JPH08251848A - Rotor of permanent magnet type synchronous rotary machine - Google Patents

Rotor of permanent magnet type synchronous rotary machine

Info

Publication number
JPH08251848A
JPH08251848A JP7081696A JP8169695A JPH08251848A JP H08251848 A JPH08251848 A JP H08251848A JP 7081696 A JP7081696 A JP 7081696A JP 8169695 A JP8169695 A JP 8169695A JP H08251848 A JPH08251848 A JP H08251848A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
type synchronous
magnetic flux
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7081696A
Other languages
Japanese (ja)
Inventor
Tadahiro Miyamoto
恭祐 宮本
Koji Ishikawa
浩二 石川
Kensho Iwabuchi
憲昭 岩渕
Koichi Hirano
孝一 平野
Toshihiro Sawa
沢  俊裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP7081696A priority Critical patent/JPH08251848A/en
Publication of JPH08251848A publication Critical patent/JPH08251848A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE: To realize a rotor suitable for a permanent magnet type synchronous rotary machine which maintains in a wider range a constant output characteristic in a high speed range for use in an object such as electric vehicle, assures improvement of starting characteristic and prevents disturbance thereof. CONSTITUTION: In a rotor of a permanent magnet type synchronous rotary machine where a rotor core 1, permanent magnet inserting holes 2 provided in the equal pitch in the axial direction in the external circumference side of the rotor core 1 and a drain hole 3 for preventing leakage magnetic flux provided between the permanent magnet inserting holes 2, 2 are provided and the permanent magnets in different adjacent poles are inserted into the permanent magnet inserting holes 2, a rotor of the permanent magnet type synchronous rotary machine is constituted by providing a means for changing distribution of magnetic flux in the axial direction. Moreover, a secondary conductor is buried in the drain hole 3 and both ends of such conductor are connected with a short-circuit ring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、ベクトル制御を行うこ
とで、低速領域で定トルク特性を、高速領域で定出力特
性をもつ永久磁石形同期回転電機のロータに関し、特
に、電気自動車、主軸駆動等、高速領域で定出力特性を
広域に維持できる永久磁石形同期回転電機に適したロー
タに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor of a permanent magnet type synchronous rotating electric machine having a constant torque characteristic in a low speed region and a constant output characteristic in a high speed region by performing vector control, and particularly to an electric vehicle and a main shaft. The present invention relates to a rotor suitable for a permanent magnet type synchronous rotating electric machine capable of maintaining a constant output characteristic in a wide range in a high speed region such as driving.

【001】[0101]

【従来の技術】構成上参考となる、第1の従来技術とし
て、永久磁石発電機の回転子として、回転軸の外周に円
周方向に取付けられた永久磁石と、この永久磁石上に取
付けられた磁極を構成する複数の磁性板と、この磁性板
と交互に円周方向に接合されて円筒体を形成し、かつ上
記回転軸の外周に固定された複数の非磁性部材を備えた
ものがある(例えば、特開平4−138042号公
報)。第2の従来技術として、自己始動形永久磁石式同
期電動機として、誘導電動機と同様のかご形2次導体を
有する回転子鉄心の内部に永久磁石を埋め込んだ構成の
ものがある(例えば、特公昭63−20105号公
報)。性能上参考となる、第3の従来技術として、強磁
性体のポールシューと突極よりなる第1のパーツと、第
1のパーツと相似形の非磁性よりなる平板状の部材の第
2のパーツと、ポールシューの空隙側に段部を設け、こ
の段部にカマボコ形の永久磁石を貼付した第3のパーツ
と、直流励磁する励磁巻線よりなる第4のパーツを、軸
方向に、第1のパーツの左右に第2のパーツを強固に固
定し、その外側に第3のパーツを強固に固定し、その側
面に第4のパーツを巻回し、永久磁石形同期電動機の界
磁を構成したものがある(例えば、特開平5−2367
14号公報)。
2. Description of the Related Art As a first prior art, which is a structural reference, a permanent magnet is mounted on the permanent magnet as a rotor of a permanent magnet generator, the permanent magnet being mounted circumferentially on the outer periphery of a rotating shaft. And a plurality of magnetic plates forming the magnetic poles, and a plurality of non-magnetic members fixed to the outer periphery of the rotary shaft to form a cylindrical body by being alternately joined to the magnetic plates in the circumferential direction. (For example, Japanese Patent Laid-Open No. 4-138042). As a second conventional technique, there is a self-starting permanent magnet synchronous motor having a structure in which a permanent magnet is embedded inside a rotor core having a squirrel cage secondary conductor similar to that of an induction motor (for example, Japanese Patent Publication No. 63-20105). As a third conventional technique, which serves as a reference in terms of performance, a second part of a non-magnetic flat member similar to the first part, which is a first part including a ferromagnetic pole shoe and a salient pole, is provided. A part, a step part is provided on the gap side of the pole shoe, and a third part in which a semi-cylindrical permanent magnet is affixed to this step part, and a fourth part consisting of an excitation winding for direct current excitation are axially arranged. The second part is firmly fixed to the left and right of the first part, the third part is firmly fixed to the outside of the first part, and the fourth part is wound around the side surface of the first part to secure the field of the permanent magnet type synchronous motor. Some are configured (for example, Japanese Patent Laid-Open No. 5-2367).
14 publication).

【002】[0092]

