder coating material is lowered because the number of particles of 5 μm or less that easily aggregate is increased.

本発明において、粉体塗料の水平流れ率は1.0〜5.0%が好ましく、より好ましくは2.0〜4.5%である。1.0%未満であると溶融時に塗料が流れなくなるためピンホール等の塗膜欠陥が生じやすくなるし、5.0%を超えると硬化塗膜を得る際の溶融から硬化の過程においていわゆるタレと呼ばれる現象が生じ、所望の膜厚を形成することができなくなるからである。
尚、水平流れ率とは、粉体塗料における加熱時の溶融性を示すものであり、この値が大きいと溶融時に低粘度であるため塗料が流れやすいことを示し、小さいと溶融時に高粘度であるため塗料が流れにくいことを示す。
該水平流れ率の測定方法については後述する。
In the present invention, the horizontal flow rate of the powder coating is preferably 1.0 to 5.0%, more preferably 2.0 to 4.5%. If it is less than 1.0%, the paint will not flow at the time of melting, so that coating hole defects such as pinholes are likely to occur. If it exceeds 5.0%, so-called sagging occurs in the process of melting to curing when a cured film is obtained. This is because a phenomenon called “occurs” and a desired film thickness cannot be formed.
The horizontal flow rate indicates the meltability of the powder coating material when heated. If this value is large, it indicates that the coating material flows easily because the viscosity is low at the time of melting. This indicates that the paint is difficult to flow.
A method for measuring the horizontal flow rate will be described later.

本発明の粉体塗料が塗装される金属製被塗物の形状は、特に限定されないが、本発明の粉体塗料は、特に非平面部を有する立体構造物に好適に使用され本発明の効果が有効に発揮される。即ち、本発明の粉体塗料が凹凸を有する形状に対しての追従性が良好であることから、例えば、箱状物、波板状物、袋状物、筒状物、棒状物、穴あき状物等にも好適に使用される。   The shape of the metal object to be coated with the powder coating material of the present invention is not particularly limited, but the powder coating material of the present invention is particularly suitable for a three-dimensional structure having a non-planar portion, and the effect of the present invention. Is effectively demonstrated. That is, since the powder coating material of the present invention has good followability with respect to uneven shapes, for example, a box-shaped object, corrugated sheet-shaped object, bag-shaped object, cylindrical object, rod-shaped object, perforated It is also preferably used for a shape or the like.

本発明の粉体塗料は静電塗装法により目的とする金属製被塗物に対して塗装される。静電塗装法としては、コロナ荷電法および摩擦荷電法のいずれかの方法であってもよい。コロナ荷電法においては、外部荷電法および内部荷電法のいずれの方法を用いても差し支えない。   The powder coating of the present invention is applied to a target metal object by electrostatic coating. The electrostatic coating method may be either a corona charging method or a friction charging method. In the corona charging method, either the external charging method or the internal charging method may be used.

本発明における塗装方法としては静電流動床法も好ましい。静電流動法は、以下の原理に基づくものである。
まず、流動化空気が流動化室または更に通常は多孔性の空気分布膜の下方のプレナム室に配置された帯電電極によってイオン化される。次いでイオン化空気が粉体塗料を帯電させ、これによって同じく帯電した粒子同士が静電反発を起こすために上昇運動を始める。そして帯電した粉体粒子の雲が流動床の表面に形成され、ここに金属性被塗物をこの雲に導入することにより粉体粒子は静電引力によって表面に付着することを利用した方法である。
そのため、粒子径が小さい場合には粒子同士の凝集が生じるため上述した上昇運動が生じにくく流動化しないこととなる。
As the coating method in the present invention, an electrostatic fluidized bed method is also preferable. The electrostatic flow method is based on the following principle.
First, fluidized air is ionized by a charged electrode placed in a fluidizing chamber or more usually a plenum chamber below a porous air distribution membrane. The ionized air then charges the powder coating, thereby causing the similarly charged particles to begin an upward motion to cause electrostatic repulsion. A cloud of charged powder particles is formed on the surface of the fluidized bed. By introducing a metallic object into the cloud, the powder particles adhere to the surface by electrostatic attraction. is there.
For this reason, when the particle diameter is small, the particles are aggregated, so that the above-described upward movement is unlikely to occur and the particles are not fluidized.

