JPH08250115A - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JPH08250115A
JPH08250115A JP7051083A JP5108395A JPH08250115A JP H08250115 A JPH08250115 A JP H08250115A JP 7051083 A JP7051083 A JP 7051083A JP 5108395 A JP5108395 A JP 5108395A JP H08250115 A JPH08250115 A JP H08250115A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
capacity
hydrogen storage
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7051083A
Other languages
Japanese (ja)
Inventor
Koichi Mukai
宏一 向井
Takeo Ito
武男 伊藤
Koji Taguchi
幸治 田口
Kazuhiro Takeno
和太 武野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP7051083A priority Critical patent/JPH08250115A/en
Publication of JPH08250115A publication Critical patent/JPH08250115A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a highly long-lived and downsized alkaline secondary battery having excellent charge and discharge characteristic. CONSTITUTION: This alkaline secondary battery has a positive electrode 1a, a negative electrode 1c and an alkaline electrolyte. The negative electrode 1c is formed of a metal containing 5.0g/cm<3> or more of a hydrogen storage alloy represented by the formula LmNiw Cox Mny Alz (wherein Lm represents at least one element selected from rare earth elements including La, and the values of atomic ratios w, x, y, z are 3.90<=w<=4.50, 0.50<=x<=1.20, 0.28<=y<=0.50, 0.28<=z<=0.50, 5.10<=w+x+y+x+z<=5.50), and the ratio of capacity to the positive electrode 1a is set to 1.0-1.5 times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属酸化物を正極活物
質とし、また水素を負極活物質として成る密閉型アルカ
リ二次電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sealed alkaline secondary battery in which a metal oxide is used as a positive electrode active material and hydrogen is used as a negative electrode active material.

【0002】[0002]

【従来の技術】小形コードレス機器の急速な普及に伴っ
て、高容量化された二次電池の要求が高まっている。こ
のような要求に対応する二次電池として、水素吸蔵合金
製の電極を負極、金属酸化物を正極、アルカリ水溶液を
電解液として成る二次電池が注目されている。すなわ
ち、前記構成の二次電池では、水素吸蔵合金を負極と
し、アルカリ水溶液中で電気分解を行うと、負極を成す
水素吸蔵合金自身が生成した水素を吸蔵する。また、ニ
ッケル極など適切な正極を対極として放電を行うと、前
記吸蔵した水素を放出するとともに、この放出された水
素が酸化されて再び水を生成する。つまり、充放電に対
応して可逆的に反応を起こす。そして、前記水素吸蔵合
金を負極とした場合は、従来の代表的な二次電池、すな
わち負極材料としてカドミウムを用いた場合に比べて、
単位重量もしくは単位容積当たりのエネルギー密度を大
きくすることができる。したがって、二次電池の高容量
化を可能にし、また、一方では環境汚染の恐れも少ない
ので、電池特性の良好さと相俟って、有力な携帯形電源
として普及されつつある。
2. Description of the Related Art With the rapid spread of small cordless devices, there is an increasing demand for secondary batteries having a high capacity. As a secondary battery that meets such demands, a secondary battery in which an electrode made of a hydrogen storage alloy is used as a negative electrode, a metal oxide is used as a positive electrode, and an alkaline aqueous solution is used as an electrolytic solution is drawing attention. That is, in the secondary battery having the above structure, when the hydrogen storage alloy is used as the negative electrode and electrolysis is performed in the alkaline aqueous solution, the hydrogen storage alloy itself forming the negative electrode stores the generated hydrogen. Further, when discharging is performed using a suitable positive electrode such as a nickel electrode as a counter electrode, the stored hydrogen is released, and the released hydrogen is oxidized to generate water again. That is, the reaction reversibly occurs in response to charge and discharge. When the hydrogen storage alloy is used as a negative electrode, compared with a conventional typical secondary battery, that is, when cadmium is used as a negative electrode material,
The energy density per unit weight or unit volume can be increased. Therefore, it is possible to increase the capacity of the secondary battery, and on the other hand, there is little risk of environmental pollution, and in combination with good battery characteristics, it is becoming popular as a powerful portable power source.

