JPH08250857A - Manufacture of multilayer interconnection board - Google Patents

Manufacture of multilayer interconnection board

Info

Publication number
JPH08250857A
JPH08250857A JP7047398A JP4739895A JPH08250857A JP H08250857 A JPH08250857 A JP H08250857A JP 7047398 A JP7047398 A JP 7047398A JP 4739895 A JP4739895 A JP 4739895A JP H08250857 A JPH08250857 A JP H08250857A
Authority
JP
Japan
Prior art keywords
insulating film
layer
wiring
film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7047398A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamano
和彦 山野
Makoto Miyazaki
信 宮崎
Shunjiro Imagawa
俊次郎 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP7047398A priority Critical patent/JPH08250857A/en
Publication of JPH08250857A publication Critical patent/JPH08250857A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE: To reduce the uneven surface of a multilayer interconnection board by forming an insulating film made of organic polymer material having a thickness substantially equal to that of the interconnection except the interconnection part on the board. CONSTITUTION: An insulating film 2 20μm thick after curing is formed on a board 1; the surface is treated, activated by a catalyst; and an electroless plated copper film is formed on the front surface of the film 2 as a substrate conductor film 3a. Thereafter, a positive photoresist layer is formed on the film 3a, the first layer interconnection pattern is exposed with a photomask, developed to obtain the first layer interconnection pattern, and then a conductor 4a is formed on the exposed substrate film 3a. Thereafter, the part of the film 3a in which the conductor 4a of the photoresist layer is not formed is removed to obtain a first layer interconnection. Then, a flattened insulating film 10a made of an organic polymer material having the thickness substantially equal to that of the interconnection is formed except the interconnection on the board formed with the first layer interconnection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSIなどの電子部品
の実装基板として用いられる多層配線基板の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer wiring board used as a mounting board for electronic parts such as LSI.

【0002】[0002]

【従来の技術】最近、LSIなどの電子部品を実装する
回路基板において、高密度化・高速度化の要請が高まっ
ている。これを実現するために、フォトリソグラフィー
の技術を用いて回路配線を形成し、層間絶縁膜には低誘
電率の有機高分子材料を用い、バイアホールによって層
間を接続する多層配線の形成方法が実施されている。こ
のバイアホールの形成には、層間絶縁膜をドライおよび
ウエットのエッチングをする方法や、感光性の層間絶縁
膜を露光、現像する方法が採用されている。その中で、
特に微細な配線を形成しようとするときには、配線形成
にポジ型のフォトレジストを用いる場合が多い。
2. Description of the Related Art Recently, there is an increasing demand for higher density and higher speed in a circuit board on which electronic parts such as LSI are mounted. In order to achieve this, a circuit wiring is formed using photolithography technology, a low dielectric constant organic polymer material is used for the interlayer insulating film, and a method of forming a multilayer wiring is used to connect the layers by via holes. Has been done. For forming the via hole, a method of dry and wet etching the interlayer insulating film, and a method of exposing and developing the photosensitive interlayer insulating film are adopted. inside that,
In particular, when a fine wiring is to be formed, a positive photoresist is often used for forming the wiring.

【0003】以下、感光性の有機高分子材料を層間絶縁
膜に用い、ポジ型のフォトレジストを用いてセミアディ
ティブ法により配線を形成する多層配線基板の製造方法
を図面に基づき説明する。図3は多層配線基板の製造工
程を示す断面図である。
A method of manufacturing a multilayer wiring board in which a photosensitive organic polymer material is used as an interlayer insulating film and wiring is formed by a semi-additive method using a positive photoresist will be described below with reference to the drawings. FIG. 3 is a cross-sectional view showing the manufacturing process of the multilayer wiring board.

【0004】まず、図3(a)に示すように、基板上に
1層目の配線を形成する。即ち、基板1上の有機高分子
材料からなる絶縁膜2の全面に1層目の下地導体膜3a
を形成し、その上にポジ型のフォトレジスト層を形成し
た後、1層目用のポジ型のフォトマスクを用いて1層目
の配線パターンを露光する。その後、これを現像して1
層目の配線パターンを得た後、露出した下地導体膜3a
の上に電解めっき膜を析出させて1層目の導体4aを形
成する(セミアディティブ法)。その後、フォトレジス
ト層、および下地導体膜3aのうちで導体4aが形成さ
れていない部分を除去して図3(a)に示す1層目の配
線を得る。
First, as shown in FIG. 3A, a first layer wiring is formed on a substrate. That is, the first base conductor film 3a is formed on the entire surface of the insulating film 2 made of an organic polymer material on the substrate 1.
Is formed and a positive type photoresist layer is formed thereon, and then the first layer wiring pattern is exposed using a positive type photomask for the first layer. After that, develop it 1
After obtaining the wiring pattern of the second layer, the exposed underlying conductor film 3a
An electrolytic plating film is deposited on the above to form the first-layer conductor 4a (semi-additive method). Thereafter, the photoresist layer and the portion of the underlying conductor film 3a where the conductor 4a is not formed are removed to obtain the first-layer wiring shown in FIG.

