JPH08250331A - Magnetizing direction control method of magnetic body and magnetic device equipped therewith - Google Patents

Magnetizing direction control method of magnetic body and magnetic device equipped therewith

Info

Publication number
JPH08250331A
JPH08250331A JP4838395A JP4838395A JPH08250331A JP H08250331 A JPH08250331 A JP H08250331A JP 4838395 A JP4838395 A JP 4838395A JP 4838395 A JP4838395 A JP 4838395A JP H08250331 A JPH08250331 A JP H08250331A
Authority
JP
Japan
Prior art keywords
magnetic
polarized light
semiconductor
circularly polarized
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4838395A
Other languages
Japanese (ja)
Inventor
Shiho Okuno
志保 奥野
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4838395A priority Critical patent/JPH08250331A/en
Publication of JPH08250331A publication Critical patent/JPH08250331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE: To provide a magnetic body magnetization control method and a magnetic device obtained taking advantage of the above control method, wherein a magnetic body is capable of being controlled in magnetization without using an external magnetic field. CONSTITUTION: A magnetic device is composed of a magnetic thin film 1, a direct transition-type semiconductor 2 which comes into direct contact with the thin film 1 or contact with the film 1 through the intermediary of an intermediate layer 4, and a circular polarized light generating source 3 which irradiates the semiconductor 2 direct with polarized light rays. The direct transition-type semiconductor 2 is irradiated with a circularly polarized light from a circularly polarized light generating source 3, whereby spin polarized electrons with polarity determined based on the direction of polarization of the circularly polarized light are excited in the direct transition-type semiconductor 2, and the magnetic thin film 1 is controlled in the direction of magnetization by the polarity of the spin polarized electrons.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性体の新しい磁化方
向制御方法およびそれを利用した磁気デバイスに関し、
より詳しくは磁性薄膜が利用される、例えば磁気メモ
リ、磁場発生装置、アクチュエーター、磁気半導体デバ
イス等におけるの磁性薄膜に対する磁化方向制御方法
と、その磁気デバイスへの応用に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new method for controlling the magnetization direction of a magnetic material and a magnetic device using the same.
More specifically, the present invention relates to a method for controlling the magnetization direction of a magnetic thin film in a magnetic memory, a magnetic field generator, an actuator, a magnetic semiconductor device, etc., in which a magnetic thin film is used, and its application to the magnetic device.

【0002】[0002]

【従来の技術】従来の磁性薄膜の磁化方向制御は、外部
から磁性薄膜へ磁場を作用させることによって行われて
きた。そのため、外部の磁場発生源として、コイルから
なる電磁石あるいは永久磁石が必須である。
2. Description of the Related Art Conventional magnetization direction control of a magnetic thin film has been performed by externally applying a magnetic field to the magnetic thin film. Therefore, an electromagnet or a permanent magnet composed of a coil is essential as an external magnetic field generation source.

【0003】しかしながら、コイルが存在すると基本的
に装置が大きくならざるを得ず、またこれら電磁石や永
久磁石を使用する場合、磁場が印加される空間領域が絞
りにくいという欠点があり、装置の軽薄短小化の要求を
満たすことが困難である。また、漏洩磁界の問題がさけ
られない。
However, the presence of the coil inevitably increases the size of the device, and when using these electromagnets and permanent magnets, there is a drawback that it is difficult to narrow the spatial region to which the magnetic field is applied, and the device is light and thin. It is difficult to meet the demand for shortening. Moreover, the problem of the leakage magnetic field is unavoidable.

【0004】[0004]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであり、外部から発生させた磁場を
用いずに磁性体の磁化制御を行うことができる磁性体の
磁化制御方法およびそのような磁化制御方法を利用した
磁気デバイスを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a method for controlling the magnetization of a magnetic body that can control the magnetization of the magnetic body without using a magnetic field generated from the outside, and An object is to provide a magnetic device using such a magnetization control method.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、第1に、磁性体に直接または中間層を介
して接した直接遷移型半導体に円偏光を照射すること
で、直接遷移型半導体中に円偏光の偏光方向に基づく極
性を持つスピン偏極電子を励起せしめ、このスピン偏極
電子の極性により前記磁性薄膜の磁化の向きを制御する
ことを特徴とする磁性薄膜の磁化方向制御方法を提供す
る。
In order to solve the above problems, the present invention firstly irradiates circularly polarized light on a direct transition type semiconductor which is in direct contact with a magnetic material or through an intermediate layer, A spin-polarized electron having a polarity based on the polarization direction of circularly polarized light is excited in a direct transition type semiconductor, and the direction of magnetization of the magnetic thin film is controlled by the polarity of the spin-polarized electron. A method for controlling a magnetization direction is provided.

