JPH0824855A - Immersion type membrane separator - Google Patents

Immersion type membrane separator

Info

Publication number
JPH0824855A
JPH0824855A JP6184169A JP18416994A JPH0824855A JP H0824855 A JPH0824855 A JP H0824855A JP 6184169 A JP6184169 A JP 6184169A JP 18416994 A JP18416994 A JP 18416994A JP H0824855 A JPH0824855 A JP H0824855A
Authority
JP
Japan
Prior art keywords
liquid tank
membrane
tank
liquid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6184169A
Other languages
Japanese (ja)
Other versions
JP3480049B2 (en
Inventor
Shigeki Sawada
繁樹 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP18416994A priority Critical patent/JP3480049B2/en
Publication of JPH0824855A publication Critical patent/JPH0824855A/en
Application granted granted Critical
Publication of JP3480049B2 publication Critical patent/JP3480049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To certainly perform treatment such as aeration treatment or precipitation treatment and keeping transmission flow velocity high by a simple structure to perform efficient transmission while easily performing the washing work of membrane surface. CONSTITUTION:A first liquid tank 12 in which a raw soln. is stored and a second liquid tank 14 in which a membrane element 13 are immersed are provided and an overflow pipe 17 allowing the raw soln. in the second liquid tank to overflow to the first liquid tank is provided between both tanks 12, 14 and the suction side of a circulating pump 18 is connected to the first liquid tank while the pipe 23 connected to the emitting side of the circulating pipe 18 is arranged in the lower part of the membrane element of the second liquid tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、膜エレメントを浸漬し
た浸漬槽内の水深に基づく水頭差を利用し、吸引ポンプ
により低エネルギーで膜分離を行い、透過水を得ること
ができる浸漬型膜分離装置に関するもので、特に曝気処
理や凝集沈澱処理を効率良くできるようにしたものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes a water head difference based on the water depth in a dipping tank in which a membrane element is dipped, and a suction pump is used to perform membrane separation at low energy to obtain permeated water. The present invention relates to a separation device, which is particularly adapted to efficiently perform aeration treatment and coagulation sedimentation treatment.

【0002】[0002]

【従来の技術】原液中に空気を吹き込んで有機汚濁物質
を微生物の働きによって分解する生物処理槽や沈澱槽内
に膜エレメントを設けた浸漬型膜分離装置は公知であ
る。例えば、図4に示す従来の浸漬型膜分離装置は、反
応槽1の内部に膜エレメント2を直接浸漬させ、膜面流
速を与えるためと反応混合液を循環撹拌するために反応
槽1内に散気管3を設けたものである。また、図5に示
すものは、膜エレメント2を浸漬する浸漬槽4と反応槽
1を仕切り壁5で区画して設け、仕切り壁5の上部に形
成したオーバーフロー流路6により反応槽1から浸漬槽
4に反応液をオーバーフローさせ、浸漬槽4内の液をポ
ンプ7の作動によりそのまま排出したり、或は反応槽1
に返送するものである。
2. Description of the Related Art Immersion type membrane separators are known in which membrane elements are provided in a biological treatment tank or a precipitation tank in which air is blown into a stock solution to decompose organic pollutants by the action of microorganisms. For example, in the conventional submerged membrane separation apparatus shown in FIG. 4, the membrane element 2 is directly immersed inside the reaction tank 1, and the membrane element 2 is provided inside the reaction tank 1 in order to provide a membrane surface velocity and to circulate and stir the reaction mixture. The air diffuser 3 is provided. Further, as shown in FIG. 5, the dipping tank 4 for dipping the membrane element 2 and the reaction tank 1 are provided by being partitioned by a partition wall 5, and the dipping tank 4 is dipped from the reaction tank 1 by an overflow channel 6 formed on the partition wall 5. The reaction liquid overflows into the tank 4 and the liquid in the immersion tank 4 is discharged as it is by the operation of the pump 7, or the reaction tank 1
It will be returned to.

【0003】[0003]

【発明が解決しようとする課題】図4に示した従来の浸
漬型膜分離装置は、装置が嵩張らないのでコンパクトで
ある反面、BOD、CODなどの溶解性成分を分離する
危険性が高く、それら未反応成分が透過側に流出してし
まう。
The conventional immersion type membrane separation device shown in FIG. 4 is compact because the device is not bulky, but has a high risk of separating soluble components such as BOD and COD. Unreacted components flow out to the permeate side.