【0005】次に、図3(b)に示すように、1層目の
配線を形成した基板上に、有機高分子材料からなる層間
絶縁膜を形成し、この層間絶縁膜にバイアホールを形成
する。即ち、1層目の配線を形成した基板上全面にネガ
型の感光性の有機高分子材料からなる層間絶縁膜5を形
成した後、ネガ型のフォトマスクを用いてバイアホール
のパターンを露光する。その後、これを現像して、図3
(b)に示すバイアホール6を形成する。
Next, as shown in FIG. 3B, an interlayer insulating film made of an organic polymer material is formed on the substrate on which the first layer wiring is formed, and a via hole is formed in this interlayer insulating film. To do. That is, an interlayer insulating film 5 made of a negative photosensitive organic polymer material is formed on the entire surface of the substrate on which the wiring of the first layer is formed, and then a via hole pattern is exposed using a negative photomask. . After that, this is developed, and FIG.
The via hole 6 shown in (b) is formed.

【0006】その後、図3(c)に示すように、層間絶
縁膜5およびバイアホール6に下地導体膜3bを形成し
た後、ポジ型のフォトレジスト層7を形成する。
After that, as shown in FIG. 3C, a base conductor film 3b is formed on the interlayer insulating film 5 and the via holes 6, and then a positive type photoresist layer 7 is formed.

【0007】次に、図3(d)に示すように、2層目の
配線パターンを形成する。即ち、ポジ型のフォトマスク
を用いてポジ型のフォトレジスト層7に2層目の配線パ
ターンを露光する。さらに、多重露光用のポジ型のフォ
トマスクを用いてポジ型のフォトレジスト層7のバイア
ホール6の部分をさらに露光する。そして、これを現像
して、図3(d)に示す2層目配線パターンを得る。
Next, as shown in FIG. 3D, a second layer wiring pattern is formed. That is, a positive type photomask is used to expose the positive type photoresist layer 7 with the second wiring pattern. Further, the via hole 6 of the positive photoresist layer 7 is further exposed using a positive photomask for multiple exposure. Then, this is developed to obtain the second layer wiring pattern shown in FIG.

【0008】次に、図3(e)に示すように、露出した
2層目の下地導体膜3b上に電解めっき膜を析出させて
2層目の導体4bを形成する。その後、フォトレジスト
7、および下地導体膜3bのうちで導体4bが形成され
ていない部分を除去して、図3(f)に示す2層配線基
板を得る。さらに多層化する場合は、以降同様の操作を
繰り返す。
Next, as shown in FIG. 3 (e), an electrolytic plating film is deposited on the exposed second underlying conductor film 3b to form a second conductor 4b. Then, the photoresist 7 and the portion of the underlying conductor film 3b where the conductor 4b is not formed are removed to obtain the two-layer wiring board shown in FIG. 3 (f). When the number of layers is further increased, the same operation is repeated thereafter.

【0009】[0009]

【発明が解決しようとする課題】従来の多層配線基板の
製造方法においては、2層目以降の配線を形成する際
に、1層目配線上の層間絶縁膜が配線の厚さの分だけ盛
り上がってしまう。以後、積層を繰り返すと、この起伏
の影響が引き継がれて基板表面の平滑性が益々失われて
しまう。このため、フォトリソグラフの工程で寸法精度
が悪くなるなどの不具合が生じて歩留まりが低下すると
いう問題点を有していた。
In the conventional method of manufacturing a multilayer wiring board, when forming the wirings of the second and subsequent layers, the interlayer insulating film on the wirings of the first layer rises by the thickness of the wirings. Will end up. After that, when stacking is repeated, the effect of this undulation is succeeded and the smoothness of the substrate surface is further lost. For this reason, there is a problem that a yield such as a decrease in dimensional accuracy occurs in the photolithography process and a yield is reduced.

【0010】また、電子部品を実装した多層配線基板の
動作の高速化のためには、多層配線基板の配線の厚さを
厚くすることが有効であるが、厚くするにしたがって上
述のように基板表面の平滑性が失われて歩留まりが低下
するため、厚くするにも限界があった。
In order to speed up the operation of the multilayer wiring board on which electronic parts are mounted, it is effective to increase the wiring thickness of the multilayer wiring board. Since the smoothness of the surface is lost and the yield is reduced, there is a limit to increase the thickness.