【発明が解決しようとする課題】ところが、第1の従来
技術に電流の位相制御を適用した場合、モータ軸方向長
さと同一長の永久磁石が挿入されているため、固定界磁
磁束が大きくなり、結果として永久磁石界磁による誘起
電圧定数が大きくなり、通常の容量のコントローラで
は、かなり低い回転数でコントローラ端子電圧が許容値
を越え、基底回転数と最高回転数の比が狭くなるとい
う、性能上の欠点がある。さらに、コア部の磁気回路の
飽和により、リラクタンストルクの増加が困難となり、
基底回転数領域の出力を大きくできない。第2従来技術
は始動特性の向上と乱調防止に有効であるが、製造し難
い。また、第3の従来技術では、性能上は良いが、ハイ
ブリッド形の同期電動機であるため、界磁極が突極であ
り、高速域で風損と騒音が発生し、また、界磁巻線への
給電をスリップリングを介し行う必要があるため、構造
が複雑で製作し難いという問題がある。そこで、本発明
は、高速領域において、定出力特性を広範囲に維持出
来、風損・騒音の少ない、製作し易い、始動特性の向上
と乱調防止に有効な同期回転電機のロータを実現するこ
とを目的とする。
However, when the current phase control is applied to the first prior art, the fixed field magnetic flux becomes large because the permanent magnet having the same length as the motor axial length is inserted. As a result, the induced voltage constant due to the permanent magnet field becomes large, and in a controller of normal capacity, the controller terminal voltage exceeds the allowable value at a considerably low rotation speed, and the ratio of the base rotation speed to the maximum rotation speed becomes narrow, There are performance drawbacks. Furthermore, the saturation of the magnetic circuit in the core makes it difficult to increase the reluctance torque,
The output in the base rotation speed region cannot be increased. The second conventional technique is effective in improving the starting characteristics and preventing the disturbance, but is difficult to manufacture. Further, in the third conventional technique, although the performance is good, since it is a hybrid type synchronous motor, the field poles are salient poles, and wind loss and noise occur in the high speed range. Since it is necessary to supply the power via the slip ring, there is a problem that the structure is complicated and it is difficult to manufacture. Therefore, the present invention is to realize a rotor of a synchronous rotating electric machine that can maintain constant output characteristics in a wide range in a high speed region, has little wind loss and noise, is easy to manufacture, and is effective in improving starting characteristics and preventing disturbance. To aim.

【003】[0093]

【課題を解決するための手段】上記問題を解決するた
め、磁性体よりなる円板状の薄板を軸方向に積層したロ
ータコア1と、このロータコア1の外周側・軸方向に等
極ピッチで設けた永久磁石挿入穴2と、この永久磁石挿
入穴2、2間に設けた漏洩磁束防止用の抜き穴3と、前
記永久磁石挿入穴2に挿入する隣同志の極性が交互に異
なる永久磁石よりなる永久磁石形同期回転電機のロータ
において、前記永久磁石の作る軸方向の磁束分布を変化
させる手段を設け永久磁石形同期回転電機のロータを構
成する。前記永久磁石の作る軸方向の磁束分布を変化さ
せる手段は、下記の2通りがある。請求項2に対応する
手段として、前記永久磁石を軸方向に複数分割し、分割
した永久磁石4a、4aおのおのの長さの和が前記永久
磁石挿入穴2の軸方向長さより短くし、前記永久磁石挿
入穴2に前記分割した永久磁石4a、4aを挿入したと
き磁気的空間部21が生じることによる。請求項3に対
応する手段として、前記永久磁石を軸方向に複数分割
し、分割した永久磁石4a、4bおのおののエネルギー
積を異ならせることによる。請求項4に対応する実施例
として、前記抜き穴3を軸中心に向かって深くし、この
抜き穴3aの底部と隣の抜き穴3aの途中を結ぶ直線上
に、前記永久磁石挿入穴2をロータの回転方向側に端部
が下がるよう傾斜を持たせて設ける。請求項5に対応す
る実施例として、前記抜き穴2に2次導体5を埋め込
み、その両端を短絡環6で連絡する。請求項6に対応す
る実施例として、前記ロータコア1の外径側の前記漏洩
磁束防止用の抜き穴3、3間に、等円周ピッチ上にスロ
ット8を設け、誘導電動機の2次導体と同様にダイカス
ト等により、2次導体5を埋め込み、その両端を短絡環
6で連絡する。
In order to solve the above problems, a rotor core 1 is formed by laminating disk-shaped thin plates made of a magnetic material in the axial direction, and the rotor core 1 is provided with an equal pole pitch in the outer peripheral side and the axial direction. A permanent magnet insertion hole 2, a leakage magnetic flux preventing hole 3 provided between the permanent magnet insertion holes 2 and 2, and a permanent magnet having different polarities alternately inserted into the permanent magnet insertion hole 2 In the rotor of the permanent magnet type synchronous rotating electric machine, the rotor of the permanent magnet type synchronous rotating electric machine is provided with means for changing the magnetic flux distribution in the axial direction formed by the permanent magnet. There are the following two means for changing the magnetic flux distribution in the axial direction created by the permanent magnet. As means corresponding to claim 2, the permanent magnet is divided into a plurality of pieces in the axial direction, and the sum of the lengths of the divided permanent magnets 4a, 4a is made shorter than the length of the permanent magnet insertion hole 2 in the axial direction. This is because a magnetic space 21 is generated when the divided permanent magnets 4a and 4a are inserted into the magnet insertion hole 2. As a means corresponding to claim 3, the permanent magnet is divided into a plurality of pieces in the axial direction, and the divided permanent magnets 4a and 4b have different energy products. As an embodiment corresponding to claim 4, the hole 3 is deepened toward the axial center, and the permanent magnet insertion hole 2 is formed on a straight line connecting the bottom of the hole 3a and the middle of the adjacent hole 3a. The rotor is provided with an inclination so that its end portion is lowered toward the rotation direction side. As an embodiment corresponding to claim 5, a secondary conductor 5 is embedded in the hole 2 and both ends thereof are connected by a short-circuit ring 6. As an embodiment corresponding to claim 6, slots 8 are provided on an outer circumferential side of the rotor core 1 between the leakage magnetic flux preventing holes 3 and 3 on an equal circumferential pitch to form a secondary conductor of an induction motor. Similarly, the secondary conductor 5 is embedded by die casting or the like, and both ends thereof are connected by the short-circuit ring 6.

【004】[004]

【作用】上記手段により、磁気的空間部もしくはエネル
ギ積の低い永久磁石の有る部分での磁束密度が下がり、
誘起電圧定数が下がり、より高速域まで定出力特性を維
持できる。さらに、その部分の磁界が小さくなるので、
リラクタンストルクを増加させる。また、2次導体を埋
め込み、その両端を短絡環で連絡することにより、ダン
パ効果が生じる。
By the above means, the magnetic flux density in the magnetic space portion or the portion with the permanent magnet having a low energy product is lowered,
The induced voltage constant is reduced, and constant output characteristics can be maintained in a higher speed range. Furthermore, since the magnetic field in that part becomes smaller,
Increases reluctance torque. Further, a damper effect is produced by embedding the secondary conductor and connecting both ends thereof with a short-circuit ring.