【0006】第2に、磁性体と、この磁性体に直接また
は中間層を介して接した直接遷移型半導体と、この直接
遷移型半導体に円偏光を照射する円偏光発生源とを有す
ることを特徴とする磁気デバイスを提供する。
Secondly, it has a magnetic substance, a direct transition type semiconductor in contact with the magnetic substance directly or via an intermediate layer, and a circularly polarized light generation source for irradiating the direct transition type semiconductor with circularly polarized light. A characteristic magnetic device is provided.

【0007】第3に、上記磁気デバイスにおいて、前記
磁性体と前記直接遷移型半導体との間にバイアス電圧を
印加するバイアス電圧印加手段をさらに有することを特
徴とする磁気デバイスを提供する。
Thirdly, there is provided a magnetic device according to the above magnetic device, further comprising bias voltage applying means for applying a bias voltage between the magnetic body and the direct transition semiconductor.

【0008】本発明の基本原理は、円偏光の照射により
半導体中の価電子帯から伝導帯にスピン偏極電子を励起
させ、このスピン偏極電子を、半導体に直接あるいは中
間層を介して接触した磁性薄膜や磁性粒子などの磁性体
に作用させて、磁性体のスピンの向き、すなわち磁化の
向きを制御することにある。
The basic principle of the present invention is to excite spin-polarized electrons from the valence band in the semiconductor to the conduction band by irradiation with circularly polarized light, and contact the spin-polarized electrons with the semiconductor directly or via an intermediate layer. By acting on a magnetic substance such as the magnetic thin film or magnetic particles, the spin direction of the magnetic substance, that is, the magnetization direction is controlled.

【0009】この磁化方向制御方法を実施するための基
本となる磁気デバイスは、図1に示すように、磁性薄膜
1と、磁性薄膜1に接した直接遷移型半導体2と、この
直接遷移型半導体2に円偏光を照射する円偏光発生源3
を有している。また、磁性薄膜1と直接遷移型半導体2
とは、図2に示すように、中間層4を介して接していて
もよい。
As shown in FIG. 1, the basic magnetic device for carrying out this magnetization direction control method is a magnetic thin film 1, a direct transition semiconductor 2 in contact with the magnetic thin film 1, and this direct transition semiconductor. Circularly polarized light generation source 3 for irradiating circularly polarized light to 2
have. In addition, the magnetic thin film 1 and the direct transition semiconductor 2
May be in contact with each other via the intermediate layer 4, as shown in FIG.

【0010】磁性薄膜は、強磁性を示すものであればよ
く、Fe,Co,Niなど3d遷移金属、Gdなどの希
土類、あるいはこれらを含む合金または化合物が挙げら
れる。また、この磁性薄膜は、強磁性を示す限り、単結
晶、多結晶、および非晶質のいずれであってもよい。ま
た、ここでいう磁性薄膜は図3の(a)で示すような文
字通りの薄膜のみならず、(b)で示す線状、(c)で
示すドット状のものでもよい。
The magnetic thin film has only to exhibit ferromagnetism, and examples thereof include 3d transition metals such as Fe, Co and Ni, rare earths such as Gd, and alloys or compounds containing these. The magnetic thin film may be any of single crystal, polycrystal, and amorphous as long as it exhibits ferromagnetism. The magnetic thin film referred to here is not limited to the literal thin film as shown in FIG. 3A, but may be linear as shown in FIG. 3B or dot-like as shown in FIG.

【0011】また、磁性体として磁性粒子を用いる場合
には、図4に示すように、直接遷移型半導体マトリック
ス12中に磁性粒子11が分散したグラニュラー膜を用
い、このグラニュラー膜に円偏光を照射するようにすれ
ばよい。
When magnetic particles are used as the magnetic substance, as shown in FIG. 4, a granular film in which magnetic particles 11 are dispersed in a direct transition type semiconductor matrix 12 is used, and this granular film is irradiated with circularly polarized light. You can do it.