次いで、本発明においては、粉体塗料を上記方法により塗装後に加熱硬化する。硬化塗膜の厚みは20〜60μmであることが好ましい。20μm未満であると塗膜欠陥が生じるため絶縁性を確保できないからである。また、60μmを超えると薄膜化という要請を満たさないこととなるからである。   Next, in the present invention, the powder coating is heat-cured after coating by the above method. The thickness of the cured coating film is preferably 20 to 60 μm. This is because if the thickness is less than 20 μm, a coating film defect occurs and insulation cannot be secured. Moreover, it is because the request | requirement of film thickness will not be satisfied when it exceeds 60 micrometers.

以下、本発明の粉体塗料、これを金属製被塗物に塗装後、加熱・硬化による塗膜の形成、及び形成された塗膜(以下、硬化塗膜という)について実施例を用いて具体的に説明するが、本発明の粉体塗料、硬化塗膜の形成及び硬化塗膜についてはこれらの実施例によって限定されるものではない。
なお、実施例及び比較例の粉体塗料については、体積平均粒子径及び粒度分布、水平流れ率、流動性を評価し、硬化塗膜については、膜厚と外観の評価を行った。
Hereinafter, the powder coating of the present invention, after coating this on a metal object, the formation of a coating film by heating and curing, and the formed coating film (hereinafter referred to as a cured coating film) are specifically described using examples. However, the powder coating, the formation of the cured coating, and the cured coating of the present invention are not limited by these examples.
In addition, about the powder coating material of the Example and the comparative example, volume average particle diameter and particle size distribution, horizontal flow rate, and fluidity | liquidity were evaluated, and the film thickness and external appearance were evaluated about the cured coating film.

<体積平均粒子径及び粒度分布>
体積平均粒子径及び粒度分布はレーザー回析式粒子径分布測定装置(SYMPATEC社製、商品名 HELOSandRODOS 解析ソフトWINDOX5)を用いて測定した値である。具体的には、粉体塗料1.0gを投入後、分散器の分散圧を2.0barの条件下で測定を行った。
<Volume average particle size and particle size distribution>
The volume average particle size and the particle size distribution are values measured using a laser diffraction particle size distribution measuring device (manufactured by SYMPATEC, trade name HELO SandRODOS analysis software WINDOWX5). Specifically, after adding 1.0 g of powder coating material, the dispersion pressure of the disperser was measured under the condition of 2.0 bar.

<水平流れ率>
水平流れ率は、粉体塗料1.0gを内径16mmφの錠剤整形用金型に入れ、90MPaの圧力を60秒間加圧して錠剤を成型し、この錠剤の直径(A)を測定する。次いでスライドグラス上に錠剤をのせ、140℃の熱風乾燥炉に10分間放置後取出し、錠剤の直径(B)を測定した。下記式(I)より水平流れ率を測定する。
<Horizontal flow rate>
For the horizontal flow rate, 1.0 g of powder coating material is placed in a tablet shaping die having an inner diameter of 16 mmφ, a pressure of 90 MPa is applied for 60 seconds to form a tablet, and the diameter (A) of the tablet is measured. Next, the tablet was placed on a slide glass, left in a hot air drying oven at 140 ° C. for 10 minutes and then taken out, and the diameter (B) of the tablet was measured. The horizontal flow rate is measured from the following formula (I).

Figure 0005317400
Figure 0005317400

<塗装試験>
後述する実施例1〜5、比較例1〜4により得られた粉体塗料を各々3.0mm×3.0mm×30mmの角棒(以下、試験片ともいう)に塗装機(英布社製、MODEL−380)にて、電圧52kV,エアー圧0.4kgf/cm、塗装時間1.5秒の条件下で粉体塗装した。この際、塗装機に投入された粉体塗料は各1Kgである。次いでこの角棒を吊るした状態で乾燥炉に配置し、毎分1℃のスピードで150℃まで昇温後、続けて1時間加熱して硬化塗膜を得た。
<Coating test>
The powder coating materials obtained in Examples 1 to 5 and Comparative Examples 1 to 4 which will be described later are each applied to a coating bar (manufactured by Eifu Co., Ltd.) on a 3.0 mm × 3.0 mm × 30 mm square bar (hereinafter also referred to as a test piece). , MODEL-380), and powder coating was performed under the conditions of a voltage of 52 kV, an air pressure of 0.4 kgf / cm 2 , and a coating time of 1.5 seconds. At this time, the powder coating material put into the coating machine is 1 kg each. Next, this square bar was suspended and placed in a drying furnace, heated to 150 ° C. at a speed of 1 ° C. per minute, and then heated for 1 hour to obtain a cured coating film.