【005】[0095]

【実施例】以下に、本発明の実施例を図1(a)および
図1(b)により説明する。円板状の磁性体薄板を積層
したロータコア1には、モータ極数と同数に等極ピッチ
で分割された磁極中心軸Aに直交させて、矩形の永久磁
石挿入穴2を軸方向に貫通させて設けてある。永久磁石
挿入穴2間には、外側に開いた扇形の漏れ磁束防止用の
抜き穴3を設けてある。永久磁石挿入穴2の左右から、
断面形状が永久磁石挿入穴2と相似で、長さLaの和
(2La)が永久磁石挿入穴2の長さより短い永久磁石
4a、4aを隣同志の極性を交互に入替えて、端面をロ
ータコア1の端面に合わせるようにし、挿入固定する。
この結果、永久磁石挿入穴2の中央部には長さLbの磁
気的空間部21が形成させることになり、これに対向す
る電機子コア(図示せず)のティース部およびヨーク部
の磁束密度は、無負荷の時、ほとんど0になる。なお、
磁気的空間部21に、非磁性体を埋設したり、樹脂をモ
ールドしたりして永久磁石4a、4aの固定を強固にし
てもよい。説明上、実施例では、永久磁石を2分割した
が、長さの和が永久磁石挿入穴2の長さより短くなるよ
うに、複数に分割してもよい。永久磁石の作る軸方向の
磁束分布は、図1(c)に示すように、ロータコア1の
両端からLaの範囲ではd軸方向の磁束φd、中央部の
Lbの範囲では漏れ磁束φlとなる。
Embodiments of the present invention will be described below with reference to FIGS. 1 (a) and 1 (b). In the rotor core 1 in which disc-shaped magnetic thin plates are laminated, the rectangular permanent magnet insertion hole 2 is axially penetrated so as to be orthogonal to the magnetic pole center axis A divided into the same number as the motor poles at an equal pole pitch. Is provided. Between the permanent magnet insertion holes 2, a fan-shaped hole 3 for preventing leakage magnetic flux is opened to the outside. From the left and right of the permanent magnet insertion hole 2,
The cross-sectional shape is similar to the permanent magnet insertion hole 2, and the sum (2La) of the lengths La is shorter than the length of the permanent magnet insertion hole 2, the permanent magnets 4a and 4a are alternately replaced with the polarities of adjacent ones, and the end face is the rotor core 1 Align it with the end face of and insert and fix.
As a result, a magnetic space portion 21 having a length Lb is formed in the central portion of the permanent magnet insertion hole 2, and the magnetic flux densities of the teeth portion and the yoke portion of the armature core (not shown) facing this are formed. Becomes almost 0 when there is no load. In addition,
A non-magnetic material may be embedded in the magnetic space portion 21 or resin may be molded to firmly fix the permanent magnets 4a and 4a. For the sake of explanation, the permanent magnet is divided into two in the embodiment, but may be divided into a plurality of pieces such that the sum of the lengths is shorter than the length of the permanent magnet insertion hole 2. As shown in FIG. 1C, the axial magnetic flux distribution created by the permanent magnets is a magnetic flux φd in the d-axis direction in the range La from both ends of the rotor core 1 and a leakage flux φl in the range Lb in the central portion.