【0004】また、図5に示した従来の浸漬型膜分離装
置は、未反応成分が透過側に流出することは少なくて安
定性に優れているが、透過流速を高く維持するには高い
膜面流速を与える必要が有り、このため膜エレメントの
下方に散気管8を別途設けなくてはならない。
Further, the conventional immersion type membrane separation device shown in FIG. 5 is excellent in stability because unreacted components rarely flow out to the permeation side, but it is a high membrane to maintain a high permeation flow rate. Since it is necessary to provide a surface flow velocity, an air diffuser 8 must be additionally provided below the membrane element.

【0005】また、膜分離装置では膜面の洗浄を行わな
くてはならないが、この膜面の洗浄作業を行う際には膜
エレメント2を浸漬槽から引き出すか、或は浸漬槽内で
直接洗浄するかしなくてはならない。しかし、前述した
従来の膜分離装置にあっては、浸漬槽内で直接洗浄する
場合には別途水槽を設けて、この水槽に浸漬槽内の反応
液を移す必要が生じ、このためのポンプ等も用意しなけ
ればならない。
Further, in the membrane separation device, the membrane surface must be washed. When performing the membrane surface cleaning operation, the membrane element 2 is pulled out from the immersion tank or is directly washed in the immersion tank. I have to do it. However, in the above-mentioned conventional membrane separation device, when directly washing in the immersion tank, it is necessary to provide a separate water tank and transfer the reaction liquid in the immersion tank to this water tank. Must also be prepared.

【0006】そこで、本発明は、曝気処理や沈澱処理な
どの処理を確実に行うことができ、簡単な構造で透過流
速を高く維持して効率の良い透過を行うことができ、し
かも膜面の洗浄作業も容易に行うことができる浸漬型膜
分離装置を提供することを目的とする。
Therefore, according to the present invention, the treatment such as aeration treatment and precipitation treatment can be surely performed, the permeation flow velocity can be kept high with a simple structure, and efficient permeation can be performed. It is an object of the present invention to provide an immersion type membrane separation device that can be easily washed.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために提案されたもので、原液を貯留する第1液槽
と、膜エレメントを浸漬した第2液槽を設け、第1液槽
と第2液槽との間には第2液槽の原液を第1液槽にオー
バーフローさせるオーバーフロー流路を設け、吸入側を
第1液槽に接続した循環ポンプの吐出側配管を第2液槽
の膜エレメントの下部に配設したものである。
The present invention has been proposed in order to achieve the above-mentioned object, and a first liquid tank for storing a stock solution and a second liquid tank in which a membrane element is immersed are provided to provide a first liquid. An overflow channel is provided between the tank and the second liquid tank to allow the stock solution of the second liquid tank to overflow into the first liquid tank, and the discharge side pipe of the circulation pump, whose suction side is connected to the first liquid tank, is provided as a second pipe. It is arranged below the membrane element of the liquid tank.

【0008】[0008]

【作用】循環ポンプの作動により第1液槽内の原液が吐
出口から膜エレメントに向かって吐出される。したがっ
て、この吐出流により膜エレメント間の流路内に水流が
発生し、膜面流速が高まり、これにより透過流速が高く
維持されて効率の良い膜分離が行われ、必ずしも膜面流
速を高めるための散気を必要としないし、散気すれば吐
出流と散気の水流との相乗効果で一層膜面流速が高ま
る。
Operation The stock solution in the first liquid tank is discharged from the discharge port toward the membrane element by the operation of the circulation pump. Therefore, a water flow is generated in the flow path between the membrane elements due to this discharge flow, and the membrane surface flow velocity is increased, whereby the permeation flow velocity is maintained high and efficient membrane separation is performed, and the membrane surface flow velocity is not necessarily increased. Is not required, and if diffused, the membrane surface flow velocity is further increased by the synergistic effect of the discharge flow and the diffused water flow.