<外観及び膜厚差>
上述した塗装試験により得られた硬化塗膜の外観を以下の基準に基づくタレ性と光沢性により評価した。タレ性の項目で言及している膜厚差とは、上述した試験片の上端から5mmにおける硬化塗膜の膜厚(C)と試験片の下端から5mmにおける硬化塗膜の膜厚(D)をノギスで計測する。下記式(II)より膜厚差を算出したものである。
タレ性
○:試験片の膜厚差が5μm以下
△:試験片の膜厚差が5μmより大きく10μm以下
×:試験片の膜厚差が10μmより大きい
光沢性
○:光沢が目視により見られ、かつ、表面にざらつきのないもの
△:光沢が目視により見られるものの表面にざらつきのあるもの
×:光沢が目視では見られず表面にざらつきのあるもの
<Appearance and film thickness difference>
The appearance of the cured coating film obtained by the above-described coating test was evaluated by sagging properties and glossiness based on the following criteria. The film thickness difference referred to in the sagging property is the film thickness (C) of the cured coating film at 5 mm from the upper end of the test piece and the film thickness (D) of the cured coating film at 5 mm from the lower end of the test piece. Measure with a caliper. The film thickness difference is calculated from the following formula (II).
Sagging property ○: Difference in film thickness of test piece is 5 μm or less Δ: Difference in film thickness of test piece is larger than 5 μm and 10 μm or less ×: Glossiness where difference in film thickness of test piece is larger than 10 μm ○: Gloss is visually observed, In addition, the surface has no roughness. △: The gloss is visually observed, but the surface is rough. ×: The gloss is not visually observed, and the surface is rough.

Figure 0005317400
Figure 0005317400

<流動性>
流動性を塗装試験における塗装機内の粉体塗料の挙動から以下の基準に基づき評価した。
○:粉体塗料が流動しており、試験片に付着している
×:粉体塗料が流動しておらず、試験片に付着していない
<Fluidity>
The fluidity was evaluated based on the following criteria from the behavior of the powder coating in the coating machine in the coating test.
○: The powder paint is flowing and adhering to the test piece ×: The powder paint is not flowing and not adhering to the test piece

実施例1
ビスフェノールA型エポキシ樹脂(エポキシ当量630)40質量部、臭素化エポキシ樹脂(エポキシ当量660)60質量部、溶融シリカ(平均粒子径2.3μm)35質量部、結晶性シリカ(平均粒子径1.4μm)45質量部、硬化剤BTDA(JAYHAWK FINE CHEMICALS INK.社製、商品名 BTDA)12.5質量部、ひまし油系添加剤(RHEOX.INC社製、商品名 THIXCIN R)2質量部、シランカップリング剤(チッソ社製、商品名サイラエースS−510)1質量部、難燃助剤(鈴裕社製、商品名ファイアカットAT―3)10質量部を混合し、池貝製作所社製PCM−45押出機で溶融混合し、冷却、固化後、粗粉砕したものをホソカワミクロン社製ACM−10パルベライザで、ディスク回転数4000rpm、セパレータ回転数1800rpm、供給量50kg/hrの条件で粉砕した後、分級処理を行い、微少粒子と粗大粒子を除去した。得られた粉体塗料の平均粒子径は19μmであり、粒子径が5μm以下の粒子の含有率は4体積%であった。この物の物性を表1に示す。
Example 1
40 parts by mass of bisphenol A type epoxy resin (epoxy equivalent 630), 60 parts by mass of brominated epoxy resin (epoxy equivalent 660), 35 parts by mass of fused silica (average particle size 2.3 μm), crystalline silica (average particle size 1. 4 μm) 45 parts by mass, hardener BTDA (JAYHAWK FINE CHEMICALS INK., Trade name BTDA) 12.5 parts by weight, castor oil additive (RHEOX. INC, trade name THIXCIN R) 2 parts by weight, silane cup 1 part by mass of a ring agent (manufactured by Chisso Corp., trade name: Silaace S-510) and 10 parts by mass of a flame retardant aid (manufactured by Suzuhiro Co., Ltd., trade name: Fire Cut AT-3) are mixed, and PCM-45 manufactured by Ikegai Seisakusho Co., Ltd. What was melt-mixed in an extruder, cooled, solidified, and coarsely pulverized was ACM-10 Pulverizer manufactured by Hosokawa Micron Co., Ltd., disk rotation speed 4000 rpm, separator rotation speed 1800 rpm, supply amount 50 After grinding under the conditions of g / hr, subjected to classification treatment to remove fine particles and coarse particles. The average particle diameter of the obtained powder coating material was 19 μm, and the content ratio of particles having a particle diameter of 5 μm or less was 4% by volume. The physical properties of this product are shown in Table 1.