【0011】そこで、本発明の目的は、配線基板表面の
凹凸を低減させた多層配線基板の製造方法を提供するこ
とにある。
Therefore, an object of the present invention is to provide a method for manufacturing a multilayer wiring board in which the unevenness on the surface of the wiring board is reduced.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明の多層配線基板の製造方法は次の工程よりな
る。 (a)基板上に有機高分子材料からなる絶縁膜を形成し
た後、該絶縁膜上に1層目の配線を形成する工程、
(b)基板上の1層目の配線部分以外に、該配線とほぼ
等しい厚さの有機高分子材料からなる平坦化用絶縁膜を
形成する工程、(c)1層目の配線および絶縁膜を形成
した基板上に、有機高分子材料からなる層間絶縁膜を形
成し、該層間絶縁膜にバイアホールを形成する工程、
(d)層間絶縁膜およびバイアホール部分に、下地導体
膜を形成した後フォトレジスト層を形成する工程、
(e)フォトマスクを用いてフォトレジスト層を露光、
現像して配線パターンを形成する工程、(f)配線パタ
ーンに導体を形成して2層目の配線を形成する工程、
(g)フォトレジスト、および導体の形成されていない
下地導体膜を除去する工程。
In order to achieve the above object, the method for manufacturing a multilayer wiring board of the present invention comprises the following steps. (A) a step of forming an insulating film made of an organic polymer material on a substrate and then forming a first-layer wiring on the insulating film,
(B) A step of forming an insulating film for planarization made of an organic polymer material having a thickness substantially equal to that of the wiring other than the wiring portion of the first layer on the substrate, (c) the wiring and the insulating film of the first layer A step of forming an interlayer insulating film made of an organic polymer material on the substrate having formed thereon, and forming a via hole in the interlayer insulating film,
(D) a step of forming a photoresist layer after forming a base conductor film on the interlayer insulating film and the via hole portion,
(E) exposing the photoresist layer using a photomask,
Developing to form a wiring pattern, (f) forming a conductor on the wiring pattern to form a second-layer wiring,
(G) A step of removing the photoresist and the underlying conductor film on which no conductor is formed.

【0013】また、バイアホールは、感光性の有機高分
子材料からなる層間絶縁膜を露光、現像して形成する
か、または、有機高分子材料からなる層間絶縁膜をドラ
イまたはウエットのエッチングをして形成することを特
徴とする。
The via hole is formed by exposing and developing an interlayer insulating film made of a photosensitive organic polymer material, or by dry or wet etching the interlayer insulating film made of an organic polymer material. It is characterized by being formed.

【0014】また、配線は、セミアディティブ法または
フルアディティブ法で形成することを特徴とする。
The wiring is characterized by being formed by the semi-additive method or the full-additive method.

【0015】さらに、層間絶縁膜は感光性ポリイミドで
あることを特徴とする。
Further, the interlayer insulating film is characterized by being a photosensitive polyimide.

【0016】[0016]

【作用】本発明の多層配線基板の製造方法によれば、基
板上の配線部分以外に、配線とほぼ等しい厚さの有機高
分子材料からなる絶縁膜を形成する。したがって、従来
のように、配線上の層間絶縁膜が配線の厚さの分だけ盛
り上がることがなく、多層配線基板表面の凹凸が低減さ
れる。
According to the method of manufacturing a multilayer wiring board of the present invention, an insulating film made of an organic polymer material having a thickness substantially equal to that of the wiring is formed in addition to the wiring portion on the board. Therefore, unlike the prior art, the interlayer insulating film on the wiring does not rise by the thickness of the wiring, and the unevenness on the surface of the multilayer wiring board is reduced.

【0017】[0017]

【実施例】【Example】

(実施例)以下、本発明の多層配線基板の製造方法の実
施例を図面に基づいて説明する。図1は、本発明の多層
配線基板の製造工程を示す断面図であ。同図において、
10aは基板上の配線部分以外に、配線とほぼ等しい厚
さで形成された有機高分子材料からなる平坦化用絶縁膜
である。その他の部分は図3と同一であるので、同一符
号を付して説明は省略する。
(Example) An example of a method for manufacturing a multilayer wiring board according to the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a manufacturing process of a multilayer wiring board of the present invention. In the figure,
10a is a flattening insulating film made of an organic polymer material having a thickness substantially equal to that of the wiring other than the wiring portion on the substrate. Since other parts are the same as those in FIG. 3, the same reference numerals are given and description thereof is omitted.