【0009】[0009]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。図1に示す浸漬型膜分離装置1は、原液を曝気
処理して膜分離するものであり、原液を貯留処理する第
1液槽12と、膜エレメント13を浸漬する第2液槽1
4とを別個に設け、反応槽として機能する第1液槽12
内には曝気管15を配して先端の曝気口15′を底部近
くに配置し、第2液槽14の上部に開設したオーバーフ
ロー出口16にはオーバーフロー管17を接続して該オ
ーバーフロー管17の出口を第1液槽12に上方に臨ま
せる。
Embodiments of the present invention will be described below with reference to the drawings. The immersion type membrane separation apparatus 1 shown in FIG. 1 is for aerating an undiluted solution to perform membrane separation, and a first liquid tank 12 for storing the undiluted solution and a second liquid tank 1 for immersing the membrane element 13.
First liquid tank 12 provided separately from 4 and functioning as a reaction tank
An aeration pipe 15 is arranged inside, an aeration port 15 ′ at the tip is arranged near the bottom, and an overflow pipe 17 is connected to an overflow outlet 16 opened at the upper part of the second liquid tank 14 to connect the overflow pipe 17 with the overflow pipe 17. The outlet faces the first liquid tank 12 upward.

【0010】即ち、第1液槽12と第2液槽14との間
に、第2液槽14の原液を第1液槽12にオーバーフロ
ーさせるオーバーフロー流路を設けて両液槽12,14
を接続する。また、吸入側を第1液槽12に接続した循
環ポンプ18の吐出側配管を第2液槽14の下部に配設
して吐出口19を膜エレメント13に向けて設置する。
具体的には、循環ポンプ18の吸入口を第1液槽12の
下部に設けた原液出口20に接続し、循環ポンプ18の
吐出口から延設した原液送出管21を第2液槽14の側
面下部に設けた原液入口22に接続し、該原液入口22
から第2液槽14の底部に沿って管23を配設し、この
管23の先端に上向きに形成した吐出口19を上方に位
置する膜エレメント13に向けて設置する。
That is, an overflow passage is provided between the first liquid tank 12 and the second liquid tank 14 to allow the stock solution of the second liquid tank 14 to overflow into the first liquid tank 12, and both liquid tanks 12, 14 are provided.
Connect. Further, the discharge side pipe of the circulation pump 18 whose suction side is connected to the first liquid tank 12 is arranged below the second liquid tank 14, and the discharge port 19 is installed facing the membrane element 13.
Specifically, the suction port of the circulation pump 18 is connected to the stock solution outlet 20 provided in the lower portion of the first liquid tank 12, and the stock solution delivery pipe 21 extending from the discharge port of the circulation pump 18 is connected to the second solution tank 14. The undiluted solution inlet 22 is connected to the undiluted solution inlet 22 provided on the lower side surface.
The pipe 23 is arranged along the bottom of the second liquid tank 14, and the discharge port 19 formed upward at the tip of the pipe 23 is installed toward the membrane element 13 located above.

【0011】なお、第2液槽14内には膜エレメント1
3を所定の間隔を空けて複数並べて浸漬してあるので、
これら膜エレメント列の下方に膜エレメント13の並設
方向に沿って管23を通し、この管23の途中に吐出口
19を複数開設し、各吐出口19を上方の膜エレメント
13間の流路に向けることが望ましい。
The membrane element 1 is provided in the second liquid tank 14.
Since 3 are arranged side by side at a predetermined interval and soaked,
A pipe 23 is passed under the membrane element rows along the juxtaposed direction of the membrane elements 13, a plurality of discharge ports 19 are opened in the middle of the pipe 23, and each discharge port 19 is a flow path between the upper membrane elements 13. It is desirable to turn to.

【0012】この様にして第1液槽12と第2液槽14
との間をオーバーフロー管17と原液送出管21とによ
り接続すると、第1液槽12内の原液が原液送出管21
を介して第2液槽14に送出され、この第2液槽14内
の原液がオーバーフロー管17を介して再び第1液槽1
2内に戻る循環流路が形成される。
In this way, the first liquid tank 12 and the second liquid tank 14
If the overflow pipe 17 and the undiluted solution delivery pipe 21 are connected to each other, the undiluted solution in the first liquid tank 12 is
Is delivered to the second liquid tank 14 via the first liquid tank 1 again via the overflow pipe 17.
A circulation channel returning to the inside of 2 is formed.

【0013】また、浸漬槽として機能する第2液槽14
内には、膜エレメント列の下方に散気管24を配設し、
この散気管24の空気出口25を上方の膜エレメント1
3に向けて開設する。
The second liquid tank 14 which also functions as a dipping tank
Inside, the air diffuser 24 is arranged below the membrane element row,
The air outlet 25 of the air diffuser 24 is connected to the upper membrane element 1
Open for 3.