【006】図2(a)は、本発明の第2の実施例であ
る。実施例の永久磁石4a、4aをロータコア1の端面
より中央部に向けて埋設したもので、前記磁気的空間部
21をおのおのの長さがLb/3としてある。この場
合、磁気的空間部21に、非磁性体を埋設したり、樹脂
をモールドした場合は、両端部をアンバランス・ウエイ
トの調整用に使用するとよい。永久磁石の作る軸方向の
磁束分布は、図2(b)に示すように、ロータコア1の
両端からLb/3の範囲では漏れ磁束φl、その内側の
Laの範囲ではd軸方向の磁束φd、中央部のLb/3
の範囲では漏れ磁束φlとなる。図3(a)および
(b)は、本発明の第3の実施例である。実施例及び第
2の実施例の空間部21に相当する位置に、エネルギ積
の低い永久磁石を挿入し、この部分に対向する電機子コ
ア(図示せず)のティース部およびヨーク部の磁束密度
を、他の部分より低くしてある。ロータコア1は3分割
してあり、実施例における、長さがLaの1a部には、
穴の高さが低い永久磁石挿入穴2aを、長さがLbの1
b部には、穴の高さが高い永久磁石挿入穴2bの2種類
の永久磁石挿入穴を設けてある。永久磁石挿入穴2aに
は、エネルギ積が高い永久磁石4a、4a(例えば、希
土類磁石)を挿入し、永久磁石挿入穴2bには、エネル
ギ積が低い永久磁石4b(例えば、フェライト系等)を
挿入する。高価なエネルギ積の高い永久磁石(希土類磁
石)の投入量を少なくしてある。永久磁石の作る軸方向
の磁束分布は、図3(c)に示すように、ロータコア1
の両端からLaの範囲ではエネルギ積が高い永久磁石4
aの作るd軸方向の磁束φdh、中央部のLbの範囲で
はエネルギ積が低い永久磁石4bの作るd軸方向の磁束
φdlとなる。図4(a)は、本発明の第4の実施例で
ある。第3の実施例におけるエネルギ積が高い永久磁石
4aとエネルギ積が低い永久磁石4bの配置を逆にして
ある。ロータコア1は、第1の実施例における、1a部
の長さをLb/2とし、穴の高さが高い永久磁石挿入穴
2cを、長さがLbの1b部の長さを2Laとし、穴の
高さが低い永久磁石挿入穴2dの2種類の永久磁石挿入
穴を設けてある。この場合、第3の実施例におけるエネ
ルギ積が高い永久磁石4a、4aを長さが2Laの1本
物の永久磁石4dに置き換え、エネルギ積が低い永久磁
石4bをLb/2の長さの永久磁石4c、4cに分割し
てある 永久磁石の作る軸方向の磁束分布は、図4(b)に示す
ように、ロータコア1の両端からLb/2の範囲ではエ
ネルギ積が低い永久磁石4cの作るd軸方向の磁束φd
l、中央部の2Lbの範囲ではエネルギ積が他界永久磁
石4dの作るd軸方向の磁束φdhとなる。第3および
第4の実施例において、エネルギ積が高い永久磁石4a
は最大エネルギ積が30MGoeのNd−Fe−B系希土類
磁石、エネルギ積が低い永久磁石4bは4MGOeのフェラ
イト磁石を用いた場合、永久磁石挿入穴2aと永久磁石
挿入穴2bそれぞれの高さA、Bの比B/Aは約3、長
さの比La/Lbは1としてある。この場合、無負荷
時、永久磁石挿入穴2bに対向する電機子コア(図示せ
ず)のティース部や、ヨーク部の磁束密度は、永久磁石
挿入穴2aに対向する電機子コアのティース部や、ヨー
ク部の磁束密度の約1/3になる。
FIG. 2A shows the second embodiment of the present invention. The permanent magnets 4a, 4a of the embodiment are buried from the end face of the rotor core 1 toward the central portion, and the magnetic space portions 21 each have a length of Lb / 3. In this case, when a non-magnetic material is embedded in the magnetic space portion 21 or a resin is molded, both ends may be used for adjusting the imbalance weight. The axial magnetic flux distribution created by the permanent magnets is, as shown in FIG. 2B, a leakage magnetic flux φl in the range of Lb / 3 from both ends of the rotor core 1, a magnetic flux φd in the d-axis direction in the range of La inside thereof, Lb / 3 at the center
In the range of, the leakage magnetic flux is φl. 3A and 3B show a third embodiment of the present invention. A permanent magnet having a low energy product is inserted at a position corresponding to the space portion 21 of the embodiment and the second embodiment, and magnetic flux densities of a tooth portion and a yoke portion of an armature core (not shown) facing this portion. Is lower than other parts. The rotor core 1 is divided into three parts, and in the embodiment, the 1a portion having a length La is
Insert the permanent magnet insertion hole 2a, which has a low hole height, into the length Lb of 1
Two types of permanent magnet insertion holes 2b having a high hole height are provided in the b portion. Permanent magnets 4a and 4a having a high energy product (for example, rare earth magnets) are inserted in the permanent magnet insertion hole 2a, and permanent magnets 4b having a low energy product (for example, a ferrite system) are inserted in the permanent magnet insertion hole 2b. insert. The amount of expensive permanent magnets (rare earth magnets) having a high energy product is reduced. As shown in FIG. 3C, the axial magnetic flux distribution created by the permanent magnets is as shown in FIG.
Of the permanent magnet 4 having a high energy product in the range of La from both ends of
The magnetic flux φdh produced by a is in the d-axis direction, and the magnetic flux φdl produced by the permanent magnet 4b has a low energy product in the range of Lb in the central portion. FIG. 4A shows a fourth embodiment of the present invention. The arrangement of the permanent magnet 4a having a high energy product and the permanent magnet 4b having a low energy product in the third embodiment is reversed. In the rotor core 1, the length of the 1a portion in the first embodiment is Lb / 2, the permanent magnet insertion hole 2c having a high hole height is the 2b portion of the 1b portion having the Lb length, and 2 types of permanent magnet insertion holes 2d having a low height are provided. In this case, the permanent magnets 4a and 4a having a high energy product in the third embodiment are replaced with a single permanent magnet 4d having a length of 2La, and the permanent magnet 4b having a low energy product is a permanent magnet having a length of Lb / 2. As shown in FIG. 4B, the axial magnetic flux distribution produced by the permanent magnets 4c and 4c is d produced by the permanent magnet 4c having a low energy product in the range of Lb / 2 from both ends of the rotor core 1 as shown in FIG. Axial magnetic flux φd
In the range of 1 and 2 Lb at the central portion, the energy product is the magnetic flux φdh in the d-axis direction created by the other-field permanent magnet 4d. In the third and fourth embodiments, the permanent magnet 4a having a high energy product
Is a Nd-Fe-B rare earth magnet having a maximum energy product of 30 MGoe, and a permanent magnet 4b having a low energy product is a ferrite magnet of 4 MGOe. The ratio B / A of B is about 3, and the length ratio La / Lb is 1. In this case, when no load is applied, the teeth of the armature core (not shown) facing the permanent magnet insertion hole 2b and the magnetic flux density of the yoke are different from those of the teeth of the armature core facing the permanent magnet insertion hole 2a. , About 1/3 of the magnetic flux density of the yoke part.

【007】図5は、第5の実施例を示す正面図である。
この例は、実施例の抜き穴3を、軸心に向かって深くし
た、長穴3aとしてある。さらに、長穴3aの底部の点
3cと隣の長穴3aの途中の点3dを結ぶ直線B上に、
磁石挿入穴2を、磁極中心軸Aの直交方向に対し、ロー
タの回転方向側の端部が下がるように、同一方向に傾斜
を持たせて設けてある。この場合は、リラクタンスに方
向性が生じ、回転方向が決まっている場合は、起動・変
速が楽になる。
FIG. 5 is a front view showing the fifth embodiment.
In this example, the hole 3 of the embodiment is a long hole 3a that is deepened toward the axis. Furthermore, on a straight line B connecting a point 3c at the bottom of the elongated hole 3a and a point 3d in the middle of the adjacent elongated hole 3a,
The magnet insertion hole 2 is provided so as to be inclined in the same direction with respect to the direction orthogonal to the magnetic pole central axis A so that the end portion on the rotation direction side of the rotor is lowered. In this case, the reluctance becomes directional, and if the rotation direction is fixed, starting and gear shifting will be easier.