【0003】なお、前記負極の主要材料を成す水素吸蔵
合金としては、LaNi5 に代表される希土類元素と他
の金属元素とで形成されている合金、希土類元素の代わ
りにランタン系元素の混合系であるミッシュメタル(以
下Mmという)と金属元素とで形成されている合金、あ
るいはMmと複数種の金属元素とで形成されている合金
などが挙げられる。
The hydrogen storage alloy forming the main material of the negative electrode is an alloy formed of a rare earth element represented by LaNi 5 and another metal element, or a mixed system of a lanthanum element instead of the rare earth element. Examples of the alloy include a mischmetal (hereinafter, referred to as Mm) and a metal element, or an alloy formed of Mm and a plurality of kinds of metal elements.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来のアルカリ二次電池、たとえばニッケル水素二次電池
においては、次ぎのような問題がある。先ず、 (a)充放
電の繰り返しで(充放電サイクルの進行で)、負電極を
成す水素吸蔵合金粉末の微粉末化が進行し、いわゆる劣
化を招来する傾向がある。つまり、前記アルカリ二次電
池は、充放電サイクル寿命が低下し易く、充放電サイク
ル寿命のバラツキも大きいという問題が認められる。
However, the above-mentioned conventional alkaline secondary battery, for example, nickel-hydrogen secondary battery, has the following problems. First, (a) by repeating charging / discharging (as the charging / discharging cycle progresses), the hydrogen-absorbing alloy powder forming the negative electrode tends to become finer, causing so-called deterioration. That is, the alkaline secondary battery has a problem that the charge / discharge cycle life is easily reduced and the charge / discharge cycle life varies greatly.

【0005】さらに、 (b)充放電性能、特に過充電時に
安定な性能を保持させるために、正極で容量を規制する
ニッケル水素二次電池では、負極の容量を正極に対し
1.5〜2.5倍に選択設定する必要がある。つまり、前記水
素吸蔵合金を主成分として含む負電極の劣化によって、
負電極における水素の吸・放出能が低下するため、その
分の容量低下量を含め充電や放電のリザーブとして、正
極の容量に対し負極の容量比率を 1.5〜 2.5倍に設定し
ている。したがって、二次電池内に収納装着する負極の
容積が正極の容積に比べて大幅に増大することになり、
結果的に二次電池の小形化、もしくは二次電池の高容量
化が阻害される。
Further, (b) in a nickel-hydrogen secondary battery in which the capacity is regulated by the positive electrode in order to maintain the charge / discharge performance, particularly stable performance during overcharge, the capacity of the negative electrode is different from that of the positive electrode.
It is necessary to select and set to 1.5 to 2.5 times. That is, due to the deterioration of the negative electrode containing the hydrogen storage alloy as a main component,
Since the ability to absorb and release hydrogen in the negative electrode decreases, the capacity ratio of the negative electrode is set to 1.5 to 2.5 times the capacity of the positive electrode as a reserve for charging and discharging, including the amount of capacity decrease. Therefore, the volume of the negative electrode housed and mounted in the secondary battery is significantly increased compared to the volume of the positive electrode,
As a result, downsizing of the secondary battery or increasing the capacity of the secondary battery is hindered.

【0006】本発明者らは、上記二次電池が負極として
具備する水素吸蔵合金の劣化問題を、鋭意検討した結
果、水素吸蔵合金中のCo成分量、負極中に含まれる水素
吸蔵合金量、および正極の容量に対する負極の容量比
が、二次電池のサイクル寿命と相関していることを見出
した。
The inventors of the present invention have made earnest studies on the problem of deterioration of the hydrogen storage alloy contained in the secondary battery as the negative electrode. As a result, the amount of Co component in the hydrogen storage alloy, the amount of hydrogen storage alloy contained in the negative electrode, It was also found that the capacity ratio of the negative electrode to the capacity of the positive electrode is correlated with the cycle life of the secondary battery.

【0007】本発明は上記知見に基づいてなされたもの
で、すぐれた充放電特性を有し、かつ長寿命化および小
形化が図られたアルカリ二次電池の提供を目的とする。
The present invention has been made based on the above findings, and an object of the present invention is to provide an alkaline secondary battery having excellent charge / discharge characteristics and having a long life and a small size.