【0012】以下、本発明の基本原理をさらに詳細に説
明する。一般に、半導体では、光の照射によって半導体
の価電子帯から伝導帯に電子が励起される。この時、半
導体として直接遷移型半導体を用い、また光として右向
きあるいは左向きに円偏向した光を使うと、半導体中の
上向スピンを持つ電子の励起確率と下向きスピンを持つ
電子の励起確率とを同じでなくすることができ、結果と
して上向スピンの数と下向きスピンの数が異なったスピ
ン偏極電子が得られることが知られている(T.Nakanish
i ら、Japan Jounal of Applied Physicsvol.25,p.766,
(1986))。ここで、電子のスピン偏極度は、上向きスピ
ンの強度をI↑、下向きスピンの強度をI↓とすると、
(I↑−I↓)/(I↑+I↓)で表すことができる。
The basic principle of the present invention will be described in more detail below. In general, in a semiconductor, electrons are excited from the valence band of the semiconductor to the conduction band by irradiation with light. At this time, if a direct transition semiconductor is used as the semiconductor and light that is circularly polarized to the right or left is used as the light, the excitation probability of the electron with the upward spin and the excitation probability of the electron with the downward spin in the semiconductor are It is known that they can be different, resulting in spin-polarized electrons with different numbers of upward and downward spins (T. Nakanishi).
i et al, Japan Jounal of Applied Physics vol.25, p.766,
(1986)). Here, the spin polarization of an electron is given by I ↑ representing the intensity of the upward spin and I ↓ representing the intensity of the downward spin.
It can be represented by (I ↑ −I ↓) / (I ↑ + I ↓).

【0013】このスピン偏極度は、用いる半導体の種類
および状態と励起源である円偏光のエネルギーとによっ
て異なるが、代表的な直接遷移半導体であるGaAsの
場合、理論的には50%のスピン偏極度を持つ伝導電子
を発生させることができる。このスピン偏極度はGaA
sに歪をかけたり、人工格子膜とすることによりさらに
向上する。磁性体の磁化方向制御のためにはスピン偏極
度は高ければ高いほど好ましい。
This spin polarization depends on the type and state of the semiconductor used and the energy of the circularly polarized light that is the excitation source, but in the case of GaAs, which is a typical direct transition semiconductor, theoretically, the spin polarization is 50%. It is possible to generate conduction electrons with extreme intensity. This spin polarization is GaA
It is further improved by applying strain to s or using an artificial lattice film. Higher spin polarization is preferable for controlling the magnetization direction of the magnetic material.

【0014】このような直接遷移型半導体の代表例とし
ては、上記GaAsや、GaAlAs、CdSe、Cd
Teなどの化合物半導体、CdSiAs2 などのカルコ
パライト型半導体などが挙げられる。また、スピン偏極
度の極性は円偏光の向きによって決まり、右向き偏光か
ら左向き偏光に向きを変えることで極性が変化する。
Typical examples of such a direct transition type semiconductor are the above-mentioned GaAs, GaAlAs, CdSe and Cd.
Examples thereof include compound semiconductors such as Te and chalcopyrite type semiconductors such as CdSiAs 2 . Further, the polarity of spin polarization is determined by the direction of circularly polarized light, and the polarity changes by changing the direction from rightward polarized light to leftward polarized light.

【0015】円偏光は直線偏光の電界ベクトルの右回り
成分と左回り成分とを4分の1波長ずらすことによって
得られる。例えば、図5の(a)に示したように、レー
ザー光源5からの直線偏光させたレーザー光を1/4波
長板6に通すか、または(b)に示すように、ポッケル
スセルなどの電場を加えた光学結晶7に通すなど、従来
技術によって簡単に得ることができる。円偏光度はなる
べく高いことが望ましいが、多少楕円偏光になっていて
もよい。また、使用される円偏光のエネルギーは照射さ
れる半導体の電子構造によって決まる。
Circularly polarized light is obtained by shifting the clockwise component and the counterclockwise component of the electric field vector of linearly polarized light by a quarter wavelength. For example, as shown in FIG. 5A, linearly polarized laser light from the laser light source 5 is passed through the quarter-wave plate 6, or as shown in FIG. 5B, an electric field such as a Pockels cell is used. It can be easily obtained by a conventional technique such as passing through the optical crystal 7 to which is added. It is desirable that the degree of circular polarization is as high as possible, but it may be slightly elliptically polarized. Further, the energy of the circularly polarized light used depends on the electronic structure of the irradiated semiconductor.