【008】図6は本発明の第6の実施例である。図6
(a)に示すように、実施例における抜き穴3に同一形
状のバー状の2次導体5を設け、その両端に、永久磁石
挿入穴2a部を切り欠いたリング状の短絡環6を設け、
図6(b)に示すよう、2次導体5と短絡環6をダイカ
ストにより一体形成する。短絡環6の切り欠き部から、
永久磁石4a、4aもしくは4c、4cを永久磁石挿入
穴2aに挿入後、永久磁石4a、4aもしくは4c、4
cを接着等で固定する。図7は本発明の第7の実施例で
ある。実施例における抜き穴3に同一形状のバー状の2
次導体5を設け、その両端に、2次導体5を緊密に嵌め
合う抜き穴を設けた2次導体5、5間を直線で結ぶ多角
形にした短絡環7を設け、永久磁石4a、4aもしくは
4c、4cを永久磁石挿入穴2aに挿入後、2次導体5
と短絡環7をプラズマ、TIGやMIG等で溶接する。
このように構成することにより、永久磁石が逸脱するの
を防止できる。図8は本発明の第8の実施例である。実
施例における抜き穴3間に、等ピッチ円上にスロット8
を設け、スロット8内に2次導体5を設け、その両端に
短絡環6を設け、2次導体5と短絡環6をダイカストに
より一体形成する。この場合、短絡環6の内径は永久磁
石4aの角部より大きくし、永久磁石4aを後から挿入
するとよい。
FIG. 6 shows a sixth embodiment of the present invention. Figure 6
As shown in (a), the bar-shaped secondary conductor 5 of the same shape is provided in the hole 3 in the embodiment, and the ring-shaped short-circuit ring 6 in which the permanent magnet insertion hole 2a is cut out is provided at both ends thereof. ,
As shown in FIG. 6B, the secondary conductor 5 and the short circuit ring 6 are integrally formed by die casting. From the cutout portion of the short-circuit ring 6,
After inserting the permanent magnets 4a, 4a or 4c, 4c into the permanent magnet insertion hole 2a, the permanent magnets 4a, 4a or 4c, 4
Fix c with adhesive or the like. FIG. 7 shows a seventh embodiment of the present invention. The bar-shaped 2 having the same shape is formed in the hole 3 in the embodiment.
The secondary conductor 5 is provided, and at both ends thereof, a polygonal short-circuit ring 7 is formed which connects the secondary conductor 5 with a through hole for tightly fitting the secondary conductor 5, and the polygonal short-circuit ring 7 is provided. Alternatively, after inserting 4c and 4c into the permanent magnet insertion hole 2a, the secondary conductor 5
And the short-circuit ring 7 are welded by plasma, TIG, MIG, or the like.
With this configuration, the permanent magnet can be prevented from deviating. FIG. 8 shows an eighth embodiment of the present invention. Slots 8 are formed on the same pitch circle between the holes 3 in the embodiment.
Is provided, the secondary conductor 5 is provided in the slot 8, short-circuit rings 6 are provided at both ends thereof, and the secondary conductor 5 and the short-circuit ring 6 are integrally formed by die casting. In this case, the inner diameter of the short-circuit ring 6 may be larger than the corner of the permanent magnet 4a, and the permanent magnet 4a may be inserted later.

【009】本発明の作用を、図9を用いて説明する。図
9(a)は、トルクTと電流相差角γを、(b)はトル
クTと回転数Nを表すグラフである。Tmは磁石トル
ク、Trはリラクタンストルク、Tは出力トルクであ
り、サフィックスの1は第1の従来技術の場合で、2は
本発明の第1の実施例ないし第5の実施例の場合であ
る。同一体格のモータを設計した場合、Tm2がTm1よ
り小さくなっているのは、本発明の実施例の方が永久磁
石の投入量を減らし、磁石界磁磁束を低減しているため
であり、この結果、モータの無負荷開放電圧を下げてい
る。しかし、磁気的空間部21を設けたり、エネルギ積
の低い永久磁石4bを部分的に挿入しているので、この
部分に対向する電機子コアのティースやヨーク部の無負
荷磁束密度は小さく、従って磁気抵抗が小さくなり、q
軸方向の磁束が流れやすくなるのでTr1に比べてTr2
は大きくなっている。最適電流相差角は異なるが、総和
であるT1、T2の最大値はほぼ等しくなる。しかし、図
9(b)を見てわかるように、本発明は、誘起電圧定数
が小さいため、より高速回転領域まで定出力範囲を広げ
ることができる等の効果がある。また、最大回転数時の
モータ無負荷開放電圧が低いことは、インバータへの回
生も小さくなり、コントローラの容量を低減できる。
The operation of the present invention will be described with reference to FIG. 9A is a graph showing the torque T and the current phase difference angle γ, and FIG. 9B is a graph showing the torque T and the rotation speed N. Tm is a magnet torque, Tr is a reluctance torque, and T is an output torque. The suffix 1 is the case of the first prior art and 2 is the case of the first to fifth embodiments of the present invention. . When a motor of the same size is designed, the reason why Tm2 is smaller than Tm1 is that the embodiment of the present invention reduces the amount of permanent magnets applied and the magnetic field magnetic flux. As a result, the no-load open circuit voltage of the motor is lowered. However, since the magnetic space portion 21 is provided and the permanent magnet 4b having a low energy product is partially inserted, the teeth of the armature core facing this portion and the no-load magnetic flux density of the yoke portion are small. Reluctance decreases, q
Since the magnetic flux in the axial direction is easier to flow, Tr2 compared to Tr1
Is getting bigger. Although the optimum current phase difference angles are different, the maximum values of the total sums T1 and T2 are almost equal. However, as can be seen from FIG. 9B, the present invention has an effect that the constant output range can be expanded to a higher speed rotation region because the induced voltage constant is small. In addition, the low motor no-load open-circuit voltage at the maximum rotation speed reduces the regeneration to the inverter and reduces the capacity of the controller.

【010】[0101]

【発明の効果】上記の構成により、下記の効果がある。 (1)永久磁石挿入穴の軸方向に、磁気的空間部を設け
たり、エネルギ積の低い永久磁石を挿入し軸方向の磁束
分布を変化させたので、誘起電圧定数が小さくなりq軸
方向の磁束が流れ易くなり、定出力範囲をより高速回転
領域まで広げることができる。 (2)特に、第2の実施例の場合は、高価なエネルギ積
の高い永久磁石の使用量を少なくできる。 (3)第6ないし第8の実施例の場合は、2次導体と短
絡環によりダンパ効果が生じるので、始動特性の向上と
乱調防止ができる。
The above-mentioned structure has the following effects. (1) A magnetic space is provided in the axial direction of the permanent magnet insertion hole, or a permanent magnet having a low energy product is inserted to change the magnetic flux distribution in the axial direction. It becomes easier for the magnetic flux to flow, and the constant output range can be expanded to the high-speed rotation region. (2) Especially, in the case of the second embodiment, the amount of expensive permanent magnets having a high energy product can be reduced. (3) In the case of the sixth to eighth embodiments, since the damper effect is produced by the secondary conductor and the short-circuit ring, it is possible to improve the starting characteristics and prevent disorder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す、(a)正面図、
(b)側断面図、(c)軸方向の磁束分布を示すグラ
フ。
FIG. 1A is a front view showing a first embodiment of the present invention,
(B) Side sectional view, (c) Graph showing magnetic flux distribution in the axial direction.

