JPH0824885A - Biological treatment of waste water - Google Patents

Biological treatment of waste water

Info

Publication number
JPH0824885A
JPH0824885A JP6169116A JP16911694A JPH0824885A JP H0824885 A JPH0824885 A JP H0824885A JP 6169116 A JP6169116 A JP 6169116A JP 16911694 A JP16911694 A JP 16911694A JP H0824885 A JPH0824885 A JP H0824885A
Authority
JP
Japan
Prior art keywords
wastewater
sludge
waste water
biological treatment
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6169116A
Other languages
Japanese (ja)
Inventor
Kazuo Fukunaga
和雄 福永
Hideki Kamiyoshi
秀起 神吉
Masahito Uei
正仁 植井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6169116A priority Critical patent/JPH0824885A/en
Publication of JPH0824885A publication Critical patent/JPH0824885A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To treat even bulking sludge with the effective use of a biological waste water treatment method by causing an active sludge in which filiform microbes are predominant to come into contact with waste water by mixing, and filtering the mixture by a precision filtration membrane. CONSTITUTION:Waste water 1 discharged from a refreshing drink manufacturing plant is stored once in an aeration tank 2 containing seed sludge in which filiform microbes are predominant. Next, the sludge mixed with the water 1 is aerated by blowing in air from the bottom of the aeration tank 2, and N salt 7 and P salt 8 are added to and mixed with an obtained mixed liquid 9. After that, the mixed liquid 9 is sucked or decompressed through a precision filtration membrane 11 immersed in the aeration tank 2, and is discharged as a treated water 4 after filtration. In this case, the concentration of dissolved oxygen in the mixed liquid is 1mg/L or less or at least 3mg/L, and if the waste water is in a nutrient-poor state, it is treated by maintaining a nutritive balance of the waste water at the BOD:N:P of 100:<=1:>=0.1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,産業廃水,下水および
し尿等の廃水の生物的処理方法,ならびに湖沼等の閉鎖
系水系および河川水の浄化等における廃水の生物的処理
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological treatment method for wastewater such as industrial wastewater, sewage and night soil, and a biological treatment method for wastewater in purification of closed system such as lakes and river water.

【0002】[0002]

【従来の技術】従来の廃水の生物的処理方法は,図2に
示すように沈殿汚泥槽を用いた活性汚泥法が広く実用化
されていた。従来技術による廃水の生物的処理方法を図
2により説明すると,1は産業廃水や下水およびし尿等
の廃水,5は混合攪拌(以下「曝気」と記す)のための
空気,2は曝気槽で,該下部から空気5を吹き込むこと
により,活性汚泥といわれる微生物群の集合の塊(以下
「フロック」と記す)と廃水1とを曝気して混合接触さ
せる槽である。7および8は曝気槽2に注入するN塩お
よびP塩,3は曝気槽2で曝気した後の処理水4と活性
汚泥を沈殿分離する沈殿槽,6は沈殿槽3で沈降した活
性汚泥で曝気槽2に返送される返送汚泥であり,再度廃
水1との接触に使用される。
2. Description of the Related Art As a conventional biological treatment method for wastewater, an activated sludge method using a settling sludge tank as shown in FIG. 2 has been widely put into practical use. The biological treatment method of wastewater according to the prior art will be described with reference to FIG. 2. 1 is industrial wastewater or wastewater such as sewage and night soil, 5 is air for mixing and stirring (hereinafter referred to as “aeration”), and 2 is an aeration tank. By blowing air 5 from the lower part, a tank for aeration and mixing contact of the waste water 1 with the agglomerates of aggregates of microorganisms called activated sludge (hereinafter referred to as “floc”) is brought into contact. 7 and 8 are N salt and P salt to be injected into the aeration tank 2, 3 is a settling tank for precipitating and separating the treated water 4 and the activated sludge after aeration in the aeration tank 2, and 6 is an activated sludge settled in the settling tank 3. The sludge is returned to the aeration tank 2 and is used again for contact with the wastewater 1.

【0003】廃水の生物的処理方法の際に添加されるN
とPは,その多くは処理水に残存するため,放流先の富
栄養化を助長することになり,NとPは極力少なくしな
ければならない。一方,NとPを少なくした場合には,
バルキング汚泥の発生を助長するというジレンマがあ
る。そのため,従来の生物的処理方法には必ず後処理と
しての硝化脱窒素法や凝縮沈殿法によって,NとPの除
去装置が必要であった。
N added during biological treatment of wastewater
Most of P and P remain in the treated water, which promotes eutrophication at the discharge destination, and N and P must be reduced as much as possible. On the other hand, when N and P are reduced,
There is a dilemma of promoting the generation of bulking sludge. Therefore, the conventional biological treatment method always requires an apparatus for removing N and P by a nitrification denitrification method or a condensation precipitation method as a post-treatment.

【0004】また,従来の活性汚泥法において,しばし
ば重大な障害をもたらす原因の一つにバルキングの発生
があった。ここで「バルキング」とは,広義には「活性
汚泥の沈降性が悪化し,自然沈降ではそれが分離できな
い状態」と総称されるが,狭義には「圧密性の低下,す
なわち,膨化により沈降が悪化した状態」をいう。
In the conventional activated sludge method, bulking is often one of the causes of serious damage. The term "bulking" is used here in a broad sense to refer to "a condition in which the settling property of activated sludge deteriorates and it cannot be separated by natural settling". Has deteriorated. "

【0005】したがって,活性汚泥を水と分離して回収
することができなければ,廃水の生物的処理方法には使
用できず,このため一旦バルキングが発生した場合に
は,該処理上重大な障害をもたらしている。
Therefore, if activated sludge cannot be separated from water and recovered, it cannot be used in a biological treatment method of wastewater. Therefore, if bulking occurs once, a serious obstacle to the treatment will occur. Is brought.