【0008】[0008]

【課題を解決するための手段】本発明に係るアルカリ二
次電池は、正極、負極およびアルカリ電解液を具備して
成るアルカリ二次電池であって、前記負極が式、LmN
w Cox Mny Alz(ただし、LmはLaを含めた希
土類元素から選ばれた少なくとも1種の元素、原子比
w,x,y,zの値は3.90≦w≦4.50, 0.50≦x≦1.2
0, 0.28≦y≦0.50,0.28≦x≦0.50で、5.10≦w+x
+y+z≦5.50)で示される水素吸蔵合金を5.0g/cm3
以上含有する金属系で構成され、かつ前記正極に対する
容量の比率を 1.0〜 1.5倍に設定して成ることを特徴と
する。
The alkaline secondary battery according to the present invention is an alkaline secondary battery comprising a positive electrode, a negative electrode and an alkaline electrolyte, the negative electrode having the formula: LmN
i w Co x Mn y Al z ( However, Lm represents at least one element selected from rare earth elements including La, atomic ratio w, x, y, z values are 3.90 ≦ w ≦ 4.50, 0.50 ≦ x ≤1.2
0, 0.28 ≦ y ≦ 0.50, 0.28 ≦ x ≦ 0.50, 5.10 ≦ w + x
+ Y + z ≦ 5.50) hydrogen storage alloy 5.0g / cm 3
It is characterized in that it is composed of the above-described metal system and that the capacity ratio to the positive electrode is set to 1.0 to 1.5 times.

【0009】本発明に係るアルカリ二次電池において、
負極の主要材料を成す水素吸蔵合金は、上記したよう
に、式、LmNiw Cox Mny Alzで示される。こ
こで、Ni,Co,Mn,Alの原子比w,x,y,zは、3.90
≦w≦4.50, 0.50≦x≦1.20, 0.28≦y≦0.50,0.28≦
x≦0.50で、かつ5.10≦w+x+y+z≦5.50の範囲で
選択される。特に、Coの原子比xは構成している水素吸
蔵合金の劣化、すなわち充放電サイクル進行に伴う水素
の吸・放出能の低下を抑制するために重要であり、0.50
未満ではその効果がほとんど認められず、また1.20を超
えると逆に水素吸蔵量の低減を招来するので、前記範囲
内に選択される。
In the alkaline secondary battery according to the present invention,
The hydrogen storage alloy constituting the main material of the negative electrode, as described above, wherein shown by LmNi w Co x Mn y Al z . Here, the atomic ratio w, x, y, z of Ni, Co, Mn, Al is 3.90.
≤w≤4.50, 0.50≤x≤1.20, 0.28≤y≤0.50, 0.28≤
It is selected in the range of x ≦ 0.50 and 5.10 ≦ w + x + y + z ≦ 5.50. In particular, the atomic ratio x of Co is important for suppressing the deterioration of the constituent hydrogen-absorbing alloy, that is, the reduction of hydrogen absorption / desorption ability as the charge / discharge cycle progresses.
If it is less than 1, the effect is scarcely recognized, and if it exceeds 1.20, on the contrary, the hydrogen storage amount is reduced, so that it is selected within the above range.

【0010】また、本発明においては、前記水素吸蔵合
金を主成分として成る負極は、前記水素吸蔵合金を少な
くとも5.0g/cm3 の密度で含有している必要がある。す
なわち、含有密度が5.0g/cm3 未満では、主成分として
負極を構成する水素吸蔵合金粉末相互の接触、および水
素吸蔵合金粉末と導電性芯体との導電性を十分に確保し
得ないからである。すなわち、前記のごとく、水素吸蔵
合金粉末の相互接触が容易に確保され、かつ導電性芯体
とも良好な導電性を呈することにより、負電極中の水素
吸蔵合金粉末のほとんどが、電池反応に有効に利用され
るので、前記劣化を抑制する機能を呈するCo原子の組成
比増加に伴って、容量が若干低減する傾向を採っても、
十分な電極容量が得られる。
Further, in the present invention, the negative electrode containing the hydrogen storage alloy as a main component must contain the hydrogen storage alloy at a density of at least 5.0 g / cm 3 . That is, if the content density is less than 5.0 g / cm 3, it is not possible to ensure sufficient contact between the hydrogen-absorbing alloy powders constituting the negative electrode as the main component, and sufficient conductivity between the hydrogen-absorbing alloy powders and the conductive core. Is. That is, as described above, most of the hydrogen storage alloy powder in the negative electrode is effective for the battery reaction, because mutual contact of the hydrogen storage alloy powder is easily ensured, and the conductive core also exhibits good conductivity. Therefore, even if the capacity tends to slightly decrease with an increase in the composition ratio of Co atoms exhibiting the function of suppressing the deterioration,
Sufficient electrode capacity can be obtained.