実施例2
平均粒子径を25μmに変更した以外は全て実施例1と同様にして粉体塗料を製造した。この物の物性を表1に示す。
Example 2
A powder coating material was produced in the same manner as in Example 1 except that the average particle size was changed to 25 μm. The physical properties of this product are shown in Table 1.

実施例3
溶融シリカの配合量を45質量部、結晶性シリカの配合量を35質量部に変更した以外は全て実施例1と同様にして粉体塗料を製造した。この物の物性を表1に示す。
Example 3
A powder coating material was manufactured in the same manner as in Example 1 except that the amount of fused silica was changed to 45 parts by mass and the amount of crystalline silica was changed to 35 parts by mass. The physical properties of this product are shown in Table 1.

参考例1
溶融シリカの配合量を15質量部、結晶性シリカの配合量を65質量部に変更した以外は全て実施例1と同様にして粉体塗料を製造した。この物の物性を表1に示す。
Reference example 1
A powder coating material was produced in the same manner as in Example 1 except that the amount of fused silica was changed to 15 parts by mass and the amount of crystalline silica was changed to 65 parts by mass. The physical properties of this product are shown in Table 1.

参考例2
溶融シリカの配合量を65質量部、結晶性シリカの配合量を15質量部に変更した以外は全て実施例1と同様にして粉体塗料を製造した。この物の物性を表1に示す。
Reference example 2
A powder coating material was produced in the same manner as in Example 1 except that the amount of fused silica was changed to 65 parts by mass and the amount of crystalline silica was changed to 15 parts by mass. The physical properties of this product are shown in Table 1.

比較例1
実施例1において、結晶性シリカを添加せず、溶融シリカを80質量部配合した以外は全て実施例1と同様にして粉体塗料を製造した。この物の物性を表1に示す。
Comparative Example 1
In Example 1, a powder coating material was produced in the same manner as in Example 1 except that no crystalline silica was added and 80 parts by mass of fused silica was blended. The physical properties of this product are shown in Table 1.

比較例2
粉砕条件をディスク回転数3500rpm、セパレータ回転数2200rpmに変更した以外は全て実施例1と同様にして粉体塗料を製造した。この物の物性を表1に示す。
Comparative Example 2
A powder coating material was produced in the same manner as in Example 1 except that the pulverization conditions were changed to a disk rotation speed of 3500 rpm and a separator rotation speed of 2200 rpm. The physical properties of this product are shown in Table 1.

比較例3
粉砕条件をディスク回転数4500rpm、セパレータ回転数1800rpmに変更した以外は全て実施例1と同様にして粉体塗料を製造した。この物の物性を表1に示す。
Comparative Example 3
A powder coating material was produced in the same manner as in Example 1 except that the pulverization conditions were changed to a disk rotation speed of 4500 rpm and a separator rotation speed of 1800 rpm. The physical properties of this product are shown in Table 1.

比較例4
粉砕条件をディスク回転数4000rpm、セパレータ回転数1500rpmに変更した以外は全て実施例1と同様にして粉体塗料を製造した。この物の物性を表1に示す。
Comparative Example 4
A powder coating material was produced in the same manner as in Example 1 except that the pulverization conditions were changed to a disk rotation speed of 4000 rpm and a separator rotation speed of 1500 rpm. The physical properties of this product are shown in Table 1.