【0006】ところで,バルキングの発生原因と該対策
については,従来から多数の研究がされているが,該現
象の原因としては,凝縮性不良,比重減少,圧密
性低下による3つのタイプに大別できる。前記凝縮性
不良と比重減少の沈殿性悪化現象は,発生しても比較
的判断しやすく,また対処しやすい場合が多い。しか
し,これらに比べての圧密性低下の発生原因は,直接
微生物が関与しているために非常に複雑で,根本的な解
決方法は見つかっていない。
By the way, there have been many studies on the cause of the bulking and its countermeasure, but the causes of the phenomenon are roughly classified into three types due to poor condensability, decrease in specific gravity and decrease in compaction. it can. In many cases, the phenomenon of poor condensability and deterioration of settling property due to decrease in specific gravity is relatively easy to determine and easy to deal with. However, the cause of the decrease in compaction compared to these is very complicated because the microorganisms are directly involved, and a fundamental solution has not been found.

【0007】ここで,「圧密性低下」の現象には,糸
状性バルキングと,非糸状性バルキングの2つのタイ
プがあり,「糸状性バルキング」とは,活性汚泥注の菌
叢(各種微生物の各菌の占める割合をいう)の変化に伴
い,糸状性微生物が優占的となったものをいい,また,
「非糸状性バルキング」とは,フロック形成細菌(Zoogl
ea) の代謝産物として高粘性多糖類が多量に蓄積される
ときに生じるものをいう。
There are two types of "decrease in compaction" phenomenon, filamentous bulking and non-filamentous bulking, and "filamentous bulking" is the flora of activated sludge injection (of various microorganisms). It means that the filamentous microorganisms have become predominant due to the change of (the proportion of each bacterium).
"Non-filamentous bulking" means floc-forming bacteria (Zoogl
It is produced when a large amount of highly viscous polysaccharide is accumulated as a metabolite of (ea).

【0008】しかし,バルキングの発生原因については
多岐にわたっており,相互に複雑に関連しあっているた
め,まだ十分に解明されておらず,その発生防止も困難
である。したがって,一度バルキングが発生した場合,
バルキングを除去する根本的な決め手がなく,現状では
バルキング汚泥を正常な活性汚泥と置換するしか方法が
ない。また,廃水の特性から,正常な活性汚泥と置換し
た場合にも,再度バルキングが発生し易くなるという問
題があった。
However, the causes of bulking are diverse, and because they are intricately related to each other, they have not yet been sufficiently clarified and it is difficult to prevent them. Therefore, if bulking occurs once,
There is no fundamental deciding factor to remove bulking, and currently there is no alternative but to replace bulking sludge with normal activated sludge. In addition, due to the characteristics of wastewater, bulking is likely to occur again when replaced with normal activated sludge.

【0009】[0009]

【発明が解決しようとする課題】本発明は,一旦発生す
ると根本的に除去できないバルキング汚泥でも,廃水の
生物的処理方法に有効に使用することができ,また人為
的に発生させたバルキング汚泥を積極的に利用して,フ
ロック形成菌が優占的である一般の活性汚泥処理水より
も優れた水質とする廃水の生物的処理方法を提供するこ
とを目的とする。
The present invention can effectively use bulking sludge that cannot be fundamentally removed once it is generated, and can effectively use the bulking sludge that has been artificially generated. It is an object of the present invention to provide a biological treatment method of wastewater which is actively used and has better water quality than general activated sludge treated water in which floc-forming bacteria are dominant.

【0010】[0010]

【課題を解決するための手段】「バルキング汚泥」は,
自然沈降分離操作上重大な障害を及ぼすが,その反面バ
ルキング汚泥の上澄水水質は,一般の活性汚泥の処理に
比べて,非常に透明で懸濁物質(SS)が少なく,BO
DとCODなども極めて少ない。本発明者らは,従来か
ら生物処理上最大の課題とされていたバルキング汚泥の
優れた特性に着目し,鋭意研究の結果,それを積極的に
利用する方法を完成するに至った。本発明は,廃水の生
物的処理方法における前記課題を解決するために,糸状
性微生物が優占的な活性汚泥と廃水を混合して接触さ
せ,該混合液を精密ろ過膜によってろ過することを特徴
とする。
[Means for solving the problem] "Bulking sludge" is
Although it causes serious obstacles to the operation of natural sedimentation separation, the quality of the supernatant water of bulking sludge is much more transparent and has less suspended solids (SS) than that of general activated sludge treatment.
Very little D and COD. The present inventors focused their attention on the excellent characteristics of bulking sludge, which has hitherto been regarded as the greatest problem in biological treatment, and as a result of earnest research, they have completed a method of positively utilizing it. In order to solve the above-mentioned problems in the biological treatment method of wastewater, the present invention comprises mixing activated sludge in which filamentous microorganisms are dominant and contacting wastewater, and contacting the mixture with a microfiltration membrane. Characterize.

【0011】[0011]

【作用】本発明による廃水の生物的処理方法において
は,前述したように自然発生的または人為的に発生させ
た糸状性微生物が優占的な活性汚泥と,廃水を混合して
接触させることによりつぎの作用が生じる。
In the biological treatment method for wastewater according to the present invention, as described above, the wastewater is mixed and brought into contact with activated sludge in which filamentous microorganisms generated naturally or artificially are dominant. The following effects occur.

【0012】(1)NとPを貧栄養状態にし,および/
または混合液の溶存酸素濃度(以下「DO」と記す)を
0.1〜0.5 mg/lの微好気状態または 3.0 mg/l以上の
過曝気状態となるように曝気することにより,糸状性微
生物が優占的に増殖する。 (2)糸状性微生物が優占種となった活性汚泥は,その
マトリックス(微生物同志が絡み合った集合体)内に,
廃水中の微細な懸濁物質および糸状性微生物の微生物を
閉じ込める。
(1) N and P are put into an oligotrophic state, and /
Alternatively, the dissolved oxygen concentration of the mixed solution (hereinafter referred to as “DO”)
Filamentous microorganisms proliferate predominantly by aeration to a microaerobic state of 0.1 to 0.5 mg / l or over-aeration of 3.0 mg / l or more. (2) Activated sludge, in which filamentous microorganisms have become the dominant species, is contained in its matrix (aggregate in which microorganisms are entwined with each other).
Entraps fine suspended matter and filamentous microorganisms in wastewater.