【0011】さらに、本発明においては、前記水素吸蔵
合金を主成分として成る負極の容量が、正極の容量に対
する比率で 1.0〜 1.5倍に設定される。その理由は、Co
の添加によって電池サイクルの進行に伴う水素の吸・放
出能k低下が抑制されるため、正極の容量に対し負極の
容量比率を 1.0〜 1.5倍に設定すれば十分である。
Further, in the present invention, the capacity of the negative electrode containing the hydrogen storage alloy as a main component is set to 1.0 to 1.5 times the capacity of the positive electrode. The reason is Co
Since the addition of hydrogen chloride suppresses the decrease in hydrogen absorption / desorption capacity k as the battery cycle progresses, it is sufficient to set the capacity ratio of the negative electrode to 1.0 to 1.5 times the capacity of the positive electrode.

【0012】[0012]

【作用】本発明に係るアルカリ二次電池によれば、水素
吸蔵合金を主成分として成る負極は、水素吸蔵合金を形
成する所定成分比(原子比)のCo原子によって、充放電
サイクル進行に伴う水素の吸・放出能の低下を効果的に
抑制する。一方、水素吸蔵合金を主成分として成る負極
は、水素吸蔵合金粉末同士の良好な接触性などに伴って
電池反応が有効に進められ、アルカリ二次電池の大形化
を抑えながら高容量化を図り得ることになる。
According to the alkaline secondary battery of the present invention, the negative electrode containing the hydrogen storage alloy as the main component is accompanied by the progress of the charging / discharging cycle due to the Co atoms having the predetermined component ratio (atomic ratio) forming the hydrogen storage alloy. Effectively suppress the decrease of hydrogen absorption / desorption ability. On the other hand, in a negative electrode containing a hydrogen storage alloy as a main component, the battery reaction is effectively promoted due to good contact between the hydrogen storage alloy powders and the like, while increasing the capacity while suppressing the size increase of the alkaline secondary battery. It can be planned.

【0013】[0013]

【実施例】以下図1を参照して、本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to FIG.

【0014】この実施例は、理論容量1200 mAhのニッケ
ル水素二次電池の場合である。
This example is for a nickel-hydrogen secondary battery with a theoretical capacity of 1200 mAh.

【0015】先ず、式,LmNi4.4-x Cox Mn0.3
Al0.3(ただし式中xは、 0.2, 0.5, 0.8, 1.2も
しくは 1.6)で示される水素吸蔵合金粉末をそれぞれ製
造し、不活性雰囲気下,1000℃で10時間アニールを行っ
た。次いで、前記各水素吸蔵合金粉末をそれぞれ篩分け
し、25〜75μm の粒子を取り出し、これら各水素吸蔵合
金粒子に、結着剤としてポリテトラフルオロエチレン,
ポリアクリル酸ソーダ,およびカルボキシメチルセルロ
ースを、導電剤としてカーボンブラックを、さらに水を
加えて6種類のペーストを混練調製した。その後、前記
ペーストをパンチドメタルに塗布・乾燥・プレスし、裁
断して水素吸蔵合金電極を作成した。なお、前記ペース
トの塗布・充填工程においては、ペーストの塗布・充填
量を調節して、水素吸蔵合金電極中における水素吸蔵合
金の含有密度をそれぞれ4.0g/cm3 ,5.0g/cm3 ,6.0g
/cm3 の3種類とした。
First, the formula, LmNi 4.4-x Co x Mn 0.3
Hydrogen storage alloy powders represented by Al 0.3 (where x is 0.2, 0.5, 0.8, 1.2 or 1.6) were manufactured and annealed at 1000 ° C. for 10 hours in an inert atmosphere. Next, each of the hydrogen-absorbing alloy powders is screened, particles of 25 to 75 μm are taken out, and polytetrafluoroethylene as a binder is added to each of the hydrogen-absorbing alloy particles.
Six kinds of pastes were kneaded and prepared by adding sodium polyacrylate and carboxymethyl cellulose, carbon black as a conductive agent, and water. Then, the paste was applied to a punched metal, dried, pressed, and cut to prepare a hydrogen storage alloy electrode. In the paste coating / filling step, the paste coating / filling amount is adjusted to adjust the content density of the hydrogen storage alloy in the hydrogen storage alloy electrode to 4.0 g / cm 3 , 5.0 g / cm 3 , 6.0, respectively. g
There are 3 types of / cm 3 .