【0016】磁性体と半導体とは、半導体中で励起され
たスピン偏極電子が磁性体に作用することができるよう
に、直接に、または中間層を介して接している必要があ
る。ここで用いられる中間層は導電性を有するものであ
っても絶縁性を有するものであってもよい。中間層が導
電性を有する場合には、電子の移動を妨げない材質であ
ることが好ましく、Au、Ag、Cuなどの貴金属が理
想的である。中間層が絶縁性を有するものである場合に
は、半導体と磁性体との間を電子がトンネリングできる
ことが必要である。実際にはこのような中間層は、磁性
体と半導体との界面に形成される合金層であってもよ
い。いずれの場合にも中間層の厚さは、上記電子の移動
およびトンネリングを妨げないように、100nm以下
であることが好ましく、10nm以下がさらに好まし
い。
The magnetic substance and the semiconductor must be in contact with each other directly or through an intermediate layer so that spin-polarized electrons excited in the semiconductor can act on the magnetic substance. The intermediate layer used here may have conductivity or insulation. When the intermediate layer has conductivity, it is preferably a material that does not hinder the movement of electrons, and a noble metal such as Au, Ag or Cu is ideal. When the intermediate layer has an insulating property, it is necessary that electrons can tunnel between the semiconductor and the magnetic substance. In practice, such an intermediate layer may be an alloy layer formed at the interface between the magnetic substance and the semiconductor. In any case, the thickness of the intermediate layer is preferably 100 nm or less, more preferably 10 nm or less so as not to hinder the above-mentioned electron transfer and tunneling.

【0017】磁性体と半導体との接合界面、あるいは中
間層の状態によってはそのままでは半導体中のスピン偏
極電子が磁性体に作用せず、磁性体の磁化を制御するこ
とができない場合がある。この場合には、図6に示すよ
うに、磁性体としての磁性薄膜1と半導体2とに電極
8,9を設け、電位差発生源10によりその間に電場を
与えて半導体2の電位を上げ、半導体2で生じたスピン
偏極電子を磁性体1に作用させることが必要となる。
Depending on the junction interface between the magnetic substance and the semiconductor or the state of the intermediate layer, the spin-polarized electrons in the semiconductor may not act on the magnetic substance as it is, and the magnetization of the magnetic substance may not be controlled. In this case, as shown in FIG. 6, electrodes 8 and 9 are provided on the magnetic thin film 1 as a magnetic material and the semiconductor 2, and an electric field is applied between the electrodes 8 and 9 by the potential difference generation source 10 to increase the potential of the semiconductor 2. It is necessary to cause the spin-polarized electrons generated in 2 to act on the magnetic body 1.

【0018】磁性体の磁化の方向は、半導体中で励起さ
れた電子スピンの向きにより決まり、またこの量子化軸
は円偏光を入射する向きによって決まる。すなわち本発
明においては、磁性体に対する円偏光の入射方向に基づ
く量子化軸の向きによって垂直磁化になるか面内磁化と
なるかなどが決定され、量子化軸を軸としてスピンがど
ちらを向くかは、円偏光が右向きであるか左向きである
かによって決まる。その例を図7の(a)〜(d)に示
す。
The direction of magnetization of the magnetic material is determined by the direction of electron spin excited in the semiconductor, and the quantization axis is determined by the direction of incident circularly polarized light. That is, in the present invention, it is determined whether the magnetization is vertical magnetization or in-plane magnetization depending on the direction of the quantization axis based on the incident direction of circularly polarized light to the magnetic substance, and which direction the spin is oriented with the quantization axis as the axis. Depends on whether the circularly polarized light is to the right or to the left. An example thereof is shown in (a) to (d) of FIG.

【0019】なお、円偏光は、磁性体側からだけでな
く、半導体が1μm以下の厚さならば、図8に示すよう
に半導体側から照射してもよい。本発明で磁性体と半導
体とが直接、または中間層を介して接するようにするた
めには、磁性体が磁性薄膜の場合、半導体を基板として
この上に磁性薄膜を形成するか、あるいはその逆に磁性
薄膜の上に半導体を形成すればよい。また、他の基板上
に、半導体膜と磁性薄膜とを形成することも可能であ
る。またさらに、表面が清浄かつ平坦な半導体を、同じ
く表面が清浄な磁性体と超高真空中で接着してもよく、
従来から用いられている薄膜形成方法によってこれらを
容易に形成することができる。
The circularly polarized light may be emitted not only from the magnetic body side, but also from the semiconductor side as shown in FIG. 8 if the semiconductor has a thickness of 1 μm or less. In the present invention, in order to make the magnetic substance and the semiconductor contact with each other directly or via the intermediate layer, when the magnetic substance is a magnetic thin film, the semiconductor is used as a substrate to form the magnetic thin film on the substrate, or vice versa. Further, a semiconductor may be formed on the magnetic thin film. It is also possible to form a semiconductor film and a magnetic thin film on another substrate. Furthermore, a semiconductor whose surface is clean and flat may be bonded to a magnetic material whose surface is also clean in an ultrahigh vacuum,
These can be easily formed by a conventionally used thin film forming method.