【0014】この様な構成からなる浸漬型膜分離装置1
においては、曝気管15を介して第1液槽12内に空気
を送り込むと、この空気が曝気口15′から原液中に放
出され、これにより原液中に酸素が補給されて微生物の
働きが促されて有機汚濁物の分解が促進される。また、
曝気口15′から空気が放出されると、この空気が気泡
となって原液中を上昇するので、この気泡の上昇によっ
て原液が撹拌され、有機汚濁物の分解が一層促進され
る。したがって、曝気処理の能率を高めることができ
る。
Immersion type membrane separation apparatus 1 having such a structure
In the above, when air is sent into the first liquid tank 12 through the aeration pipe 15, this air is released from the aeration port 15 'into the stock solution, whereby oxygen is replenished in the stock solution and the action of microorganisms is promoted. As a result, the decomposition of organic pollutants is accelerated. Also,
When air is released from the aeration port 15 ', the air becomes bubbles and rises in the stock solution, so that the rise of the bubbles stirs the stock solution and further promotes the decomposition of organic pollutants. Therefore, the efficiency of the aeration process can be improved.

【0015】第1液槽12内で曝気処理された原液(反
応液)は、循環ポンプ18の作動によって原液送出管2
1を介して第2液槽14内に圧送される。そして、原液
(反応液)が第2液槽14内に圧送される際に、吐出口
19が膜エレメント13に向かって開口しているので、
吐出口19から吐出した膜エレメント13に向かって流
出する。したがって、第1液槽12から第2液槽14に
圧送された原液(反応液)は、膜エレメント13間に形
成された流路内を下方から上方に向かって流れることと
なる。
The stock solution (reaction solution) which has been aerated in the first solution tank 12 is operated by the circulation pump 18 to supply the stock solution delivery pipe 2.
It is pressure-fed into the second liquid tank 14 via 1. Since the discharge port 19 opens toward the membrane element 13 when the undiluted solution (reaction solution) is pumped into the second liquid tank 14,
It flows out toward the membrane element 13 discharged from the discharge port 19. Therefore, the undiluted solution (reaction solution) pressure-fed from the first liquid tank 12 to the second liquid tank 14 flows from the lower side to the upper side in the flow passage formed between the membrane elements 13.

【0016】また、第2液槽14の底部では空気出口2
5から空気が流出しており、この気泡の上昇によって、
膜エレメント13間の流路には下方から上方に向かう水
流が発生している。したがって、膜エレメント13間の
流路では、気泡の上昇により発生した水流と吐出口19
から吐出される原液(反応液)の吐出流とが相俟って膜
面速度が著しく高められる。このため、各膜エレメント
13の膜における透過速度が著しく高められ、効率の良
い膜分離が行われる。そして、各膜エレメント13の膜
を透過した透過水は、吸引ポンプ26に吸引され、集水
管27を介して排出される。
At the bottom of the second liquid tank 14, the air outlet 2
Air is flowing out from 5, and by the rise of this bubble,
In the flow path between the membrane elements 13, a water flow from the lower side to the upper side is generated. Therefore, in the flow path between the membrane elements 13, the water flow generated by the rise of the bubbles and the discharge port 19
Together with the discharge flow of the undiluted solution (reaction solution) discharged from the membrane, the film surface velocity is significantly increased. Therefore, the permeation rate through the membrane of each membrane element 13 is significantly increased, and efficient membrane separation is performed. The permeated water that has permeated the membrane of each membrane element 13 is sucked by the suction pump 26 and discharged through the water collection pipe 27.

【0017】循環ポンプ18は継続作動して第1液槽1
2内の原液を第2液槽14内に圧送しており、吸引ポン
プ26により排出される透過水の量は循環ポンプ18の
吐出量よりも少ない。したがって、第2液槽14におけ
る余剰原液はオーバーフロー管17を介して第1液槽1
2内にオーバーフローする。即ち、本実施例では第1液
槽12内で曝気処理し、この原液を第2液槽14に圧送
して膜エレメント13で膜分離し、膜分離で残った原液
を第1液槽12に戻して再度曝気処理することになる。
したがって、未処理成分を膜分離する率が低下し、処理
の安定性が高い。
The circulation pump 18 continues to operate and the first liquid tank 1
The stock solution in 2 is pumped into the second liquid tank 14, and the amount of permeated water discharged by the suction pump 26 is smaller than the discharge amount of the circulation pump 18. Therefore, the excess stock solution in the second liquid tank 14 is passed through the overflow pipe 17 to the first liquid tank 1
Overflow into 2. That is, in this embodiment, the aeration process is performed in the first liquid tank 12, the raw solution is pressure-fed to the second liquid tank 14 to perform membrane separation in the membrane element 13, and the stock solution remaining in the membrane separation is fed to the first liquid tank 12. It will be returned and aerated again.
Therefore, the rate of membrane separation of untreated components is lowered, and the stability of treatment is high.