【0016】一方、水酸化ニッケルおよび酸化コバルト
を含有するペーストを調製し、このペーストをニッケル
メッキ式繊維基板に充填/乾燥・プレスし、裁断して非
焼結式ニッケル正極を作成した。
On the other hand, a paste containing nickel hydroxide and cobalt oxide was prepared, and the paste was filled / dried / pressed on a nickel-plated fiber substrate and cut to prepare a non-sintered nickel positive electrode.

【0017】前記非焼結式ニッケル正極,厚さ0.20mmの
ポリアミド製セパレータおよび水素吸蔵合金電極(負電
極)の積層体を巻装・捲回して電極群作成した。この電
極群をAAサイズの容器に装填し、水酸化カリウム(KOH
) 7規定および水酸化リチウム(LiOH) 1規定の電解
液を注入したのち封口して、正極容量1200 mAh,負極容
量2000 mAhの二次電池を、比較例を含め15種類それぞれ
組み立てた。
An electrode group was prepared by winding and winding a laminate of the non-sintered nickel positive electrode, a 0.20 mm thick polyamide separator and a hydrogen storage alloy electrode (negative electrode). This electrode group is loaded into an AA size container, and potassium hydroxide (KOH
) After injecting 7N and lithium hydroxide (LiOH) 1N electrolyte solution and sealing it, 15 types of secondary batteries including a comparative example and a positive electrode capacity of 1200 mAh and a negative electrode capacity of 2000 mAh were assembled.

【0018】図1は前記二次電池の構成を一部切り欠き
断面図として示したもので、1は外部リード線を備えた
正極1a,セパレータ1bおよび水素吸蔵合金を主成分とし
て成る負極1cを捲回して成る電極群、2は前記電極群1
を装填した負極端子を兼ねる筒状外装ケース(容器)で
ある。また、3は前記筒状外装ケース2の開口部に、シ
ールドパッキング4を介して、嵌合・装着して液密に封
止する封止体であり、この封止体3は正極端子3a,絶縁
板3bおよび安全弁3cを具備し他構成を成している。さら
に、5は前記封止体3によって液密に封止された筒状外
装ケース2において、前記電極群1の端面部に対接し、
電極群1を絶縁固定する内部絶縁板、6は正極1a外部リ
ード線と封止体3の正極端子3aとを電気的に接続する導
体部である。 前記組み立て作成した各二次電池につい
て、45℃の高温下で充電:1200mA,90分、放電:1200m
A,カットオフ電圧 1 Vの加速サイクル試験の条件で、
充放電を繰り返し、放電容量が 900 mAh以下になるのに
要するサイクル数をそれぞれ測定してサイクル寿命とし
た。
FIG. 1 is a partially cutaway sectional view showing the structure of the secondary battery. Reference numeral 1 denotes a positive electrode 1a having an external lead wire, a separator 1b, and a negative electrode 1c containing hydrogen storage alloy as a main component. An electrode group formed by winding, 2 is the electrode group 1
Is a cylindrical outer case (container) that also serves as a negative electrode terminal. Further, 3 is a sealing body which is fitted / installed in the opening of the cylindrical outer case 2 via a shield packing 4 to seal liquid tightly, and the sealing body 3 is a positive electrode terminal 3a, It has an insulating plate 3b and a safety valve 3c to constitute another structure. Further, 5 is in contact with the end face portion of the electrode group 1 in the cylindrical outer case 2 liquid-tightly sealed by the sealing body 3,
An internal insulating plate that insulates and fixes the electrode group 1, and a conductor portion 6 that electrically connects the external lead wire of the positive electrode 1a and the positive electrode terminal 3a of the sealing body 3. Regarding each of the assembled secondary batteries, at a high temperature of 45 ° C, charge: 1200mA, 90 minutes, discharge: 1200m
A, under the condition of accelerated cycle test with cut-off voltage of 1 V,
The cycle life was measured by repeating the charge and discharge and measuring the number of cycles required for the discharge capacity to become 900 mAh or less.