【0018】まず、図1(a)に示すように、基板上に
1層目の配線を形成した。即ち、純度99.5%のアル
ミナ製の基板1の上に、感光性ポリイミド(例えば、東
レ社製フォトニース:商品名)からなり硬化後の膜厚が
20μmの絶縁膜2を形成した。その後、ヒドラジンで
表面処理しパラジウムで触媒活性化処理を行なった絶縁
膜2の全面に、硫酸銅めっき液を用いて膜厚500オン
グストロームの無電解銅めっき膜を下地導体膜3aとし
て形成した。その後、下地導体膜3aの上に、ポジ型の
フォトレジスト層(例えば、ヘキスト社製AZ462
0:商品名)を形成した後、1層目用のポジ型のフォト
マスクを用いて1層目配線パターンを露光した。次に、
これを現像して1層目の配線パターンを得た後、硫酸銅
めっき液を用いた電解銅めっきによって、露出した下地
導体膜3aの上に膜厚約5μmの電解銅めっき膜を析出
させて導体4aを形成した。その後、フォトレジスト
層、および下地導体膜3aのうち導体4aが形成されて
いない部分を除去して図1(a)に示す1層目の配線を
得た。
First, as shown in FIG. 1A, a first layer wiring was formed on a substrate. That is, on the alumina substrate 1 having a purity of 99.5%, an insulating film 2 made of photosensitive polyimide (for example, Photo Nice manufactured by Toray Industries, Inc .: a trade name) and having a film thickness after curing of 20 μm was formed. After that, an electroless copper plating film having a film thickness of 500 Å was formed as a base conductor film 3a using a copper sulfate plating solution on the entire surface of the insulating film 2 surface-treated with hydrazine and catalytically activated with palladium. Then, a positive photoresist layer (for example, AZ462 manufactured by Hoechst Co., Ltd.) is formed on the underlying conductor film 3a.
0: trade name) was formed, and then the first layer wiring pattern was exposed using a positive type photomask for the first layer. next,
After developing this to obtain a wiring pattern of the first layer, electrolytic copper plating using a copper sulfate plating solution is performed to deposit an electrolytic copper plating film having a thickness of about 5 μm on the exposed underlying conductor film 3a. The conductor 4a was formed. Then, the photoresist layer and the portion of the underlying conductor film 3a where the conductor 4a was not formed were removed to obtain the first-layer wiring shown in FIG.

【0019】次に、図1(b)に示すように、1層目の
配線を形成した基板上の配線部分以外に、この配線とほ
ぼ等しい厚さの有機高分子材料からなる平坦化絶縁膜を
形成した。即ち、1層目の配線を形成した基板上全面に
膜厚5μmのネガ型の感光性の有機高分子材料であるポ
リイミドからなる絶縁膜を形成した後、ネガ型のフォト
マスクを用いて1層目の配線部分以外を露光した。その
後、これを現像して、図1(b)に示す平坦化用絶縁膜
10aを形成した。
Next, as shown in FIG. 1B, in addition to the wiring portion on the substrate on which the first-layer wiring is formed, a flattening insulating film made of an organic polymer material having a thickness almost equal to this wiring is formed. Was formed. That is, an insulating film made of polyimide, which is a negative-type photosensitive organic polymer material, having a film thickness of 5 μm is formed on the entire surface of the substrate on which the wiring of the first layer is formed, and then one layer is formed using a negative-type photomask. The parts other than the wiring part of the eyes were exposed. Then, this was developed to form a planarization insulating film 10a shown in FIG.

【0020】その後、図1(c)に示すように、1層目
の配線および平坦化用絶縁膜を形成した基板上に、有機
高分子材料からなる層間絶縁膜を形成し、この層間絶縁
膜にバイアホールを形成した。即ち、1層目の配線およ
び平坦化用絶縁膜10aを形成した基板上全面に膜厚2
0μmのネガ型の感光性の有機高分子材料であるポリイ
ミドからなる絶縁膜5を形成した後、ネガ型のフォトマ
スクを用いてバイアホールのパターンを露光した。その
後、これを現像して、図1(c)に示すバイアホール6
を形成した。
Thereafter, as shown in FIG. 1C, an interlayer insulating film made of an organic polymer material is formed on the substrate on which the first-layer wiring and the planarizing insulating film are formed, and the interlayer insulating film is formed. A via hole was formed in the. That is, the film thickness of 2
After forming an insulating film 5 made of polyimide, which is a negative-type photosensitive organic polymer material having a thickness of 0 μm, a via-hole pattern was exposed using a negative-type photomask. Then, this is developed and the via hole 6 shown in FIG.
Was formed.

【0021】その後、図1(d)に示すように、層間絶
縁膜5およびバイアホール6に下地導体膜3bを形成し
た後、その上にポジ型のフォトレジスト層7(例えば、
ヘキスト社製AZ4620:商品名)を形成した。
Thereafter, as shown in FIG. 1D, after forming a base conductor film 3b on the interlayer insulating film 5 and the via hole 6, a positive type photoresist layer 7 (for example, a photoresist film 7b) is formed thereon.
Hoechst AZ4620: trade name) was formed.