【図2】本発明の第2の実施例を示す、(a)側断面
図、(b)軸方向の磁束分布を示すグラフ。
FIG. 2A is a side sectional view showing the second embodiment of the present invention, and FIG. 2B is a graph showing the magnetic flux distribution in the axial direction.

【図3】本発明の第3の実施例を示す、(a)正面図
(部分断面図を含む)、(b)側断面図、(c)軸方向
の磁束分布を示すグラフ。
FIG. 3 is a front view (including a partial cross-sectional view), a side cross-sectional view (b), and a graph showing magnetic flux distribution in the axial direction (c), showing a third embodiment of the present invention.

【図4】本発明の第4の実施例を示す、(a)側断面
図、(b)軸方向の磁束分布を示すグラフ。
FIG. 4A is a side sectional view showing the fourth embodiment of the present invention, and FIG. 4B is a graph showing the magnetic flux distribution in the axial direction.

【図5】本発明の第5の実施例を示す、正面図。FIG. 5 is a front view showing a fifth embodiment of the present invention.

【図6】本発明の第6の実施例を示す、(a)正面図、
(b)側断面図。
FIG. 6A is a front view showing a sixth embodiment of the present invention;
(B) Side sectional view.

【図7】本発明の第7の実施例を示す、正面図。FIG. 7 is a front view showing a seventh embodiment of the present invention.

【図8】本発明の第8の実施例を示す、一部を断面で示
した斜視図。
FIG. 8 is a perspective view, partly in section, showing an eighth embodiment of the present invention.

【図9】本発明のトルクカーブを示すグラフ。 (a)トルクと電流位相角の関係、(b)トルクと回転
数の関係
FIG. 9 is a graph showing a torque curve of the present invention. (A) Relationship between torque and current phase angle, (b) Relationship between torque and rotation speed

【符号の説明】[Explanation of symbols]

1 ロータコア 2、2a、2b、2c、2d 永久磁石挿入穴 3 抜き穴 3a 長穴 3c 底部の点 3d 途中の点 4a、4b、4c、4d 永久磁石 21 磁気的空間部 5 2次導体、6、7 短絡環、8 スロット 1 rotor core 2, 2a, 2b, 2c, 2d permanent magnet insertion hole 3 through hole 3a elongated hole 3c bottom point 3d midway point 4a, 4b, 4c, 4d permanent magnet 21 magnetic space 5 secondary conductor 5, 6, 7 short-circuit rings, 8 slots

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 孝一 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 (72)発明者 沢 俊裕 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Hirano No. 2 Kurosaki Shiroishi, Yawatanishi-ku, Kitakyushu, Fukuoka Prefecture Yasukawa Electric Co., Ltd. (72) Inventor Toshihiro Sawa No. 2 Kurosaki Shiroishi, Yawatanishi-ku, Kitakyushu, Fukuoka Yasukawa Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁性体よりなる円板状の薄板を軸方向に
積層したロータコアと、このロータコアの外周側・軸方
向に等極ピッチで設けた永久磁石挿入穴と、この永久磁
石挿入穴間に設けた漏洩磁束防止用の抜き穴と、前記永
久磁石挿入穴に挿入した隣同志の極性が交互に異なるよ
うに径方向に着磁石した永久磁石よりなる永久磁石形同
期回転電機のロータにおいて、 前記永久磁石の作る軸方向の磁束分布を変化させる手段
を備えたことを特徴とする永久磁石形同期回転電機のロ
ータ。
1. A rotor core in which disk-shaped thin plates made of a magnetic material are axially laminated, permanent magnet insertion holes provided on the outer peripheral side of the rotor core at equal pole pitches in the axial direction, and between the permanent magnet insertion holes. In the rotor of the permanent magnet type synchronous rotating electric machine, which comprises a permanent magnet magnetized in a radial direction so that the leakage magnetic flux prevention holes provided in and the polarities of adjacent members inserted in the permanent magnet insertion hole are alternately different, A rotor for a permanent magnet type synchronous rotating electric machine, comprising means for changing a magnetic flux distribution in the axial direction formed by the permanent magnet.
【請求項2】 前記永久磁石の作る軸方向の磁束分布を
変化させる手段が、前記永久磁石を軸方向に複数分割
し、分割した永久磁石のおのおのの長さの和を前記永久
磁石挿入穴の軸方向長さより短くしたものである請求項
1記載の永久磁石形同期回転電機のロータ。
2. The means for changing the magnetic flux distribution in the axial direction formed by the permanent magnet divides the permanent magnet into a plurality of pieces in the axial direction, and sums the respective lengths of the divided permanent magnets in the permanent magnet insertion hole. The rotor of a permanent magnet type synchronous rotating electric machine according to claim 1, wherein the rotor is shorter than the axial length.
【請求項3】 前記永久磁石の作る軸方向の磁束分布を
変化させる手段が、前記永久磁石を軸方向に複数分割
し、分割した永久磁石のおのおののエネルギー積を異な
らせたものである請求項1記載の永久磁石形同期回転電
機のロータ。
3. The means for changing the magnetic flux distribution in the axial direction formed by the permanent magnet is one in which the permanent magnet is divided into a plurality of pieces in the axial direction, and the energy product of each of the divided permanent magnets is different. The rotor of the permanent magnet type synchronous rotating electric machine according to 1.
【請求項4】 前記抜き穴を軸中心に向かう長穴とし、
この長穴の底部と隣の長穴の途中を結ぶ直線上に、前記
永久磁石挿入穴を設けた請求項1ないし3のいずれか1
項に記載の永久磁石形同期回転電機のロータ。
4. The hole is an elongated hole extending toward the center of the shaft,
4. The permanent magnet insertion hole is provided on a straight line that connects the bottom of the long hole and the middle of the adjacent long hole.
The rotor of a permanent magnet type synchronous rotating electric machine according to item.
【請求項5】 前記抜き穴もしくは長穴に2次導体を埋
め込み、その両端を短絡環で連絡した請求項1ないし4
のいずれか1項に記載の永久磁石形同期回転電機のロー
タ。
5. A secondary conductor is embedded in the hole or the elongated hole, and both ends thereof are connected by a short-circuit ring.
The rotor of the permanent magnet type synchronous rotating electric machine according to any one of 1.
【請求項6】 前記漏洩磁束防止用の抜き穴もしくは長
穴間の前記ロータコアの外周側に、等ピッチ円上にスロ
ットを設け、このスロットに2次導体を埋め込み、その
両端を短絡環で連絡した請求項1ないし4のいずれか1
項に記載の永久磁石形同期回転電機のロータ。
6. A slot is provided on the outer peripheral side of the rotor core between the holes or the oblong holes for preventing the leakage magnetic flux on a circle of equal pitch, a secondary conductor is embedded in the slot, and both ends thereof are connected by a short-circuit ring. Any one of claims 1 to 4
The rotor of a permanent magnet type synchronous rotating electric machine according to item.
JP7081696A 1995-01-11 1995-03-13 Rotor of permanent magnet type synchronous rotary machine Pending JPH08251848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7081696A JPH08251848A (en) 1995-01-11 1995-03-13 Rotor of permanent magnet type synchronous rotary machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1970995 1995-01-11
JP7-19709 1995-01-11
JP7081696A JPH08251848A (en) 1995-01-11 1995-03-13 Rotor of permanent magnet type synchronous rotary machine