Figure 0005317400
Figure 0005317400


表1から、平均粒子径が30μmを越える場合には、硬化塗膜が80μmと厚くなり薄膜化を図ることができないことがわかる。平均粒子径が10μmより小さい場合には、流動化しないため、被塗物に付着しないことがわかる。5μm以下の粒子が6体積%超含有している場合には粉体の流動性が悪くなることがわかる。水平流れ率が5%超であるとタレが生じていることがわかる。水平流れ率が1%未満であると光沢が低下することがわかる。
これらの結果から、平均粒子径を10〜30μmとし、5μm以下の粒子を3.0〜6.0体積%の所定量含んでいる場合に薄膜化と平滑性の向上を図りうることが可能であることが理解される。これにより、均一の膜厚が得られ安定した絶縁性を得ることが可能となる。
From Table 1, it can be seen that when the average particle diameter exceeds 30 μm, the cured coating film becomes as thick as 80 μm and cannot be thinned. It can be seen that when the average particle size is smaller than 10 μm, it does not fluidize and therefore does not adhere to the object to be coated. It can be seen that the flowability of the powder deteriorates when particles of 5 μm or less are contained in an amount exceeding 6% by volume. It can be seen that sagging occurs when the horizontal flow rate exceeds 5%. It can be seen that the gloss is lowered when the horizontal flow rate is less than 1%.
From these results, when the average particle diameter is 10 to 30 μm and a predetermined amount of particles of 5 μm or less is included in an amount of 3.0 to 6.0% by volume, it is possible to improve the film thickness and smoothness. It is understood that there is. As a result, a uniform film thickness can be obtained and stable insulation can be obtained.

本発明の粉体塗料は、平均粒子径と小粒子径の粒子の含有量を所定の範囲内にすることにより、塗膜の薄膜化と平滑性を向上させることが可能となった。このため、情報家電等に搭載される各種精密機器部品の小型化に対応が可能となり、得られた硬化塗膜は絶縁性の向上に寄与し得るものである。尚、本発明に適用できる利用分野として、抵抗ネットワーク、集合集積回路、インダクタコイルマイクロモーター、各種コンデンサー、自動車用の電装部品等が挙げられる。


The powder coating material of the present invention can improve the film thickness and smoothness of the coating film by setting the content of particles having an average particle size and a small particle size within a predetermined range. For this reason, it becomes possible to respond to miniaturization of various precision equipment parts mounted on information home appliances, and the obtained cured coating film can contribute to improvement of insulation. The application fields applicable to the present invention include resistance networks, collective integrated circuits, inductor coil micromotors, various capacitors, automotive electrical components, and the like.


Claims (4)

エポキシ樹脂、硬化剤及び充填剤を含有する粉体塗料であって、前記充填剤は、溶融シリカ及び結晶性シリカを含有するものであり、前記粉体塗料は、平均粒子径が10〜30μmであり、5μm以下の粒子を3.0〜6.0体積%含み、かつ、粉体塗料1.0gを内径16mmφの錠剤整形用金型に入れ、90MPaの圧力を60秒間加圧して成型した錠剤の直径を(A)、該錠剤をスライドグラスにのせ、140℃の熱風乾燥炉に10分間放置後の錠剤の直径を(B)としたとき、下記式(I)より求められる水平流れ率が、1.0〜5.0%であることを特徴とする粉体塗料。
Figure 0005317400
A powder paint containing an epoxy resin, a curing agent and a filler , wherein the filler contains fused silica and crystalline silica, and the powder paint has an average particle size of 10 to 30 μm. There, 5 [mu] m seen below contains particles 3.0-6.0 vol%, and placed in a powder coating 1.0g tablet shaping mold having an inner diameter of diameter of 16 mm, it was molded by applying pressure to pressure 60 seconds 90MPa When the tablet diameter is (A), the tablet is placed on a slide glass and left in a hot air drying oven at 140 ° C. for 10 minutes and the tablet diameter is (B), the horizontal flow rate obtained from the following formula (I) Is a powder coating material characterized by being 1.0 to 5.0% .
Figure 0005317400
前記充填剤を、エポキシ樹脂100重量部当たり20〜150重量部含むことを特徴とする請求項1に記載の粉体塗料。 The powder coating material according to claim 1, wherein the filler is contained in an amount of 20 to 150 parts by weight per 100 parts by weight of the epoxy resin . 電子部品の表面に絶縁層を形成する絶縁方法であって、該絶縁層は、請求項1または2に記載の粉体塗料を金属製被塗物に静電塗装した後に熱硬化することにより塗膜を形成することを特徴とする絶縁方法。   An insulating method for forming an insulating layer on a surface of an electronic component, the insulating layer being applied by electrostatically coating the powder coating material according to claim 1 or 2 on a metal object and then thermally curing the coating material. An insulating method comprising forming a film. 電子部品の表面に絶縁層を形成した絶縁層付き金属製被塗物であって、該絶縁層は、請求項3に記載の方法により形成された塗膜であることを特徴とする絶縁層付き金属製被塗物。   A metal article with an insulating layer in which an insulating layer is formed on the surface of an electronic component, wherein the insulating layer is a coating film formed by the method according to claim 3. Metal substrate.
JP2006238369A 2006-09-01 2006-09-01 Epoxy resin powder coating Active JP5317400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238369A JP5317400B2 (en) 2006-09-01 2006-09-01 Epoxy resin powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238369A JP5317400B2 (en) 2006-09-01 2006-09-01 Epoxy resin powder coating