【0018】膜エレメント13の膜面には上昇する気泡
が接触し、膜面に空気と原液の界面が発生し、この界面
が上昇するときに大きな剪断力が膜面に生じる。したが
って、この剪断力によって膜面に形成されているケーキ
層などの付着物を剥離することができ、膜面が浄化され
る。このため、膜分離が長時間にわたって効率良く行わ
れる。
Ascending bubbles come into contact with the membrane surface of the membrane element 13, and an interface between air and the undiluted solution is generated on the membrane surface. When this interface rises, a large shearing force is generated on the membrane surface. Therefore, by this shearing force, the adhering substances such as the cake layer formed on the film surface can be peeled off, and the film surface is purified. Therefore, the membrane separation is efficiently performed for a long time.

【0019】しかしながら、長時間にわたって膜分離を
行うと、膜面にゲル状付着物が成長したりケーキ層が形
成されたりして膜分離の能率が低下する。この様な状態
になったならば膜面を洗浄して浄化することが必要であ
る。
However, when the membrane separation is carried out for a long time, the gel-like deposit grows on the membrane surface or a cake layer is formed, so that the membrane separation efficiency is lowered. If this happens, it is necessary to clean and clean the membrane surface.

【0020】本実施例では、第1液槽12の容量を大き
く、第2液槽14の容量を小さく設定し、第2液槽14
内の原液を第1液槽12内に収容できるように両液槽の
容量を設定してある。即ち、第1液槽12の余裕水量
を、第2液槽14の水量よりも大きく設定してある。し
たがって、第2液槽14内の原液をポンプ等を使用して
第1液槽12内に移すと、第2液槽14内の膜エレメン
ト13を引き出すことなく直接膜面を洗浄することがで
きる。そして、この洗浄作業が終了したならば、循環ポ
ンプ18を作動することにより第2液槽14内に原液を
簡単に戻すことができる。
In the present embodiment, the capacity of the first liquid tank 12 is set to be large and the capacity of the second liquid tank 14 is set to be small, and the second liquid tank 14 is set.
The volumes of both liquid tanks are set so that the stock solution therein can be stored in the first liquid tank 12. That is, the surplus water amount of the first liquid tank 12 is set to be larger than the water amount of the second liquid tank 14. Therefore, when the undiluted solution in the second liquid tank 14 is transferred into the first liquid tank 12 by using a pump or the like, the membrane surface can be directly washed without pulling out the membrane element 13 in the second liquid tank 14. . Then, when this cleaning work is completed, the stock solution can be easily returned to the second liquid tank 14 by operating the circulation pump 18.

【0021】また、本実施例では第2液槽14を第1液
槽12よりも高い位置、具体的には第2液槽14内に開
口した吐出口19が第1液槽12よりも高い位置に位置
するような高さで第2液槽14を設置してある。そこ
で、循環ポンプ18を迂回するバイパス流路28を設け
るとともに、該バイパス流路28の途中に止水弁29を
設け、膜分離する状態では止水弁29を閉じておく。そ
して、膜面を洗浄する際には、循環ポンプ18の作動を
停止して止水弁29を開く。この様にしてバイパス流路
28の止水弁29を開くと、第2液槽14内の原液が水
位差により原液送出管21内を逆流し、バイパス流路2
8を介して第1液槽12内に流下する。したがって、別
途ポンプ等を使用しなくても、第2液槽14内の原液を
第1液槽12内に簡単に移すことができる。そして、膜
面の洗浄作業が終了したならば、バイパス流路28の止
水弁29を閉じてから循環ポンプ18を作動すれば、第
2液槽14内に原液を簡単に戻すことができる。
Further, in this embodiment, the second liquid tank 14 is located at a position higher than the first liquid tank 12, specifically, the discharge port 19 opened in the second liquid tank 14 is higher than the first liquid tank 12. The second liquid tank 14 is installed at such a height that it can be positioned. Therefore, a bypass flow path 28 that bypasses the circulation pump 18 is provided, a water stop valve 29 is provided in the middle of the bypass flow path 28, and the water stop valve 29 is closed in the state of membrane separation. Then, when cleaning the membrane surface, the operation of the circulation pump 18 is stopped and the water stop valve 29 is opened. When the water shutoff valve 29 of the bypass flow passage 28 is opened in this way, the stock solution in the second liquid tank 14 flows backward in the stock solution delivery pipe 21 due to the difference in water level, and the bypass flow path 2
It flows down into the first liquid tank 12 via 8. Therefore, the stock solution in the second liquid tank 14 can be easily transferred into the first liquid tank 12 without using a separate pump or the like. Then, when the work of cleaning the membrane surface is completed, by closing the water shutoff valve 29 of the bypass flow passage 28 and then operating the circulation pump 18, the stock solution can be easily returned to the second liquid tank 14.