【0013】(3)曝気混合液を好気性下の雰囲気にお
くことにより,糸状性微生物は自己酸化を促進する。ま
た,栄養源としてのNとPを極度に少ない貧栄養状態に
置くことにより,自己酸化をさらに促進する。 (4)糸状性微生物の増殖速度と自己酸化速度がほぼ釣
り合って,混合液のMLSS濃度(浮遊物質濃度)は60
00〜 15000 mg/lで平衡状態に達する。
(3) The filamentous microorganisms promote autooxidation by placing the aeration mixture in an aerobic atmosphere. Also, by placing N and P as nutrient sources in an extremely low oligotrophic state, autooxidation is further promoted. (4) The MLSS concentration (suspended substance concentration) of the mixed solution is 60 because the growth rate of filamentous microorganisms and the autooxidation rate are almost balanced.
Equilibrium is reached at 00-15000 mg / l.

【0014】[0014]

【実施例】以下,本発明の一実施例の系統図を示す図1
に基づいて具体的に説明する。ここでは代表例として廃
水が清涼飲料の工業廃水の場合で説明するが,本発明は
これに限定されるものではなく,乳業,醸造,魚介類缶
詰等の食品工業廃水やエチレン,ブタノール等石油化学
等の廃水であっても同様である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 showing a system diagram of an embodiment of the present invention.
It will be specifically described based on. Here, as a representative example, the case where the wastewater is an industrial wastewater of a soft drink will be described, but the present invention is not limited to this, and the wastewater of the food industry such as dairy industry, brewing, canned seafood, and petrochemicals such as ethylene and butanol The same applies to wastewater such as.

【0015】1は清涼飲料工場から排出される廃水であ
る。廃水1は一旦2の曝気槽に貯留されるが,曝気槽2
にはあらかじめ糸状性微生物が優占的な種汚泥13を入
れて混合し(図1では図示せず),曝気槽2下部より空
気5を吹き込んで曝気し,混合液9を作る。さらに混合
液9にはN塩7およびP塩8を該混合液9に添加混入さ
せた後,曝気槽2に浸漬した精密ろ過膜11を介して吸
引または減圧によりろ過ポンプ10にてろ過し,処理水
4を得る。ここで12は,ろ過ポンプ10の起動・停止
の制御のために使用されるタイマーである。
1 is waste water discharged from the soft drink factory. The wastewater 1 is once stored in the aeration tank 2 but the aeration tank 2
The seed sludge 13 in which the filamentous microorganisms are predominant is put in and mixed (not shown in FIG. 1) in advance, and air 5 is blown from the lower part of the aeration tank 2 to aerate to prepare a mixed solution 9. Further, N salt 7 and P salt 8 are added to and mixed with the mixed solution 9, and then filtered by suction or reduced pressure with a filtration pump 10 through a microfiltration membrane 11 immersed in the aeration tank 2, Treated water 4 is obtained. Here, 12 is a timer used for controlling the start / stop of the filtration pump 10.

【0016】前記廃水1は,容積負荷が 0.5〜1.5kg/m3
day となるように曝気槽2に注入する。これは近年の清
涼飲料工場において,消費者の嗜好の多様化に伴う多品
種の飲料の製造により,その廃水の汚濁物質(BODお
よびCOD等)の成分が単一なものから複雑なものへと
変化してきており,そのBOD濃度は1000〜2000 mg/l
と,従来に比べて比較的高くなる傾向にあり,バルキン
グを発生させやすい一因ともなっている。
The waste water 1 has a volumetric load of 0.5 to 1.5 kg / m 3
Inject it into the aeration tank 2 so that it becomes a day. This is because in recent soft drink factories, due to the production of many kinds of beverages with the diversification of consumers' tastes, the components of wastewater pollutants (BOD and COD, etc.) are changed from single to complex. It has been changing, and its BOD concentration is 1000-2000 mg / l
As a result, it tends to be relatively higher than in the past, which is one of the reasons why bulking easily occurs.

【0017】ここで,人為的にバルキング汚泥を発生さ
せるためには,廃水1の通水開始後少なくとも4〜7日
間は,BOD:N:P= 100:1〜0.5 :0.1 〜0.05の
貧栄養状態となるように,N塩7とP塩8を曝気槽2に
注入する必要がある。栄養源としてのNとPが,前記割
合で含まれるような産業廃水,下水等については当然な
がらNとPを添加する必要はない。
Here, in order to artificially generate the bulking sludge, BOD: N: P = 100: 1 to 0.5: 0.1 to 0.05 of poor nutrition for at least 4 to 7 days after the start of the passage of the wastewater 1. It is necessary to inject the N salt 7 and the P salt 8 into the aeration tank 2 so as to be in the state. Naturally, it is not necessary to add N and P to industrial wastewater, sewage, etc. in which N and P as nutrient sources are contained in the above proportions.

【0018】N塩7としては,具体的には尿素,硫酸ア
ンモニウム.塩化アンモニウム等のアンモニウム塩およ
びアンモニア水等が使用される。P塩8としては,具体
的にはリン酸二カリウム,リン酸二ナトリウム,リン酸
一カリウム,リン酸一ナトリウム,リン酸アンモニウム
等のリン酸塩が使用できるが,その場合水溶性塩類を使
用することが好ましい。
Specific examples of the N salt 7 include urea and ammonium sulfate. Ammonium salts such as ammonium chloride and aqueous ammonia are used. As the P salt 8, specifically, phosphates such as dipotassium phosphate, disodium phosphate, monopotassium phosphate, monosodium phosphate, and ammonium phosphate can be used, in which case water-soluble salts are used. Preferably.