【0020】半導体と磁性体とは様々な組み合わせが可
能であるが、一例を挙げると、GaAsとFeとの組み
合わせがある。GaAs結晶とFe結晶とは結晶格子定
数が1:2の関係にあり、良好にエピタキシャル成長す
ることが知られている(G.A.Prinz ら、Applied Physic
s Letters,vol.39,p.397(1981))。従って、GaAs
(001)面を基板として使用し、その上にFeを蒸着
すると、Feの(001)面の単結晶が得られる。この
場合の界面構造は、Fe膜成長時の基板温度によって制
御される。
Various combinations of semiconductors and magnetic materials are possible, and one example is a combination of GaAs and Fe. It is known that the GaAs crystal and the Fe crystal have a crystal lattice constant of 1: 2 and that they can be epitaxially grown well (GAPrinz et al., Applied Physic).
s Letters, vol.39, p.397 (1981)). Therefore, GaAs
When the (001) plane is used as a substrate and Fe is vapor-deposited thereon, a single crystal of the (001) plane of Fe is obtained. The interface structure in this case is controlled by the substrate temperature during the growth of the Fe film.

【0021】[0021]

【実施例】【Example】

(実施例1)分子線エピタキシー(MBE)装置を用い
て、GaAs半導体基板上に磁性薄膜としてFe膜を成
長させた。まず、GaAsを600℃まで加熱して清浄
表面を得た後、室温まで降温して、Feを電子ビーム蒸
着により3nmの厚さ蒸着した。さらに、その表面には
透光性の保護膜を形成した。
Example 1 An Fe film was grown as a magnetic thin film on a GaAs semiconductor substrate by using a molecular beam epitaxy (MBE) device. First, GaAs was heated to 600 ° C. to obtain a clean surface, the temperature was lowered to room temperature, and Fe was evaporated by electron beam evaporation to a thickness of 3 nm. Further, a transparent protective film was formed on the surface.

【0022】以上のようにして形成されたサンプルに対
し、円偏光を図7の(a),(b)に示されているよう
な入射方向でFe膜全体に照射し、その際の円偏光度に
対するFe膜の面内方向の磁化を求めた。その結果、図
9に示すように、円偏光度とFe膜の磁化との間に強い
相関があることが確認された。
With respect to the sample formed as described above, circularly polarized light was irradiated on the entire Fe film in the incident direction as shown in FIGS. 7A and 7B, and circularly polarized light at that time was irradiated. The in-plane magnetization of the Fe film with respect to the degree was determined. As a result, as shown in FIG. 9, it was confirmed that there is a strong correlation between the degree of circular polarization and the magnetization of the Fe film.

【0023】(実施例2)円偏光によるスピン偏極電子
の発生を確認するために、次のような実験を行った。
Example 2 The following experiment was conducted to confirm the generation of spin-polarized electrons due to circularly polarized light.

【0024】図10に示すように、GaAs半導体基板
22上に磁性薄膜としてFe膜21を実施例1と同じ方
法で形成し、Fe膜21の表面とGaAs半導体基板2
2の裏面側とに、それぞれ電極23および24を形成
し、バイアス電圧印加手段としての電源25によってF
e膜21とGaAs半導体基板22との間に電圧を印加
した。また、この間の電流をモニターできるように電流
計26を接続した。一方、GaAs半導体基板22を、
のFe膜21が形成されている面の反対側の面からその
厚さが約600nmになるようにエッチングした。次い
で、Fe膜21とGaAs半導体基板22とからなるサ
ンプルの両側にマグネット27を配置し、このマグネッ
ト27によりFe膜21の磁化を強制的に揃えた状態
で、円偏光発生源28からの円偏光により励起されたG
aAs半導体基板12中で励起された電子がFe膜11
へ流れるときの電流を調べた。
As shown in FIG. 10, an Fe film 21 as a magnetic thin film is formed on the GaAs semiconductor substrate 22 by the same method as in Example 1, and the surface of the Fe film 21 and the GaAs semiconductor substrate 2 are formed.
Electrodes 23 and 24 are formed on the back surface side of 2 respectively, and F by a power source 25 as bias voltage applying means.
A voltage was applied between the e film 21 and the GaAs semiconductor substrate 22. Further, an ammeter 26 was connected so that the current during this period could be monitored. On the other hand, the GaAs semiconductor substrate 22 is
Etching was performed from the surface opposite to the surface on which the Fe film 21 was formed to a thickness of about 600 nm. Next, magnets 27 are arranged on both sides of the sample consisting of the Fe film 21 and the GaAs semiconductor substrate 22, and the magnet 27 forcibly aligns the magnetization of the Fe film 21. Excited by G
The electrons excited in the aAs semiconductor substrate 12 are the Fe film 11
The current when flowing to was examined.