【0022】その後、図1(e)に示すように、2層目
の配線パターンを形成した。即ち、ポジ型のフォトマス
クを用いてポジ型のフォトレジスト層7に2層目の配線
パターンを露光した。さらに、多重露光用のポジ型のフ
ォトマスクを用いてポジ型のフォトレジスト層7のバイ
アホール6の部分を露光した。そして、これを現像し
て、図3(e)に示す2層目配線パターンを得た。
After that, as shown in FIG. 1E, a second layer wiring pattern was formed. That is, a positive type photomask was used to expose the positive type photoresist layer 7 with the second wiring pattern. Further, the via hole 6 portion of the positive photoresist layer 7 was exposed using a positive photomask for multiple exposure. Then, this was developed to obtain a second layer wiring pattern shown in FIG.

【0023】次に、図3(f)に示すように、硫酸銅め
っき液を用いた電解銅めっきで、露出した2層目の下地
導体膜3b上に膜厚約5μmの電解銅めっき膜を析出さ
せて2層目の導体4bを形成した。その後、フォトレジ
スト7、および下地導体膜3bのうちで導体4bが形成
されていない部分を除去して、図3(f)に示す2層配
線基板を得た。
Next, as shown in FIG. 3 (f), electrolytic copper plating using a copper sulfate plating solution deposits an electrolytic copper plating film having a thickness of about 5 μm on the exposed second underlying conductor film 3b. Then, the second-layer conductor 4b was formed. Then, the photoresist 7 and the portion of the underlying conductor film 3b where the conductor 4b was not formed were removed to obtain a two-layer wiring board shown in FIG. 3 (f).

【0024】さらに、同様の操作を繰り返して3層配線
基板を得た。得られた配線基板の断面図を図2に示す。
なお、同図において、4cは3層目の配線、15は2層
目と3層目との配線間の層間絶縁膜、10bは2層目の
配線とほぼ等しい厚さの有機高分子材料からなる平坦化
絶縁膜であり、下地導体膜は省略している。その他の部
分は、図1と同様であるので、同一の符号を付す。
Further, the same operation was repeated to obtain a three-layer wiring board. A cross-sectional view of the obtained wiring board is shown in FIG.
In the figure, 4c is a wiring of the third layer, 15 is an interlayer insulating film between the wirings of the second and third layers, and 10b is an organic polymer material having substantially the same thickness as the wiring of the second layer. The underlying conductor film is omitted. The other parts are the same as those in FIG.

【0025】(比較例)比較のため、従来方法によっ
て、実施例と同様の3層配線基板を得た。従来の多層配
線基板の製造工程を示す断面図の図3に基づいて説明す
る。
(Comparative Example) For comparison, a conventional three-layer wiring board was obtained by the conventional method. It will be described with reference to FIG. 3 which is a sectional view showing a conventional manufacturing process of a multilayer wiring board.

【0026】即ち、まず、図3(a)に示すように、実
施例と同様にして、基板上に1層目の配線を形成した。
That is, first, as shown in FIG. 3A, the first-layer wiring was formed on the substrate in the same manner as in the example.

【0027】次に、図3(b)に示すように、平坦化絶
縁膜を形成せずにその他は実施例と同様にして、1層目
の配線を形成した基板上に、有機高分子材料からなる層
間絶縁膜5を形成し、この層間絶縁膜5にバイアホール
6を形成した。
Next, as shown in FIG. 3B, the organic polymer material is formed on the substrate on which the first-layer wiring is formed in the same manner as in the example except that the flattening insulating film is not formed. The inter-layer insulating film 5 made of is formed, and the via hole 6 is formed in the inter-layer insulating film 5.

【0028】その後、図3(c)に示すように、実施例
と同様にして、層間絶縁膜5およびバイアホール6に下
地導体膜3bを形成した後、ポジ型のフォトレジスト層
7(例えば、ヘキスト社製AZ4620:商品名)を形
成した。
After that, as shown in FIG. 3C, after forming the underlying conductor film 3b in the interlayer insulating film 5 and the via hole 6 in the same manner as in the embodiment, the positive photoresist layer 7 (for example, Hoechst AZ4620: trade name) was formed.

【0029】その後、図3(d)に示すように、実施例
と同様にして、2層目の配線パターンを形成した。
After that, as shown in FIG. 3D, a second-layer wiring pattern was formed in the same manner as in the example.

【0030】次に、図3(e)に示すように、実施例と
同様にして、露出した2層目の下地導体膜3b上に2層
目の導体4bを形成した。その後、フォトレジスト7、
および下地導体膜3bのうちで導体4bが形成されてい
ない部分を除去して、図3(f)に示す2層配線基板を
得た。
Next, as shown in FIG. 3E, a second-layer conductor 4b was formed on the exposed second-layer underlying conductor film 3b in the same manner as in the example. After that, photoresist 7,
Then, a portion of the underlying conductor film 3b where the conductor 4b was not formed was removed to obtain a two-layer wiring board shown in FIG. 3 (f).