【0019】なお既に稼働している下水または廃水の処
理設備活性汚泥を種汚泥として,曝気槽2のMLSS濃
度が 500〜1000 mg/lとなるように,曝気槽2にあらか
じめ混入しておく。できるだけ早く糸状性バルキング汚
泥を得るためには,既に糸状性微生物が優占的なバルキ
ング汚泥を種汚泥として使用した方がよい。一般に該汚
泥はSVI(スラッジ容積指標)が 200 ml/g以上であ
り,その値を基準に選定することができるが,その際検
鏡によって汚泥の形態を確認する方が好ましい。
The sewage or wastewater treatment facility which is already in operation is mixed in advance with the aeration tank 2 as activated sludge so that the MLSS concentration in the aeration tank 2 is 500 to 1000 mg / l. In order to obtain filamentous bulking sludge as soon as possible, it is better to use bulking sludge, which is already predominantly filamentous microorganisms, as seed sludge. In general, the sludge has an SVI (sludge volume index) of 200 ml / g or more, and the sludge can be selected on the basis of the value. At that time, it is preferable to confirm the sludge form by a microscope.

【0020】廃水1と活性汚泥の混合液9のDOは,1.
0 mg/l以下(微好気性の状態)または 3.0〜7.5 mg/
l(過曝気の状態)とし,好ましくは 0.1〜0.5 mg/l
または4.0 mg/l以上となるように空気5で曝気混合す
る。この状態を維持することによって,バルキング汚泥
が比較的早く得られる。
The DO of the mixed liquid 9 of wastewater 1 and activated sludge is 1.
0 mg / l or less (microaerobic state) or 3.0 to 7.5 mg /
1 (overaeration state), preferably 0.1-0.5 mg / l
Alternatively, aerate and mix with air 5 so that the concentration becomes 4.0 mg / l or more. By maintaining this condition, bulking sludge can be obtained relatively quickly.

【0021】これはつぎの理由による。すなわち,糸状
性微生物は,その容積に対する表面積がフロック形成菌
に比して著しく大きい。一般的に微生物の呼吸率が酸素
律速となるDOが 0.5 mg/l以下の微好気性で長時間維
持された場合,フロック形成菌よりも酸素摂取ははるか
に有利となり,相対的に糸状性微生物が優勢となってく
る。また,糸状性微生物は好気性または通気嫌気性下で
も増殖しやすいものが多く,フロック形成菌よりもダメ
ージが少ないためである。
This is for the following reason. That is, the surface area of the filamentous microorganism with respect to its volume is significantly larger than that of floc-forming bacteria. In general, when DO, where the respiration rate of microorganisms is oxygen-limited, is maintained at 0.5 mg / l or less under microaerobic conditions for a long time, oxygen uptake becomes much more advantageous than floc-forming bacteria, and relatively filamentous microorganisms Is becoming dominant. In addition, many filamentous microorganisms easily grow even under aerobic or aerobic anaerobic conditions, and they are less damaged than floc-forming bacteria.

【0022】一方,DOが 3.0 mg/l以上となった場
合,フロック形成菌はフロックを解体して自己酸化を起
こしやすくなるのに対し, 糸状性微生物は自己酸化を起
こしやすくはなるが, フロックが解体する等の現象は生
じない。この混合液9は,曝気槽2内に浸漬した精密ろ
過膜11を介し,吸引または減圧するろ過ポンプ10を
運転することによってろ過し,処理水4を得る。
On the other hand, when the DO was 3.0 mg / l or more, floc-forming bacteria were likely to disassemble the flocs to cause autooxidation, whereas filamentous microorganisms were more likely to undergo autooxidation, but flocs were more likely to undergo autooxidation. There is no phenomenon such as dismantling. The mixed liquid 9 is filtered by operating a filtration pump 10 that sucks or reduces pressure through a microfiltration membrane 11 immersed in the aeration tank 2 to obtain treated water 4.

【0023】精密ろ過膜11には,例えば多孔質中空ろ
過膜等を用いる。精密ろ過膜11の目詰まりの増加およ
びろ過差圧の上昇を抑えて逆流洗浄頻度を低減するため
には,ろ過ポンプ10の停止時間と運転時間の切替え頻
度を増加させる方が好ましい。ただし,単位時間の所定
透過水量を確保するためには,ろ過ポンプ10の能力と
精密ろ過膜11の面積を増加させなければならない。
As the microfiltration membrane 11, for example, a porous hollow filtration membrane or the like is used. In order to suppress the increase in the clogging of the microfiltration membrane 11 and the increase in the filtration differential pressure to reduce the backwashing frequency, it is preferable to increase the switching frequency between the stop time and the operating time of the filtration pump 10. However, the capacity of the filtration pump 10 and the area of the microfiltration membrane 11 must be increased in order to secure a predetermined amount of permeated water per unit time.