【0025】ここで、図11の(a)のように円偏光の
円偏光度を時間とともにsinカーブを描くように変化
させたときに流れる電流は、図11の(b)に示すよう
に、円偏光度を反映したものとなった。
Here, as shown in FIG. 11B, the current flowing when the circular polarization degree of circularly polarized light is changed with time so as to draw a sin curve, as shown in FIG. 11B, It became a reflection of the degree of circular polarization.

【0026】これは、円偏光の円偏光度に応じて、Fe
膜11のスピンと同じ向きのスピンがGaAs半導体基
板中で多く励起された場合と、逆向きのスピンが多く励
起された場合とで、系のコンダクタンスが異なった結果
起っていると推測され、励起電子のスピンの極性が円偏
光の偏向方向によって制御されていることを示すもので
ある。
This depends on the degree of circular polarization of circularly polarized light.
It is presumed that the conductance of the system is different between the case where many spins in the same direction as the spin of the film 11 are excited in the GaAs semiconductor substrate and the case where many spins in the opposite direction are excited. This shows that the spin polarity of excited electrons is controlled by the polarization direction of circularly polarized light.

【0027】(実施例3)実施例1と同様の方法で、図
12に示すように、GaAs半導体基板32上に中間層
として2nmの厚さでPtバッファ層23を形成した
後、磁性薄膜として1nmの厚さでCo膜31を蒸着
し、さらにその上にPtのキャップ層34を形成した。
一方、光源として波長830nmの半導体レーザー35
を用い、発振されたレーザー光をコリメーターレンズ3
6で収束した後、ポッケルスセル37に通し、直線偏
光、右円偏光、左円偏光の切り替えを行った。この結
果、円偏光の偏向方向により磁性薄膜の磁化の向きを図
12に示すように制御しながら、10mWのパワーで書
き込みを行うことができた。また、書き込んだ情報は、
3mWのパワーの直線偏光を用い、極カー効果によって
読み出しが可能であった。
Example 3 In the same manner as in Example 1, as shown in FIG. 12, a Pt buffer layer 23 having a thickness of 2 nm was formed as an intermediate layer on a GaAs semiconductor substrate 32, and then a magnetic thin film was formed. A Co film 31 having a thickness of 1 nm was vapor-deposited, and a Pt cap layer 34 was further formed thereon.
On the other hand, a semiconductor laser 35 having a wavelength of 830 nm is used as a light source.
By using the collimator lens 3
After converging at 6, the light was passed through the Pockels cell 37 to switch between linearly polarized light, right circularly polarized light, and left circularly polarized light. As a result, writing could be performed with a power of 10 mW while controlling the direction of magnetization of the magnetic thin film by controlling the polarization direction of circularly polarized light as shown in FIG. In addition, the written information is
It was possible to read by the polar Kerr effect using linearly polarized light with a power of 3 mW.

【0028】[0028]

【発明の効果】本発明によれば、コイルなどの外部磁場
発生装置による外部磁場を用いることなく、光のみで磁
性体の磁化方向を制御することができるので、装置の大
型化が避けられ、また、従来コイルに供給されていた大
電流が不要となる。また、磁場の漏洩の問題が解決さ
れ、さらに局所的な磁化方向制御および遠隔操作が可能
となる。従って、本発明は磁性体が用いられる広い範囲
において大きな効果をもたらすものである。
According to the present invention, since the magnetization direction of the magnetic material can be controlled only by light without using an external magnetic field generated by an external magnetic field generator such as a coil, it is possible to avoid an increase in size of the device. In addition, the large current that was conventionally supplied to the coil becomes unnecessary. Further, the problem of magnetic field leakage is solved, and further local magnetization direction control and remote control become possible. Therefore, the present invention brings about great effects in a wide range of applications of magnetic materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁化方向制御方法を実施するための磁
気デバイスの一態様を示す模式図。
FIG. 1 is a schematic view showing one embodiment of a magnetic device for carrying out a magnetization direction control method of the present invention.

【図2】本発明の磁化方向制御方法を実施するための磁
気デバイスの他の態様を示す模式図。
FIG. 2 is a schematic view showing another embodiment of a magnetic device for carrying out the magnetization direction control method of the present invention.

【図3】本発明における磁性薄膜の状態を説明するため
の図。
FIG. 3 is a diagram for explaining a state of a magnetic thin film according to the present invention.