【0022】なお、前述した実施例では第1液槽12内
で曝気処理する場合を説明したが、第1液槽12を沈澱
槽としても良い。即ち、曝気を停止したり、或は第1液
槽12内に曝気管15自体を設けないで沈澱槽として使
用すれば良い。また、凝集沈殿槽としても良いことは勿
論である。
In the above-described embodiment, the case where the aeration process is performed in the first liquid tank 12 has been described, but the first liquid tank 12 may be a precipitation tank. That is, the aeration may be stopped, or the aeration pipe 15 itself may not be provided in the first liquid tank 12 and used as a precipitation tank. Of course, a coagulating sedimentation tank may be used.

【0023】また、前述した実施例は第1液槽12と第
2液槽14とをまったく別個に設けたが、本発明はこれ
に限定するものではなく、間を仕切り壁に仕切って隣接
させてもよい。例えば、図2に示す他の実施例では第1
液槽12と第2液槽14との間を仕切り壁30で仕切
り、この仕切り壁30の上部(第1液槽12の最高液面
よりも高い位置)にオーバーフロー流路31を形成し、
第2液槽14の底部を第1液槽12の底部よりも高く設
定し、第1液槽12は、余裕容量を第2液槽14の容量
よりも大きく設定してある。そして、循環ポンプ18の
吸引側を第1液槽12側に接続して吐出側の管23の吐
出口19を第2液槽14内の膜エレメント13の下方に
上向きに開口させる。
Further, in the above-mentioned embodiment, the first liquid tank 12 and the second liquid tank 14 are provided separately, but the present invention is not limited to this, and the space is divided by the partition wall so that they are adjacent to each other. May be. For example, in another embodiment shown in FIG.
A partition wall 30 partitions the space between the liquid tank 12 and the second liquid tank 14, and an overflow passage 31 is formed in an upper portion of the partition wall 30 (a position higher than the highest liquid level of the first liquid tank 12).
The bottom portion of the second liquid tank 14 is set higher than the bottom portion of the first liquid tank 12, and the first liquid tank 12 has a surplus capacity set to be larger than the capacity of the second liquid tank 14. Then, the suction side of the circulation pump 18 is connected to the first liquid tank 12 side, and the discharge port 19 of the discharge side pipe 23 is opened upward below the membrane element 13 in the second liquid tank 14.

【0024】したがって、第1液槽12内で曝気処理し
た反応液を循環ポンプ18の作動により吐出口19から
膜エレメント13間の流路に向けて流出させることがで
き、膜面の流速を散気管24の気泡と相俟って高めるこ
とができ、効率の良い膜分離を行うことができ、第2液
槽14内の余剰液はオーバーフロー流路31から第1液
槽12内に戻して再度曝気処理することができる。
Therefore, the reaction liquid aerated in the first liquid tank 12 can be discharged from the discharge port 19 toward the flow path between the membrane elements 13 by the operation of the circulation pump 18, and the flow velocity on the membrane surface is dispersed. This can be increased in combination with the bubbles in the trachea 24, and efficient membrane separation can be performed. The surplus liquid in the second liquid tank 14 is returned from the overflow channel 31 into the first liquid tank 12 and then again. Can be aerated.