【0031】さらに、同様の操作を繰り返して3層配線
基板を得た。得られた配線基板の断面図を図4に示す。
なお同図において、4cは3層目の配線、15は2層目
と3層目との配線間の層間絶縁膜であり、下地導体膜は
省略している。その他の部分は、図3と同様であるの
で、同一の符号を付す。
Further, the same operation was repeated to obtain a three-layer wiring board. A cross-sectional view of the obtained wiring board is shown in FIG.
In the figure, 4c is a third layer wiring, 15 is an interlayer insulating film between the second and third wirings, and the underlying conductor film is omitted. The other parts are the same as those in FIG. 3 and are therefore assigned the same reference numerals.

【0032】以上得られた実施例および従来例の多層配
線基板について、その表面の凹凸を表面粗さ計で測定し
た。その結果、基板表面の最も高い部分と最も低い部分
の高低差(r)は、従来例の場合の25μmに対して実
施例の場合は20μmを示し、多層配線基板表面の凹凸
を低減することができた。
The surface roughness of each of the multilayer wiring boards of Examples and Conventional Examples obtained above was measured with a surface roughness meter. As a result, the height difference (r) between the highest part and the lowest part of the substrate surface is 25 μm in the case of the conventional example, and 20 μm in the case of the example, and it is possible to reduce the unevenness on the surface of the multilayer wiring board. did it.

【0033】なお、上記実施例において、基板として純
度99.5%のアルミナ基板を用いているが、これに限
定されることはなく、平滑性の得られるものであれば種
々の材質のものを用いることができる。
Although an alumina substrate having a purity of 99.5% is used as the substrate in the above embodiment, the substrate is not limited to this and various materials can be used as long as smoothness can be obtained. Can be used.

【0034】また、有機高分子層の上に形成する下地導
体膜として、無電解銅めっき膜を用いているが、これに
限定されることはなく、スパッタあるいは蒸着によって
形成した金属薄膜などの選択的な剥離が可能な種々のも
のを用いることができる。
Although an electroless copper plating film is used as the underlying conductor film formed on the organic polymer layer, the present invention is not limited to this, and a metal thin film formed by sputtering or vapor deposition can be selected. Various materials that can be peeled off can be used.

【0035】また、層間絶縁膜として、感光性の有機高
分子材料であるポリイミドを用いそれを露光、現像して
バイアホールを形成しているが、感光性を有しない有機
高分子材料を用いて、フォトレジストによるバイアホー
ルパターンの形成とドライまたはウエットのエッチング
によってバイアホールを形成することもできる。
As the interlayer insulating film, polyimide, which is a photosensitive organic polymer material, is used and exposed and developed to form a via hole. However, an organic polymer material having no photosensitivity is used. Alternatively, the via hole can be formed by forming a via hole pattern with a photoresist and dry or wet etching.

【0036】また、配線形成方法として無電解めっきの
上に電解めっき配線をするセミアディティブ法を用いて
いるが、無電解めっきで配線するアディティブ法による
ことも可能である。即ち、有機高分子層の表面の触媒活
性化処理を行なった後、無電解めっき膜を所望の膜厚ま
で成長させて導体を形成させればよい。
Although the semi-additive method of forming electroplated wiring on electroless plating is used as the wiring forming method, it is also possible to use the additive method of wiring by electroless plating. That is, after conducting a catalyst activation treatment on the surface of the organic polymer layer, the electroless plated film may be grown to a desired film thickness to form a conductor.

【0037】さらに、本実施例では、ポリイミドの膜厚
を20μmとしたが、5〜100μmの範囲で本製造方
法の効果を期待できる。
Further, although the polyimide film thickness is 20 μm in this embodiment, the effect of the present manufacturing method can be expected in the range of 5 to 100 μm.

【0038】[0038]

【発明の効果】以上の説明で明らかなように、本発明の
多層配線基板の製造方法によれば、基板上の配線部分以
外に、配線とほぼ等しい厚さの有機高分子材料からなる
絶縁膜を形成するため、従来のように、配線上の層間絶
縁膜が配線の厚さの分だけ盛り上がることがなく、多層
配線基板表面の凹凸を低減させることができる。
As is apparent from the above description, according to the method for manufacturing a multilayer wiring board of the present invention, an insulating film made of an organic polymer material having a thickness substantially equal to that of the wiring is provided in addition to the wiring portion on the board. Therefore, unlike the conventional case, the interlayer insulating film on the wiring does not rise by the thickness of the wiring, and the unevenness on the surface of the multilayer wiring board can be reduced.

【0039】したがって、多層配線基板の製造におい
て、フォトリソグラフの工程での寸法精度が悪くなるな
どの不具合を防止して歩留まりを向上させることができ
る。
Therefore, in the manufacture of the multilayer wiring board, it is possible to prevent a defect such as deterioration of dimensional accuracy in the photolithography process and improve the yield.