Publications (1)

Publication Number Publication Date
JPH08251848A true JPH08251848A (en) 1996-09-27

Family

ID=26356554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7081696A Pending JPH08251848A (en) 1995-01-11 1995-03-13 Rotor of permanent magnet type synchronous rotary machine

Country Status (1)

Country Link
JP (1) JPH08251848A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0860929A2 (en) * 1997-02-21 1998-08-26 Aisin Aw Co., Ltd. Permanent magnet type synchronous motor
EP0923186A2 (en) * 1997-10-29 1999-06-16 Fujitsu General Limited Permanent magnet rotor type electric motor
JPH11196555A (en) * 1997-12-26 1999-07-21 Isuzu Ceramics Res Inst Co Ltd Motor-generator using permanent magnet
EP0930691A1 (en) * 1997-10-24 1999-07-21 Fujitsu General Limited Permanent magnet rotor type electric motor
WO2000048289A1 (en) * 1999-02-10 2000-08-17 Toshiba Carrier Corporation Brushless motor and drive controller therefor
US6359359B1 (en) 1998-12-01 2002-03-19 Toyota Jidosha Kabushiki Kaisha Permanent magnet motor
US7119470B2 (en) 1996-10-18 2006-10-10 Hitachi, Ltd. Permanent magnet electric rotating machine and electromotive vehicle using permanent magnet electric rotating machine
JP2007068356A (en) * 2005-09-01 2007-03-15 Toyota Motor Corp Method of manufacturing rotor
JP2008148482A (en) * 2006-12-12 2008-06-26 Nippon Densan Corp Motor
JP2009131026A (en) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp Electric motor and refrigerant compressor loading the same
AU2006213410B2 (en) * 2005-02-09 2009-09-17 Daikin Industries, Ltd. Core, rotor, motor, and compressor
JP2010042467A (en) * 2008-08-11 2010-02-25 Hitachi Koki Co Ltd Power tool
JP2010142006A (en) * 2008-12-11 2010-06-24 Asmo Co Ltd Motor
JP2010200510A (en) * 2009-02-26 2010-09-09 Nissan Motor Co Ltd Permanent magnet type rotary electric machine
JP2010220440A (en) * 2009-03-18 2010-09-30 Nissan Motor Co Ltd Permanent magnet type rotary electric machine
EP2276155A1 (en) * 1999-07-16 2011-01-19 Panasonic Corporation Permanent magnet synchronous motor
WO2011045467A2 (en) 2009-10-14 2011-04-21 Wärtsilä Finland Oy A rotor of an electrical machine
US8058767B2 (en) 2006-03-13 2011-11-15 Toyota Jidosha Kabushiki Kaisha Rotor and method of manufacturing the same and electric vehicle
JP2012023904A (en) * 2010-07-15 2012-02-02 Toshiba Corp Permanent magnet type rotary electrical machinery
JP2012050331A (en) * 2011-12-05 2012-03-08 Mitsubishi Electric Corp Electric motor
JP2014165971A (en) * 2013-02-22 2014-09-08 Meidensha Corp Rotor structure of permanent magnet motor
JP2015019504A (en) * 2013-07-10 2015-01-29 住友重機械工業株式会社 Permanent magnet motor and magnetization method of the same
JP2015154665A (en) * 2014-02-18 2015-08-24 株式会社ジェイテクト Rotor, and method of manufacturing the rotor
JP2017163761A (en) * 2016-03-10 2017-09-14 アイシン・エィ・ダブリュ株式会社 Method of manufacturing rotor
JP2019041448A (en) * 2017-08-15 2019-03-14 大銀微系統股▲分▼有限公司Hiwin Mikrosystem Corp. Permanent magnet motor