Publications (2)

Publication Number Publication Date
JP2008056865A JP2008056865A (en) 2008-03-13
JP5317400B2 true JP5317400B2 (en) 2013-10-16

Family

ID=39239988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238369A Active JP5317400B2 (en) 2006-09-01 2006-09-01 Epoxy resin powder coating

Country Status (1)

Country Link
JP (1) JP5317400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915059B2 (en) * 2011-09-28 2016-05-11 住友ベークライト株式会社 Method for producing article coated with epoxy resin powder coating composition
US20160024366A1 (en) * 2013-03-02 2016-01-28 Pelnox, Ltd. Heat-dissapating powder coating composition, heat-dissipating coating film, and coated article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322570B2 (en) * 1996-07-03 2002-09-09 大日本塗料株式会社 Powder coating composition
JPH10130542A (en) * 1996-11-01 1998-05-19 Nippon Kayaku Co Ltd Epoxy resin powdered paint
JP3825128B2 (en) * 1997-03-27 2006-09-20 ソマール株式会社 Epoxy resin composition for powder coating
JP2000226538A (en) * 1999-02-03 2000-08-15 Sumitomo Durez Co Ltd Incombustible epoxy resin powder coating material
JP2003055609A (en) * 2001-08-14 2003-02-26 Canon Ntc Inc Powder coating and manufacturing method of powder coating
JP2006096904A (en) * 2004-09-30 2006-04-13 Sumitomo Bakelite Co Ltd Epoxy resin powder coating

Also Published As

Publication number Publication date
JP2008056865A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5354723B2 (en) Epoxy resin powder coating for electronic parts and electronic parts using the same
WO2019074041A1 (en) Powder coating material composition and method for forming coating film
US11512221B2 (en) Powder paint composition
JP5317400B2 (en) Epoxy resin powder coating
JP2013203764A (en) Epoxy resin powder coating material and article coated by using the same
JP2018048314A (en) Epoxy resin powder coating material
JP2008248100A (en) Epoxy resin powder coating composition
US20190023908A1 (en) Powder coatings and compositions thereof and methods for coating an article
TWI798252B (en) Composition for powder coating and coated article
JP2020102556A (en) Laminate, electronic component, and inverter
JP2020169314A (en) Epoxy resin powder coating
JP2006273900A (en) Epoxy resin powder coating
JP2000001632A (en) Composition for powder coating
JP2010132794A (en) Epoxy resin powder coating
JP5915059B2 (en) Method for producing article coated with epoxy resin powder coating composition
JP5151365B2 (en) Articles painted with epoxy resin powder paint
JP2007291356A (en) Epoxy resin powder coating
CN112760012B (en) Metal surface coating composition, preparation method, spraying method and application thereof
JPH11323202A (en) Epoxy resin-based powder coating composition
EP3519507B1 (en) Coating
JPS6189271A (en) Epoxy resin composition for powder coating
JPH09279060A (en) Epoxy resin powder coating material
JP2005263939A (en) Epoxy resin powder coating
JPH11323200A (en) Composition for powder coating material
JPH01304150A (en) Metal powder-containing epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5317400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250