【0019】前記サイクル寿命試験の結果を、水素吸蔵
合金中のCo原子比、負極中の水素吸蔵合金密度、 1サイ
クル目の容量(初期容量)、容量比率(負極容量 mAh/
正極容量 mAh)とともに表1に示す。
The results of the cycle life test are shown as the Co atom ratio in the hydrogen storage alloy, the hydrogen storage alloy density in the negative electrode, the first cycle capacity (initial capacity), the capacity ratio (negative electrode capacity mAh /
It is shown in Table 1 together with the positive electrode capacity mAh).

【0020】[0020]

【表1】 上記表1から分かるように、本発明に係るニッケル水素
二次電池の場合は、いずれも初期容量が高くてすぐれた
電池特性を有するばかりでなく、サイクル寿命も大き
く、また、正極および負極の容量比率も 1.0〜 1.5と低
いので、携帯形電源としてすぐれた機能を呈する。
[Table 1] As can be seen from Table 1 above, in the case of the nickel-hydrogen secondary battery according to the present invention, not only the initial capacity is high and the battery characteristics are excellent, but also the cycle life is long, and the capacity of the positive electrode and the negative electrode is large. The ratio is as low as 1.0 to 1.5, so it has an excellent function as a portable power supply.

【0021】上記では、理論容量1200 mAhのニッケル水
素二次電池の例について説明したが、本発明はこれに限
定されるものでなく、発明の趣旨を逸脱しない範囲でい
ろいろの変形を採り得る。たとえば、正極活物質は水酸
化ニッケルもしくは酸化コバルトを添加した水酸化ニッ
ケル以外の金属酸化物もしくは水酸化物などであっても
よい。
Although an example of a nickel-hydrogen secondary battery with a theoretical capacity of 1200 mAh has been described above, the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention. For example, the positive electrode active material may be a metal oxide or hydroxide other than nickel hydroxide to which nickel hydroxide or cobalt oxide is added.

【0022】[0022]