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8198775B2 (en) 1996-10-18 2012-06-12 Hitachi, Ltd. Permanent magnet electric rotating machine and electromotive vehicle using permanent magnet electric rotating machine
US7847462B2 (en) 1996-10-18 2010-12-07 Hitachi, Ltd. Permanent magnet electric rotating machine and electromotive vehicle using permanent magnet electric rotating machine
US7667365B2 (en) 1996-10-18 2010-02-23 Hitachi, Ltd. Permanent magnet electric rotating machine and electromotive vehicle using permanent magnet electric rotating machine
US7808144B2 (en) 1996-10-18 2010-10-05 Hitachi, Ltd. Permanent magnet electric rotating machine and electromotive vehicle using permanent magnet electric rotating machine
US7851959B2 (en) 1996-10-18 2010-12-14 Hitachi, Ltd. Permanent magnet electric rotating machine and electromotive vehicle using permanent magnet electric rotating machine
US7446448B2 (en) 1996-10-18 2008-11-04 Hitachi, Ltd. Permanent magnet electric rotating machine and electromotive vehicle using permanent magnet electric rotating machine
US7378773B2 (en) 1996-10-18 2008-05-27 Hitachi, Ltd. Permanent magnet electric rotating machine and electromotive vehicle using permanent magnet electric rotating machine
US7119470B2 (en) 1996-10-18 2006-10-10 Hitachi, Ltd. Permanent magnet electric rotating machine and electromotive vehicle using permanent magnet electric rotating machine
EP0860929A3 (en) * 1997-02-21 1998-10-21 Aisin Aw Co., Ltd. Permanent magnet type synchronous motor
EP0860929A2 (en) * 1997-02-21 1998-08-26 Aisin Aw Co., Ltd. Permanent magnet type synchronous motor
EP0930691A1 (en) * 1997-10-24 1999-07-21 Fujitsu General Limited Permanent magnet rotor type electric motor
KR100687528B1 (en) * 1997-10-24 2007-05-17 가부시키가이샤 후지쯔 제네랄 Permanent magnet rotor type electric motor
AU760209B2 (en) * 1997-10-24 2003-05-08 Fujitsu General Limited Permanent magnet rotor type electric motor
EP0923186A3 (en) * 1997-10-29 2000-08-02 Fujitsu General Limited Permanent magnet rotor type electric motor
EP0923186A2 (en) * 1997-10-29 1999-06-16 Fujitsu General Limited Permanent magnet rotor type electric motor
JPH11196555A (en) * 1997-12-26 1999-07-21 Isuzu Ceramics Res Inst Co Ltd Motor-generator using permanent magnet
US6359359B1 (en) 1998-12-01 2002-03-19 Toyota Jidosha Kabushiki Kaisha Permanent magnet motor
WO2000048289A1 (en) * 1999-02-10 2000-08-17 Toshiba Carrier Corporation Brushless motor and drive controller therefor
EP2276155A1 (en) * 1999-07-16 2011-01-19 Panasonic Corporation Permanent magnet synchronous motor
US7948137B2 (en) 2005-02-09 2011-05-24 Daikin Industries, Ltd. Core, rotor, motor and compressor
AU2006213410B2 (en) * 2005-02-09 2009-09-17 Daikin Industries, Ltd. Core, rotor, motor, and compressor
JP2007068356A (en) * 2005-09-01 2007-03-15 Toyota Motor Corp Method of manufacturing rotor
US8058767B2 (en) 2006-03-13 2011-11-15 Toyota Jidosha Kabushiki Kaisha Rotor and method of manufacturing the same and electric vehicle
JP2008148482A (en) * 2006-12-12 2008-06-26 Nippon Densan Corp Motor
JP2009131026A (en) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp Electric motor and refrigerant compressor loading the same
JP2010042467A (en) * 2008-08-11 2010-02-25 Hitachi Koki Co Ltd Power tool
JP2010142006A (en) * 2008-12-11 2010-06-24 Asmo Co Ltd Motor
JP2010200510A (en) * 2009-02-26 2010-09-09 Nissan Motor Co Ltd Permanent magnet type rotary electric machine
JP2010220440A (en) * 2009-03-18 2010-09-30 Nissan Motor Co Ltd Permanent magnet type rotary electric machine
WO2011045467A2 (en) 2009-10-14 2011-04-21 Wärtsilä Finland Oy A rotor of an electrical machine
JP2012023904A (en) * 2010-07-15 2012-02-02 Toshiba Corp Permanent magnet type rotary electrical machinery
JP2012050331A (en) * 2011-12-05 2012-03-08 Mitsubishi Electric Corp Electric motor
JP2014165971A (en) * 2013-02-22 2014-09-08 Meidensha Corp Rotor structure of permanent magnet motor
JP2015019504A (en) * 2013-07-10 2015-01-29 住友重機械工業株式会社 Permanent magnet motor and magnetization method of the same
JP2015154665A (en) * 2014-02-18 2015-08-24 株式会社ジェイテクト Rotor, and method of manufacturing the rotor
JP2017163761A (en) * 2016-03-10 2017-09-14 アイシン・エィ・ダブリュ株式会社 Method of manufacturing rotor
JP2019041448A (en) * 2017-08-15 2019-03-14 大銀微系統股▲分▼有限公司Hiwin Mikrosystem Corp. Permanent magnet motor

Similar Documents

Publication Publication Date Title
JPH08251848A (en) Rotor of permanent magnet type synchronous rotary machine
EP1014542B1 (en) Motor having a rotor with interior split-permanent-magnet
JP3816727B2 (en) Permanent magnet type reluctance type rotating electrical machine
US6472789B1 (en) Electric rotary machine with novel rotor excitation arrangement by permanent magnets
KR101911978B1 (en) Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof
CN103872821B (en) Electric rotating machine
US20060022553A1 (en) Rotating electric machine
US6972504B1 (en) Permanent magnet machine and method with reluctance poles for high strength undiffused brushless operation
JP2000156947A (en) Magnet-type motor and power generator
US20030076000A1 (en) Rotary electric machine having cylindrical rotor with alternating magnetic poles thereon
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JP4291517B2 (en) Improved permanent magnet / reluctance variable rotating electrical equipment
JP6630690B2 (en) Rotating electric machine rotor
US6437477B1 (en) Hybrid electrical machine with axial flux magnet
US5130591A (en) Shaded pole motor
US6936945B2 (en) Permanent magnet synchronous motor
KR100635368B1 (en) Rotating electric machine with permanent magnets and magnetic resistance with improved flux weakening properties
JP3582667B2 (en) Permanent magnet type synchronous rotating electric machine rotor
JP2912277B2 (en) Synchronous electric machine with permanent magnets and operated at constant power over a wide speed range
JP3772819B2 (en) Coaxial motor rotor structure
JP2013132124A (en) Core for field element
JP3172504B2 (en) Rotor of permanent magnet type reluctance type rotating electric machine
US20080265705A1 (en) Rotary Machine and Electromagnetic Machine
US10848041B2 (en) Rotating electric machine
CN113273057A (en) Interior permanent magnet machine with flux distribution gap