【0040】また、従来、歩留まりが低下して困難であ
った、多層配線基板の配線の厚さを厚くして電子部品を
実装したときの動作の高速化を図ることも可能となる。
Further, it is possible to increase the speed of the operation when electronic components are mounted by increasing the thickness of the wiring of the multilayer wiring board, which has been difficult in the past due to the reduced yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層配線基板の製造工程を示す断面図
である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a multilayer wiring board according to the present invention.

【図2】本発明の製造方法により得られた多層配線基板
の断面図である。
FIG. 2 is a cross-sectional view of a multilayer wiring board obtained by the manufacturing method of the present invention.

【図3】従来の多層配線基板の製造工程を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a manufacturing process of a conventional multilayer wiring board.

【図4】従来の製造方法により得られた多層配線基板の
断面図である。
FIG. 4 is a cross-sectional view of a multilayer wiring board obtained by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 基板 2 絶縁膜 3a,3b 下地導体膜 4a,4b,4c 導体 5,15 層間絶縁膜 6 バイアホール 7 フォトレジスト層 10a,10b 平坦化絶縁膜 1 substrate 2 insulating film 3a, 3b base conductor film 4a, 4b, 4c conductor 5,15 interlayer insulating film 6 via hole 7 photoresist layer 10a, 10b planarizing insulating film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 次の工程よりなる多層配線基板の製造方
法。 (a)基板上に有機高分子材料からなる絶縁膜を形成し
た後、該絶縁膜上に1層目の配線を形成する工程、 (b)基板上の1層目の配線部分以外に、該配線とほぼ
等しい厚さの有機高分子材料からなる平坦化用絶縁膜を
形成する工程、 (c)1層目の配線および平坦化用絶縁膜を形成した基
板上に、有機高分子材料からなる層間絶縁膜を形成し、
該層間絶縁膜にバイアホールを形成する工程、 (d)層間絶縁膜およびバイアホール部分に、下地導体
膜を形成した後フォトレジスト層を形成する工程、 (e)フォトマスクを用いてフォトレジスト層を露光、
現像して配線パターンを形成する工程、 (f)配線パターンに導体を形成して2層目の配線を形
成する工程、 (g)フォトレジスト、および導体の形成されていない
下地導体膜を除去する工程。
1. A method for manufacturing a multilayer wiring board, which comprises the following steps. (A) a step of forming an insulating film made of an organic polymer material on the substrate and then forming a first layer wiring on the insulating film; (b) a step other than the first layer wiring portion on the substrate, A step of forming a planarization insulating film made of an organic polymer material having a thickness almost equal to that of the wiring, (c) made of an organic polymer material on the substrate on which the first layer wiring and the planarization insulating film are formed Forming an interlayer insulating film,
A step of forming a via hole in the interlayer insulating film, (d) a step of forming a photoresist layer after forming a base conductor film in the interlayer insulating film and the via hole portion, (e) a photoresist layer using a photomask Exposure,
Step of developing to form a wiring pattern, (f) Step of forming a conductor on the wiring pattern to form a second layer wiring, (g) Removing the photoresist and the underlying conductor film on which the conductor is not formed Process.
【請求項2】 感光性の有機高分子材料からなる層間絶
縁膜を露光、現像してバイアホールを形成することを特
徴とする請求項1記載の多層配線基板の製造方法。
2. The method for producing a multilayer wiring board according to claim 1, wherein an interlayer insulating film made of a photosensitive organic polymer material is exposed and developed to form a via hole.
【請求項3】 有機高分子材料からなる層間絶縁膜をド
ライまたはウエットのエッチングをしてバイアホールを
形成することを特徴とする請求項1記載の多層配線基板
の製造方法。
3. The method of manufacturing a multilayer wiring board according to claim 1, wherein an interlayer insulating film made of an organic polymer material is dry or wet etched to form a via hole.
【請求項4】 セミアディティブ法により配線を形成す
ることを特徴とする請求項1記載の多層配線基板の製造
方法。
4. The method for manufacturing a multilayer wiring board according to claim 1, wherein the wiring is formed by a semi-additive method.
【請求項5】 フルアディティブ法により配線を形成す
ることを特徴とする請求項1記載の多層配線基板の製造
方法。
5. The method for manufacturing a multilayer wiring board according to claim 1, wherein the wiring is formed by a full additive method.
【請求項6】 層間絶縁膜は感光性ポリイミドであるこ
とを特徴とする請求項1記載の多層配線基板の製造方
法。
6. The method for manufacturing a multilayer wiring board according to claim 1, wherein the interlayer insulating film is photosensitive polyimide.
JP7047398A 1995-03-07 1995-03-07 Manufacture of multilayer interconnection board Pending JPH08250857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7047398A JPH08250857A (en) 1995-03-07 1995-03-07 Manufacture of multilayer interconnection board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7047398A JPH08250857A (en) 1995-03-07 1995-03-07 Manufacture of multilayer interconnection board

Publications (1)