【図4】本発明の磁化方向制御方法が適用可能なグラニ
ュラー膜を示す模式図。
FIG. 4 is a schematic diagram showing a granular film to which the magnetization direction control method of the present invention can be applied.

【図5】円偏光発生源の構成を示す図。FIG. 5 is a diagram showing a configuration of a circularly polarized light generation source.

【図6】本発明の磁化制御方法を実施するための磁気デ
バイスのさらに他の態様を示す模式図。
FIG. 6 is a schematic diagram showing still another embodiment of a magnetic device for carrying out the magnetization control method of the present invention.

【図7】円偏光発生源からの円偏光の照射方法と磁性薄
膜の磁化の向きとの関係を説明するための模式図。
FIG. 7 is a schematic diagram for explaining the relationship between the method of irradiating circularly polarized light from a circularly polarized light generation source and the direction of magnetization of the magnetic thin film.

【図8】円偏光を半導体側から照射した状態を示す図。FIG. 8 is a diagram showing a state where circularly polarized light is irradiated from the semiconductor side.

【図9】実施例1における円偏光度とFe膜の磁化との
関係を示す図。
9 is a diagram showing the relationship between the degree of circular polarization and the magnetization of the Fe film in Example 1. FIG.

【図10】実施例2において用いられたデバイスの構成
を示す図。
FIG. 10 is a diagram showing a configuration of a device used in Example 2.

【図11】実施例2における円偏光度の変化とそれに対
応する電流変化を示す図。
FIG. 11 is a diagram showing a change in circular polarization degree and a corresponding change in current in Example 2.

【図12】実施例3において用いられたデバイスの構成
を示す図。
FIG. 12 is a diagram showing a configuration of a device used in Example 3.

【符号の説明】[Explanation of symbols]

1……磁性薄膜 2……直接遷移型半導体 3……円偏光発生源 4……中間層 8,9……電極 10……電位差発生源 1 ... Magnetic thin film 2 ... Direct transition semiconductor 3 ... Circularly polarized light source 4 ... Intermediate layer 8, 9 ... Electrode 10 ... Potential difference source

【手続補正書】[Procedure amendment]

【提出日】平成8年5月27日[Submission date] May 27, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】[0001]

【産業上の利用分野】本発明は、磁性体の新しい磁化方
向制御方法およびそれを利用した磁気デバイスに関し、
より詳しくは磁性薄膜が利用される、例えば磁気メモ
リ、磁場発生装置、アクチュエーター、磁気半導体デバ
イス等における磁性薄膜に対する磁化方向制御方法と、
その磁気デバイスへの応用に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new method for controlling the magnetization direction of a magnetic material and a magnetic device using the same.
More specifically, a magnetic thin film is used, for example, a magnetic memory, a magnetic field generator, an actuator, a magnetization direction control method for the magnetic thin film in a magnetic semiconductor device, etc.,
The application to the magnetic device.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、第1に、磁性体に直接または中間層を介
して接した直接遷移型半導体に円偏光を照射すること
で、直接遷移型半導体中に円偏光の偏光方向に基づく極
性を持つスピン偏極電子を励起せしめ、このスピン偏極
電子の極性により前記磁性の磁化の向きを制御するこ
とを特徴とする磁性の磁化方向制御方法を提供する。
In order to solve the above problems, the present invention firstly irradiates circularly polarized light on a direct transition type semiconductor which is in direct contact with a magnetic material or through an intermediate layer, direct transition allowed excited spin-polarized electrons having a polarity based on the polarization direction of the circularly polarized light in the semiconductor, the magnetic body and controlling the magnetization direction of the magnetic member by the polarity of the spin-polarized electrons A method for controlling a magnetization direction is provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁性体に直接または中間層を介して接し
た直接遷移型半導体に円偏光を照射することで、直接遷
移型半導体中に円偏光の偏光方向に基づく極性を持つス
ピン偏極電子を励起せしめ、このスピン偏極電子の極性
により前記磁性薄膜の磁化の向きを制御することを特徴
とする磁性薄膜の磁化方向制御方法。
1. A spin-polarized electron having a polarity based on the polarization direction of circularly polarized light in the direct transitional semiconductor by irradiating the direct transitional semiconductor in contact with a magnetic material directly or via an intermediate layer with circularly polarized light. And controlling the direction of magnetization of the magnetic thin film according to the polarity of the spin-polarized electrons.
【請求項2】 磁性体と、この磁性体に直接または中間
層を介して接した直接遷移型半導体と、この直接遷移型
半導体に円偏光を照射する円偏光発生源とを有すること
を特徴とする磁気デバイス。
2. A magnetic substance, a direct transition type semiconductor in contact with the magnetic substance directly or via an intermediate layer, and a circularly polarized light source for irradiating the direct transition type semiconductor with circularly polarized light. Magnetic device.
【請求項3】 前記磁性体と前記直接遷移型半導体との
間にバイアス電圧を印加するバイアス電圧印加手段を有
することを特徴とする請求項2に記載の磁気デバイス。
3. The magnetic device according to claim 2, further comprising bias voltage applying means for applying a bias voltage between the magnetic body and the direct transition semiconductor.
JP4838395A 1995-03-08 1995-03-08 Magnetizing direction control method of magnetic body and magnetic device equipped therewith Pending JPH08250331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4838395A JPH08250331A (en) 1995-03-08 1995-03-08 Magnetizing direction control method of magnetic body and magnetic device equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4838395A JPH08250331A (en) 1995-03-08 1995-03-08 Magnetizing direction control method of magnetic body and magnetic device equipped therewith