【0024】このような長所・短所を考慮すると,ろ過
ポンプ10のろ過速度は 250〜 700l/m2dayとし,精密
ろ過膜11を吸引または減圧するろ過ポンプ10運転用
のタイマー12を5分間〜5分間ないし25分間〜5分間
に設定する間欠運転が好ましい。なお,本実施例におい
ては,精密ろ過膜11を前記のように曝気槽2内の混合
液9に浸漬したものを一例として示したが,精密ろ過膜
11並びにろ過ポンプ10の設置場所はこれらに限定す
るものではなく,ろ過条件を満たし得る範囲で槽内若し
くは槽外のいずれに設置してもよく,装置相互の配置等
を考慮して適宜選定できる。ところで,廃水1は種類に
よって異なるが,清涼飲料工場からの廃水の場合には,
廃水1の通水開始後7〜10日で混合液9のSVIは 4
00 ml/gとなり,バルキング状態を呈するようになる。
この段階で糸状性微生物が優占的になるため,曝気槽2
のDOは好気性(1.0 mg/l以上)の状態に保つ。
Considering these advantages and disadvantages, the filtration speed of the filtration pump 10 is set to 250 to 700 l / m 2 day, and the timer 12 for operating the filtration pump 10 for sucking or depressurizing the microfiltration membrane 11 is operated for 5 minutes or more. Intermittent operation is preferably set for 5 to 25 minutes to 5 minutes. In the present embodiment, the microfiltration membrane 11 is immersed in the mixed liquid 9 in the aeration tank 2 as described above, but the microfiltration membrane 11 and the filtration pump 10 are installed at these locations. It is not limited, and it may be installed inside or outside the tank within a range that can satisfy the filtration condition, and can be appropriately selected in consideration of the mutual arrangement of the devices. By the way, although the wastewater 1 varies depending on the type, in the case of wastewater from a soft drink factory,
The SVI of the mixture 9 is 7 to 10 days after the start of the flow of the wastewater 1.
It becomes 00 ml / g and comes to have a bulking state.
At this stage, filamentous microorganisms become dominant, so aeration tank 2
Keep DO aerobic (1.0 mg / l or more).

【0025】その後廃水1の供給を継続すると,混合液
9のMLSS濃度は6000〜 15000 mg/lで,増加も減少
もしない平衡状態に達する。これは高菌令の糸状性微生
物の自己酸化速度と,その際解体した菌体成分の有機炭
素,NおよびPを他の糸状性微生物が栄養源として取り
込んで増殖する速度が釣り合っているためである。この
とき,処理水4の水質を悪化させない範囲で栄養源のN
塩7とP塩8の供給を間欠的に停止することも可能であ
る。
After that, when the supply of the wastewater 1 is continued, the MLSS concentration of the mixed solution 9 reaches 6000 to 15000 mg / l, and the equilibrium state in which neither increase nor decrease is reached. This is because the auto-oxidation rate of filamentous microorganisms of high bacterial age is balanced with the rate at which other filamentous microorganisms take up organic carbon, N and P, which are disintegrated as nutrients, and grow. is there. At this time, the N of the nutrient source is within a range that does not deteriorate the water quality of the treated water 4.
It is also possible to intermittently stop the supply of salt 7 and P salt 8.

【0026】なお,栄養源としてのNとPが十分に含ま
れる廃水の場合,当然ながらこのような栄養源の注入率
を操作することはできない。そのため糸状性微生物の増
殖速度と自己酸化速度とのバランスをとるためには,廃
水種類によって異なるが,容積負荷が 0.2〜1.0 kg/m3d
ay,好ましくは 0.2〜0.5 kg/m3dayとなるように運転す
ればよい。
In the case of wastewater containing a sufficient amount of N and P as nutrient sources, it is of course impossible to control the injection rate of such nutrient sources. Therefore, in order to balance the growth rate and the autooxidation rate of filamentous microorganisms, the volumetric load varies from 0.2 to 1.0 kg / m 3 d, depending on the type of wastewater.
ay, preferably 0.2 to 0.5 kg / m 3 day.

【0027】(実験例)図1に示す方法に従って,清涼
飲料工場の廃水処理設備から採取した活性汚泥を曝気槽
2(有効容量 100l)のMLSS濃度が1000 mg/lとな
るように加えた後,表1の水質の清涼飲料廃水を表2の
条件で曝気槽2に供給し,曝気槽2は20℃に設定した。
なお,NおよびPについては,BOD:N:P= 100:
1:0.1 となるように,尿素とリン酸二カリウムの溶液
を曝気槽2に添加した。
(Experimental example) According to the method shown in FIG. 1, activated sludge collected from the wastewater treatment facility of a soft drink factory was added to the aeration tank 2 (effective volume 100 l) so that the MLSS concentration was 1000 mg / l. The soft drink wastewater having the water quality shown in Table 1 was supplied to the aeration tank 2 under the conditions shown in Table 2, and the aeration tank 2 was set at 20 ° C.
For N and P, BOD: N: P = 100:
A solution of urea and dipotassium phosphate was added to the aeration tank 2 so that the ratio became 1: 0.1.

【0028】このときのSVIは 150 ml/gで,曝気槽
2内のDOは 4.0〜6.5 mg/lとした。多孔質中空ろ過
膜はポリエチレン製で,膜内径は 270μm,孔径は 0.1
μmであった。ろ過ポンプは定量ポンプを使用し, 600
l/m2dayの定流量で,25分間運転〜5分間停止の間欠吸
引運転をした。これによって得られたろ過膜の差圧の経
時変化を表3に示す。
The SVI at this time was 150 ml / g, and the DO in the aeration tank 2 was 4.0 to 6.5 mg / l. The porous hollow filtration membrane is made of polyethylene and has an inner diameter of 270 μm and a pore diameter of 0.1.
μm. The filtration pump uses a metering pump, 600
At a constant flow rate of 1 / m 2 day, intermittent suction operation was performed for 25 minutes to 5 minutes of stop. Table 3 shows the changes over time in the differential pressure of the filtration membrane thus obtained.