Publication Number Publication Date
JPH08250857A true JPH08250857A (en) 1996-09-27

Family

ID=12774016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7047398A Pending JPH08250857A (en) 1995-03-07 1995-03-07 Manufacture of multilayer interconnection board

Country Status (1)

Country Link
JP (1) JPH08250857A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027798A1 (en) * 1996-12-19 1998-06-25 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
JP2005225228A (en) * 2004-01-13 2005-08-25 Ube Ind Ltd Polyimide metal laminate and circuit substrate
JP2009038390A (en) * 2008-09-29 2009-02-19 Ibiden Co Ltd Method for manufacturing multilayer printed wiring board
JP2009076934A (en) * 1997-12-29 2009-04-09 Ibiden Co Ltd Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
US7737366B2 (en) 1998-02-26 2010-06-15 Ibiden Co., Ltd. Multilayer printed wiring board with filled viahole structure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615162B2 (en) 1996-12-19 2009-11-10 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
US6835895B1 (en) 1996-12-19 2004-12-28 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
US6930255B2 (en) 1996-12-19 2005-08-16 Ibiden Co., Ltd Printed circuit boards and method of producing the same
USRE43509E1 (en) 1996-12-19 2012-07-17 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
US7361849B2 (en) 1996-12-19 2008-04-22 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
US7371976B2 (en) 1996-12-19 2008-05-13 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
US7385146B2 (en) 1996-12-19 2008-06-10 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
US7388159B2 (en) 1996-12-19 2008-06-17 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
US7449791B2 (en) 1996-12-19 2008-11-11 Ibiden Co., Ltd. Printed circuit boards and method of producing the same
US7712212B2 (en) 1996-12-19 2010-05-11 Ibiden Co., Ltd. Method for manufacturing printed wiring board
WO1998027798A1 (en) * 1996-12-19 1998-06-25 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
US7585541B2 (en) 1996-12-19 2009-09-08 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
JP2009076934A (en) * 1997-12-29 2009-04-09 Ibiden Co Ltd Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
JP4522471B2 (en) * 1997-12-29 2010-08-11 イビデン株式会社 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
US7737366B2 (en) 1998-02-26 2010-06-15 Ibiden Co., Ltd. Multilayer printed wiring board with filled viahole structure
US8115111B2 (en) 1998-02-26 2012-02-14 Ibiden Co., Ltd. Multilayer printed wiring board with filled viahole structure
US8987603B2 (en) 1998-02-26 2015-03-24 Ibiden Co,. Ltd. Multilayer printed wiring board with filled viahole structure
JP4529695B2 (en) * 2004-01-13 2010-08-25 宇部興産株式会社 Polyimide metal laminate and polyimide circuit board
JP2005225228A (en) * 2004-01-13 2005-08-25 Ube Ind Ltd Polyimide metal laminate and circuit substrate
JP2009038390A (en) * 2008-09-29 2009-02-19 Ibiden Co Ltd Method for manufacturing multilayer printed wiring board

Similar Documents

Publication Publication Date Title
EP0459665B1 (en) Manufacturing method for a multilayer wiring board
EP0457501B1 (en) Method of manufacturing a multilayer wiring board
JP3786554B2 (en) Circuit board manufacturing method for forming fine structure layer on both sides of flexible film
US8277668B2 (en) Methods of preparing printed circuit boards and packaging substrates of integrated circuit
US5266446A (en) Method of making a multilayer thin film structure
JP3229286B2 (en) Manufacturing method of printed circuit board
US4963512A (en) Method for forming conductor layers and method for fabricating multilayer substrates
US6020261A (en) Process for forming high aspect ratio circuit features
JP2002246744A (en) Conductor-forming method, and multilayer wiring board manufacturing method using the same
US5200300A (en) Methods for forming high density multi-chip carriers
JP2777020B2 (en) Wiring layer flattening method
JP2006041029A (en) Wiring substrate, manufacturing method thereof, and electronic device
JPH08250857A (en) Manufacture of multilayer interconnection board
JPH0766552A (en) Manufacture of wiring board
JPH09312471A (en) Multilayer wiring board and its manufacturing method
JP2836616B2 (en) Method of forming conductor wiring pattern
JPH05327224A (en) Manufacture of multilayer wiring board and multi-layer wiring board manufactured by the manufacture
JP3651027B2 (en) Manufacturing method of multilayer wiring board
JPH06132663A (en) Manufacture of multilayer interconnection board
JPS6337694A (en) Manufacture of circuit board
JP2002290048A (en) Via forming method in multilayer circuit board
JPH08236934A (en) Manufacture of multilayered wiring board
JP3948105B2 (en) Method for manufacturing multilayer printed circuit board
JP2002076633A (en) Manufacturing method of multilayer interconnection board and plating method
JP2003197741A (en) Method for manufacturing multilayer circuit board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250