【発明の効果】上記説明したように、本発明によれば、
水素吸蔵合金を主成分として成る負電極を備え、かつ水
素を負極の活物質とする一方、金属酸化物を正極活物質
として成るアルカリ二次電池の実用性をさらに向上させ
ることが可能となる。すなわち、従来多くの期待・関心
を寄せられながら、なお実用上問題視性されていた充放
電のサイクル寿命問題、さらには小形性を確保しながら
の電池容量の向上問題などが解消・改善され、アルカリ
二次電池の実用化の推進に大きく寄与するものといえ
る。
As described above, according to the present invention,
It is possible to further improve the practicability of an alkaline secondary battery including a negative electrode containing a hydrogen storage alloy as a main component and using hydrogen as an active material of a negative electrode while using a metal oxide as a positive electrode active material. In other words, while many expectations and interests have been received in the past, the problem of charge / discharge cycle life, which has been regarded as a problem in practical use, and the problem of improving battery capacity while ensuring compactness have been resolved and improved. It can be said that it will greatly contribute to the promotion of practical use of alkaline secondary batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る筒型状のアルカリ二次電池の構造
例を示す一部切り欠き断面図。
FIG. 1 is a partially cutaway sectional view showing a structural example of a tubular alkaline secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1……電池群 1a……正極 1b……セパレータ
ー 1c……負極 2……筒状外装ケース 3……封止体 3a……
電極端子 3b……絶縁板 3c……安全弁
4……シールパッキング 5……内部絶縁板 6
……導電体
1 …… Battery group 1a …… Positive electrode 1b …… Separator 1c …… Negative electrode 2 …… Cylindrical outer case 3 …… Encapsulation body 3a ……
Electrode terminal 3b …… Insulation plate 3c …… Safety valve
4 …… Seal packing 5 …… Internal insulating plate 6
……conductor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武野 和太 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuta Takeno 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極およびアルカリ電解液を具備
して成るアルカリ二次電池であって、 前記負極が式、LmNiw Cox Mny Alz(ただ
し、LmはLaを含めた希土類元素から選ばれた少なくと
も1種の元素、原子比w,x,y,zの値は3.90≦w≦
4.50, 0.50≦x≦1.20, 0.28≦y≦0.50,0.28≦x≦0.
50で、5.10≦w+x+y+z≦5.50)で示される水素吸
蔵合金を5.0g/cm3 以上含有する金属系で構成され、か
つ前記正極に対する容量の比率を 1.0〜 1.5倍に設定し
て成ることを特徴とするアルカリ二次電池。
1. A positive electrode, an alkaline secondary battery comprising comprises a negative electrode and an alkaline electrolyte, the negative electrode wherein the LmNi w Co x Mn y Al z ( where a rare earth element and Lm, including La Value of at least one element selected and atomic ratio w, x, y, z is 3.90 ≦ w ≦
4.50, 0.50 ≤ x ≤ 1.20, 0.28 ≤ y ≤ 0.50, 0.28 ≤ x ≤ 0.
50, 5.10 ≦ w + x + y + z ≦ 5.50) composed of a metal system containing 5.0 g / cm 3 or more of a hydrogen storage alloy and having a capacity ratio of 1.0 to 1.5 times the positive electrode. And alkaline secondary battery.
JP7051083A 1995-03-10 1995-03-10 Alkaline secondary battery Pending JPH08250115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7051083A JPH08250115A (en) 1995-03-10 1995-03-10 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7051083A JPH08250115A (en) 1995-03-10 1995-03-10 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH08250115A true JPH08250115A (en) 1996-09-27

Family

ID=12876933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7051083A Pending JPH08250115A (en) 1995-03-10 1995-03-10 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH08250115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602639B1 (en) 1997-12-26 2003-08-05 Toyota Jidosha Kabushiki Kaisha Process for producing hydrogen storage alloy and process for producing hydrogen storage alloy electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602639B1 (en) 1997-12-26 2003-08-05 Toyota Jidosha Kabushiki Kaisha Process for producing hydrogen storage alloy and process for producing hydrogen storage alloy electrode
US6942947B2 (en) 1997-12-26 2005-09-13 Toyota Jidosha Kabushiki Kaisha Hydrogen storage alloy, process for producing hydrogen storage alloy, hydrogen storage alloy electrode, process for producing hydrogen storage alloy electrode, and battery
US7223497B2 (en) 1997-12-26 2007-05-29 Toyota Jidosha Kabushiki Kaisha Hydrogen storage alloy, process for producing hydrogen storage alloy, hydrogen storage alloy electrode, process for producing hydrogen storage alloy electrode, and battery

Similar Documents

Publication Publication Date Title
US5451475A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery using nickel positive electrode
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
EP0923146B1 (en) Alkaline storage battery
EP0477461B2 (en) Nickel/hydrogen storage battery and method of manufacturing the same
JPH0528992A (en) Nickel positive pole for alkali storage battery and nickel-hydrogen storage battery using nickel positive pole
EP0170519B1 (en) A method of producing a sealed metal oxide-hydrogen storage cell
JP2001143745A (en) Nickel hydrogen storage battery
JPH02239566A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH02291665A (en) Alkali battery and manufacture of its negative electrode
JP4010630B2 (en) Hydrogen storage alloy electrode
JPH04212269A (en) Alkaline storage battery
JPH08250115A (en) Alkaline secondary battery
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2713881B2 (en) Sealed metal oxide / hydrogen battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JPH0613077A (en) Hydrogen storage electrode
JP3012658B2 (en) Nickel hydride rechargeable battery
JPH08321302A (en) Hydrogen storage electrode
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3343413B2 (en) Alkaline secondary battery
JP2680650B2 (en) Sealed alkaline storage battery and manufacturing method thereof
JP3221040B2 (en) Alkaline storage battery
JP3392700B2 (en) Alkaline secondary battery
JP2000030702A (en) Nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040420