Publications (1)

Publication Number Publication Date
JPH08250331A true JPH08250331A (en) 1996-09-27

Family

ID=12801797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4838395A Pending JPH08250331A (en) 1995-03-08 1995-03-08 Magnetizing direction control method of magnetic body and magnetic device equipped therewith

Country Status (1)

Country Link
JP (1) JPH08250331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538490A (en) * 2006-05-24 2009-11-05 スティッチング カソリーケ ウニベルシテイト, モア パティキュラリ ザ ラドボウド ユニヴァシティー ナイメーヘン メディカル センタ Magneto-optical switching element and method for switching a magnetizable medium
US8526288B2 (en) 2011-04-07 2013-09-03 Samsung Electronics Co., Ltd. Optical elements including light sources and waveguides and information storage devices including the same
CN104603951A (en) * 2012-08-14 2015-05-06 独立行政法人科学技术振兴机构 Spin polarization transistor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538490A (en) * 2006-05-24 2009-11-05 スティッチング カソリーケ ウニベルシテイト, モア パティキュラリ ザ ラドボウド ユニヴァシティー ナイメーヘン メディカル センタ Magneto-optical switching element and method for switching a magnetizable medium
US8345516B2 (en) 2006-05-24 2013-01-01 Stichting Katholieke Universiteit Magneto-optical switching device and method for switching a magnetizable medium
US8526288B2 (en) 2011-04-07 2013-09-03 Samsung Electronics Co., Ltd. Optical elements including light sources and waveguides and information storage devices including the same
CN104603951A (en) * 2012-08-14 2015-05-06 独立行政法人科学技术振兴机构 Spin polarization transistor element

Similar Documents

Publication Publication Date Title
KR100230064B1 (en) Magnetoresistive head and memory device
Liu et al. Symmetry-dependent field-free switching of perpendicular magnetization
US6178112B1 (en) Element exploiting magnetic material and addressing method therefor
JP6719515B2 (en) Spin-orbit torque magnetic element
Williams et al. Magnetic writing on thin films of MnBi
Mihai Miron et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer
US20180166500A1 (en) Two-terminal spintronic devices
JP5229869B2 (en) Nonvolatile optical memory device and method of operating the same
CN108767107A (en) A kind of two-dimentional spin electric device and preparation method thereof of electric field regulation and control
JPS5916358B2 (en) Manufacturing method of magnetic layer
JP4297739B2 (en) Spin-injection magnetization reversal magnetoresistive element using quantum size effect
KR20070048657A (en) Tunnel junction barrier layer comprising a diluted semiconductor with spin sensitivity
KR100780131B1 (en) Magnetic memory, and method for writing the same
JPH08250331A (en) Magnetizing direction control method of magnetic body and magnetic device equipped therewith
FI57673B (en) MAGNETIC DOMAINING
Krumme et al. Ferrimagnetic garnet films for magnetooptic information storage
JPWO2017222038A1 (en) Magnetoresistive element using I-III-VI2 compound semiconductor and manufacturing method thereof, magnetic memory device using the same, and spin transistor
CN111341907A (en) Magnetic tunnel junction, memory cell and magnetic random access memory
JP2011082388A (en) Spintronics device, and logical operation element
KR102251067B1 (en) Magnetic memory device and operating method thereof
JP2008112845A (en) Ferromagnetic material
JP3057153B2 (en) Spin detector
US6949778B2 (en) Array of semiconducting layers for spin injection with high efficiency
Krishtop et al. Atypical Raman Scattering on Magnetic Junctions in Metallic Nanowires
JPH0945074A (en) Memory cell utilizing magnetoresistance effect and amplifying element