【0029】なお,前記曝気状態のとき,廃水供給を開
始して7日目にSVIが 200 ml/gとなってバルキング
状態を呈した。これ以降の処理水のBODは2〜5 mg/
l,SSは1 mg/l以下,T−Nは5 mg/l以下, PO4
3--Pは 0.1 mg/l以下で安定していた。しかし,曝気槽
内のDOを微好気状態( 0.1〜0.5 mg/l以下)とした
ときは,バルキング状態を呈するのに約10日間を要
し,そのときの処理水のBODは10〜15 mg/l,SSは
1 mg/l以下,T−Nは5 mg/l以下, PO4 3--Pは 0.1
mg/l以下で,過曝気状態に比べてやや水質が劣った。
In the aeration state, the SVI was 200 ml / g on the 7th day from the start of waste water supply, and the state was a bulking state. BOD of treated water after this is 2-5 mg /
1, SS is 1 mg / l or less, TN is 5 mg / l or less, PO 4
3-- P was stable at 0.1 mg / l or less. However, when the DO in the aeration tank is in a microaerobic state (0.1 to 0.5 mg / l or less), it takes about 10 days to exhibit the bulking state, and the BOD of the treated water at that time is 10 to 15 mg / l, SS less than 1 mg / l, T-N less than 5 mg / l, PO 4 3-- P 0.1
At mg / l or less, the water quality was slightly inferior to the over-aerated state.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0030】(比較例)実験例と同様に,表1の性状の
清涼飲料廃水の廃水を用いて,表2の運転条件を図1に
示す試験装置で試験を行った。活性汚泥は,フロック形
成菌が優占的な清涼飲料廃水処理設備の汚泥を,曝気槽
のMLSS濃度が1000 mg/lとなるように加え,NとP
は従来から知られているBOD:N:P= 100:5:1
となるように添加した。
(Comparative Example) Similar to the experimental example, using the waste water of the soft drink waste water having the properties shown in Table 1, the operating conditions shown in Table 2 were tested by the test apparatus shown in FIG. For activated sludge, add sludge from a soft drink wastewater treatment facility where floc-forming bacteria are dominant so that the MLSS concentration in the aeration tank is 1000 mg / l.
Is the conventionally known BOD: N: P = 100: 5: 1
Was added.

【0031】すなわち,廃水へのN添加濃度は50 mg/
l,P添加濃度は10 mg/lとした。また,曝気槽のDO
は 1.0〜2.0 mg/lとなるように空気5で曝気混合し
た。この混合液を実験例と同じようにして,ろ過ポンプ
の定流量間欠運転で吸引ろ過して処理水を得た。
That is, the concentration of N added to the wastewater is 50 mg /
The concentration of l and P added was 10 mg / l. Also, the DO of the aeration tank
Was aerated and mixed with air 5 so as to be 1.0 to 2.0 mg / l. In the same manner as in the experimental example, this mixed solution was suction-filtered by a constant flow rate intermittent operation of a filtration pump to obtain treated water.

【0032】廃水を通水してから5日後,曝気槽混合液
のSVIは 150 ml/gで沈降性の良好なフロックが形成
され,顕微鏡で観察すると糸状性微生物は観察されなか
った。これによって得られたろ過膜間の差圧の経時変化
および処理水質を表3に示す。
Five days after passing the wastewater, the SVI of the aeration tank mixture was 150 ml / g, and flocs with good sedimentation were formed, and no filamentous microorganisms were observed under a microscope. Table 3 shows the time-dependent changes in the differential pressure between the filtration membranes thus obtained and the quality of treated water.

【0033】なお,全期間の処理水のBODは3〜5 m
g/l,SSは1 mg/l以下,T−Nは10〜15 mg/l以
下, PO4 3--Pは1〜2 mg/l以下であったが,運転時間
が 500時間になるとろ過差圧が上昇した。このとき膜を
逆流洗浄およびカルシウム洗浄をしても,ろ過差圧は53
kPa 以下に下がらず,それ以降のろ過を再開しても直ち
にろ過差圧が上昇した。そのため膜の閉塞が回復できな
かったものとして,これ以降の運転は中止した。表3か
ら明らかなように,本発明により糸状性微生物が優占的
な活性汚泥はろ過差圧が大幅に低減され,膜面の目詰ま
りが軽減でき,膜の寿命を延ばすことができた。
The BOD of the treated water during the entire period is 3 to 5 m.
g / l, SS was less than 1 mg / l, T-N was less than 10-15 mg / l, and PO 4 3-- P was less than 1-2 mg / l, but when the operating time reached 500 hours The filtration differential pressure increased. At this time, even if the membrane was backwashed and calcium washed, the filtration pressure difference was 53
The pressure did not drop below kPa, and the filtration differential pressure immediately increased even after restarting filtration. Therefore, the operation after this was stopped because the membrane blockage could not be recovered. As is clear from Table 3, according to the present invention, the activated sludge in which filamentous microorganisms are predominant can significantly reduce the filtration pressure difference, reduce the clogging of the membrane surface, and prolong the life of the membrane.

【0034】[0034]

【発明の効果】以上説明したように,請求項1ないし請
求項5による廃水の生物的処理方法によれば,つぎの効
果を得ることができる。 (1)一旦発生すると根本的に除去できないバルキング
汚泥でも,廃水の生物的処理方法に有効に使用すること
ができ,また人為的に発生させたバルキング汚泥を積極
的に利用して,フロック形成菌が優占的である一般の活
性汚泥処理水よりも優れた水質とすることができる。 (2)活性汚泥を膜分離することによって,従来のよう
な大型の沈殿槽を用いた方式に比べ,設置面積が少なく
てすむ。
As described above, according to the biological treatment method for wastewater according to claims 1 to 5, the following effects can be obtained. (1) Even if bulking sludge cannot be fundamentally removed once it is generated, it can be effectively used for biological treatment of wastewater, and by actively utilizing the artificially generated bulking sludge, floc-forming bacteria It is possible to obtain a water quality superior to that of general activated sludge treated water, which is dominant. (2) By separating the activated sludge into a membrane, the installation area is smaller than the conventional method using a large-sized sedimentation tank.

【0035】(3)糸状性微生物に必要な栄養源は,通
常のフロック形成菌の活性汚泥に比べて少なくてすむた
め,放流先の富栄養化を防止するための後処理が不要と
なり,設備面積も少ない。 (4)根本的な解決方法がないバルキング汚泥でも,汚
泥と上澄水を簡単にろ過できるため,運転が簡単にな
り,維持管理が極めて容易となる。
(3) Since the nutrient source required for the filamentous microorganisms is smaller than that of the usual activated sludge of floc-forming bacteria, post-treatment for preventing eutrophication at the discharge destination is unnecessary, and the equipment is not required. The area is also small. (4) Even in bulking sludge for which there is no fundamental solution, sludge and supernatant water can be easily filtered, so operation is simple and maintenance is extremely easy.

【0036】(5)バルキング汚泥の自己酸化速度と増
殖速度のバランスによって,余剰汚泥の発生量が極めて
少ないため脱水設備が小さくてすみ,または不要とな
る。 (6)糸状性微生物が優占種となった活性汚泥は,フロ
ック形成菌による活性汚泥に比べてSSによる膜面の閉
塞が少ないため,膜面の目詰まりが軽減でき,ろ過差圧
が大幅に低減される。これによって,膜の逆流洗浄頻度
を少なくでき,膜の寿命を長くすることが可能である。
(5) Due to the balance between the autooxidation rate and the growth rate of bulking sludge, the amount of excess sludge generated is extremely small, so that the dehydration equipment can be made small or unnecessary. (6) Activated sludge in which filamentous microorganisms have become the dominant species has less clogging on the membrane surface due to SS than activated sludge caused by floc-forming bacteria, so clogging of the membrane surface can be reduced and filtration differential pressure is significantly increased. Is reduced to. As a result, the frequency of backwashing the membrane can be reduced and the life of the membrane can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の廃水の生物的処理方法の一実施例を示
す系統図
FIG. 1 is a system diagram showing an embodiment of a biological treatment method for wastewater according to the present invention.

【図2】従来の廃水の生物的処理方法を示す系統図FIG. 2 is a system diagram showing a conventional biological treatment method for wastewater.

【符号の説明】[Explanation of symbols]

1 廃水 2 曝気槽 3 沈殿槽 4 処理水 5 空気 6 返送汚泥 7 N塩 8 P塩 9 混合液 10 ろ過ポンプ 11 精密ろ過膜 12 タイマー 1 Wastewater 2 Aeration tank 3 Settling tank 4 Treated water 5 Air 6 Return sludge 7 N salt 8 P salt 9 Mixture 10 Filtration pump 11 Microfiltration membrane 12 Timer

【手続補正書】[Procedure amendment]

【提出日】平成6年9月9日[Submission date] September 9, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】このような長所・短所を考慮すると,ろ過
ポンプ10のろ過速度は250〜700l/mday
とし、精密ろ過膜11を吸引または減圧するろ過ポンプ
10運転用のタイマー12を5分間運転〜5分停止ない
し25分間運転〜5分間停止に設定する間欠運転,すな
わち運転:停止の間隔を,1〜5:1の関係でろ過する
が好ましい。なお,本実施例においては,精密ろ過膜
11を前記のように曝気槽2内の混合液9に浸漬したも
のを一例として示したが,精密ろ過膜11並びにろ過ポ
ンプ10の設置場所はこれらに限定するものではなく,
ろ過条件を満たし得る範囲で槽内若しくは槽外のいずれ
に設置してもよく,装置相互の配置等を考慮して適宜選
定できる。ところで,廃水1は種類によって異なるが,
清涼飲料工場からの廃水の場合には,廃水1の通水開始
後7〜10日で混合液9のSVIは400ml/gとな
り,バルキング状態を呈するようになる。この段階で糸
状微生物が優占的になるため,曝気槽2のDOは好気性
(1.0mg/l以上)の状態に保つ。
Considering such advantages and disadvantages, the filtration rate of the filtration pump 10 is 250 to 700 l / m 2 day.
And then, intermittent operation to be set to stop microfiltration membrane 11 to suction or a timer 12 for 5 minutes driver 5 minutes stopped for filtering pump 10 operated to depressurize the <br/> for 25 minutes operation to 5 minutes, sand
Street operation: Stop intervals are filtered with a relationship of 1 to 5: 1
Preference is. In the present embodiment, the microfiltration membrane 11 is immersed in the mixed liquid 9 in the aeration tank 2 as described above, but the microfiltration membrane 11 and the filtration pump 10 are installed at these locations. But not limited to
It may be installed inside or outside the tank as long as the filtration conditions can be satisfied, and can be appropriately selected in consideration of the arrangement of the devices. By the way, although the wastewater 1 varies depending on the type,
In the case of waste water from a soft drink factory, the SVI of the mixed solution 9 becomes 400 ml / g 7 to 10 days after the start of the flow of the waste water 1, and the bulking state is exhibited. Since the filamentous microorganisms become dominant at this stage, the DO in the aeration tank 2 is kept aerobic (1.0 mg / l or more).

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

【図2】 [Fig. 2]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】糸状性微生物が優占的な活性汚泥と廃水を
混合して接触させ,該混合液を精密ろ過膜によってろ過
し,処理水を得ることを特徴とする廃水の生物的処理方
法。
1. A biological treatment method for wastewater, characterized in that activated sludge in which filamentous microorganisms are dominant is mixed and brought into contact with the wastewater, and the mixed solution is filtered through a microfiltration membrane to obtain treated water. .
【請求項2】糸状性微生物が優占的な活性汚泥と廃水を
混合して接触させ,該混合液における溶存酸素濃度を1
mg/l以下または3 mg/l以上とし,糸状性微生物を優
占させて処理し,該処理液を精密ろ過膜によってろ過
し,処理水を得ることを特徴とする廃水の生物的処理方
法。
2. The activated oxygen sludge in which the filamentous microorganism is dominant and the waste water are mixed and brought into contact with each other, and the dissolved oxygen concentration in the mixed solution is adjusted to 1
A method for biological treatment of wastewater, which comprises treating the treatment liquid with a filamentous microorganism being dominated and treating the treatment liquid with a microfiltration membrane to obtain treated water at a concentration of mg / l or less or 3 mg / l or more.
【請求項3】廃水が貧栄養状態である場合において,廃
水中の栄養バランスをBOD:N:Pが 100:1以下:
0.1以上となるよう維持して処理する請求項1および2
に記載の廃水の生物的処理方法。
3. When the wastewater is in an oligotrophic state, the nutrient balance in the wastewater is BOD: N: P of 100: 1 or less:
Claim 1 and 2 which process and maintain so that it may be 0.1 or more.
The biological treatment method for wastewater according to.
【請求項4】糸状性微生物が優占的な活性汚泥と廃水を
混合して接触させ,該混合液を精密ろ過膜を介してろ過
するに際し,ろ過ポンプの間欠運転によって固液分離す
る廃水の生物的処理方法。
4. Waste water which is separated into solid and liquid by intermittent operation of a filtration pump when the activated sludge in which filamentous microorganisms predominantly mix and contact wastewater and the mixture is filtered through a microfiltration membrane. Biological treatment method.
【請求項5】糸状性微生物が優占的な活性汚泥と廃水を
混合して接触させ,該混合液を精密ろ過膜を介してろ過
するに際し,ろ過ポンプの間欠運転時の運転:停止の間
隔を,1〜5:1の関係でろ過する請求項4に記載の廃
水の生物的処理方法。
5. When the activated sludge in which filamentous microorganisms are dominant is mixed and brought into contact with each other, and the mixed solution is filtered through a microfiltration membrane, the operation of the filtration pump during intermittent operation: stop interval The method for biological treatment of wastewater according to claim 4, wherein the water is filtered in a ratio of 1 to 5: 1.
JP6169116A 1994-07-21 1994-07-21 Biological treatment of waste water Withdrawn JPH0824885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6169116A JPH0824885A (en) 1994-07-21 1994-07-21 Biological treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6169116A JPH0824885A (en) 1994-07-21 1994-07-21 Biological treatment of waste water

Publications (1)

Publication Number Publication Date
JPH0824885A true JPH0824885A (en) 1996-01-30

Family

ID=15880602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6169116A Withdrawn JPH0824885A (en) 1994-07-21 1994-07-21 Biological treatment of waste water

Country Status (1)

Country Link
JP (1) JPH0824885A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334285A (en) * 2000-05-25 2001-12-04 Japan Organo Co Ltd Apparatus for biologically treating organic wastewater
JP2007196105A (en) * 2006-01-25 2007-08-09 Maezawa Kasei Ind Co Ltd Apparatus for treating wastewater such as dye wastewater
JP2007237056A (en) * 2006-03-07 2007-09-20 Kyoei Steel Ltd Waste beverage treatment method and waste beverage treatment apparatus
WO2009063775A1 (en) 2007-11-14 2009-05-22 Mitsubishi Pencil Company, Limited Fluid supply device for applicator
US7635432B2 (en) 2006-03-31 2009-12-22 Toyo Engineering Corporation Method of treating at a high-temperature waste liquid from production plant for hydrocarbons or oxygen-containing compounds
US7641797B2 (en) 2004-10-22 2010-01-05 Toyo Engineering Corporation Method of treating waste liquid from production plant for hydrocarbons or oxygen-containing compounds

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334285A (en) * 2000-05-25 2001-12-04 Japan Organo Co Ltd Apparatus for biologically treating organic wastewater
US7641797B2 (en) 2004-10-22 2010-01-05 Toyo Engineering Corporation Method of treating waste liquid from production plant for hydrocarbons or oxygen-containing compounds
JP2007196105A (en) * 2006-01-25 2007-08-09 Maezawa Kasei Ind Co Ltd Apparatus for treating wastewater such as dye wastewater
JP2007237056A (en) * 2006-03-07 2007-09-20 Kyoei Steel Ltd Waste beverage treatment method and waste beverage treatment apparatus
US7635432B2 (en) 2006-03-31 2009-12-22 Toyo Engineering Corporation Method of treating at a high-temperature waste liquid from production plant for hydrocarbons or oxygen-containing compounds
WO2009063775A1 (en) 2007-11-14 2009-05-22 Mitsubishi Pencil Company, Limited Fluid supply device for applicator

Similar Documents

Publication Publication Date Title
US5932099A (en) Installation for biological water treatment for the production of drinkable water
US7625490B2 (en) Use of a magnetic separator to biologically clean water
US7384573B2 (en) Compositions for wastewater treatment
KR101467476B1 (en) Method for biological processing of water containing organic material
US20020040871A1 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
AU2005334124B2 (en) Water treatment process
WO2000077171A1 (en) Method of high-concentration culture of nitrifying bacteria or denitrifying bacteria contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying bacteria, and mehtod of weight loss treatment of activated sludge
US8273247B2 (en) Water reclamation without biosludge reproduction
JP2013506550A (en) Method for improving biological water treatment
CA2199517C (en) Installation for biological water treatment for the production of drinkable water
Shi et al. Biological removal of nitrogen by a membrane bioreactor-attapulgite clay system in treating polluted water
JP4392111B2 (en) Organic wastewater biological treatment equipment
JPH0824885A (en) Biological treatment of waste water
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
CA1219384A (en) Waste water treatment
JPH01199694A (en) Waste water treatment by activated sludge method
KR100403864B1 (en) A wastewater treatment methods
JPS649071B2 (en)
JP3358824B2 (en) Wastewater treatment method
JP2003305493A (en) Method for starting activated sludge treating apparatus
KR20030059178A (en) Apparatus and method for wastewater treatment with enhanced solids reduction(ESR)
CN107032557A (en) A kind of method that modified clay aids in the high fouling Produced Water In Oil-gas Fields, Ngi of microbiological treatment
RU2644904C1 (en) Method of biological purification of wastewater from nitrogen phosphoric and organic compounds
CN206538256U (en) A kind of high ammonia nitrogen for the treatment of based on immobilized microorganisms and organic wastewater system
JPH0352699A (en) Treatment of sewage of night soil system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002