【0025】また、膜エレメント13の膜面洗浄を行う
場合には、第2液槽14内の反応液を第1液槽12内に
移して膜エレメント13を引き出すことなく槽14内で
直接洗浄することができる。そして、流路切換弁を循環
ポンプ18の流路に設けると、第2液槽14内の反応液
を第1液槽12内に移す際に循環ポンプ18の作動によ
って簡単に移送することができる。
When the membrane surface of the membrane element 13 is to be cleaned, the reaction solution in the second liquid tank 14 is transferred into the first liquid tank 12 and directly washed in the tank 14 without pulling out the membrane element 13. can do. When a flow path switching valve is provided in the flow path of the circulation pump 18, the reaction liquid in the second liquid tank 14 can be easily transferred by the operation of the circulation pump 18 when transferring it into the first liquid tank 12. .

【0026】そして、本実施例のように、第1液槽12
と第2液槽14を一体に設けると設置スペースを有効に
利用することができ、しかも循環ポンプ18等を第2液
槽14の下方にできたスペース内に設置すると一層スペ
ース効率が高まる。
Then, as in this embodiment, the first liquid tank 12
If the second liquid tank 14 and the second liquid tank 14 are integrally provided, the installation space can be effectively utilized, and if the circulation pump 18 and the like are installed in the space formed below the second liquid tank 14, the space efficiency is further enhanced.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、第
1液槽内の処理された原液が循環ポンプの作動によって
第2液槽内に圧送され、原液が第2液槽内に圧送される
際に、吐出口が膜エレメントの下に配設されているの
で、吐出口から吐出した膜エレメントに向かって勢い良
く流出する。したがって、第1液槽から第2液槽に圧送
された処理原液は、膜エレメント間の流路内を流れ、膜
面速度が著しく高められる。このため、各膜エレメント
の膜における透過速度が著しく高められ、しかも膜面に
接触する原液は第1液槽から圧送された処理原液であ
り、効率の良い膜分離が行われる。そして、第2液槽に
おける余剰原液はオーバーフロー流路を介して第1液槽
内にオーバーフローして再度処理されることになる。し
たがって、未処理成分を膜分離する率が低下し、処理の
安定性が高い。また、第1液槽の余裕水量を第2液槽の
水量よりも大きくしておくと、第2液槽の液を第1液槽
内に収容し、第2液槽内の膜エレメントの膜面を直接洗
浄することができ、従来多大な手間と時間を要していた
膜面の清浄作業を短時間で簡単に行うことが可能であ
る。
As described above, according to the present invention, the treated stock solution in the first liquid tank is pumped into the second liquid tank by the operation of the circulation pump, and the stock solution is pumped into the second liquid tank. At this time, since the ejection port is arranged below the membrane element, the ejection port vigorously flows out toward the membrane element ejected from the ejection port. Therefore, the undiluted treatment liquid pressure-fed from the first liquid tank to the second liquid tank flows in the flow path between the membrane elements, and the membrane surface velocity is significantly increased. Therefore, the permeation rate through the membrane of each membrane element is remarkably increased, and the undiluted solution contacting the membrane surface is the treated undiluted solution pumped from the first liquid tank, and efficient membrane separation is performed. Then, the surplus stock solution in the second liquid tank overflows into the first liquid tank through the overflow channel and is processed again. Therefore, the rate of membrane separation of untreated components is lowered, and the stability of treatment is high. Further, when the surplus water amount of the first liquid tank is made larger than the water amount of the second liquid tank, the liquid of the second liquid tank is stored in the first liquid tank and the membrane of the membrane element in the second liquid tank is stored. It is possible to directly clean the surface, and it is possible to easily carry out the cleaning work of the film surface, which has required a lot of trouble and time in the past, in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1液槽と第2液槽を全く別個に設けた浸漬型
膜分離装置の実施例の断面図である。
FIG. 1 is a cross-sectional view of an embodiment of an immersion type membrane separation device in which a first liquid tank and a second liquid tank are provided separately.

【図2】第1液槽と第2液槽を仕切り壁で区画して一体
的に設けた浸漬型膜分離装置の実施例の断面図である。
FIG. 2 is a cross-sectional view of an embodiment of an immersion type membrane separation device in which a first liquid tank and a second liquid tank are partitioned by a partition wall and integrally provided.

【図3】循環ポンプにより液を第1,第2液槽間で可逆
移送可能とした流路切換弁等の概略配管図である。
FIG. 3 is a schematic piping diagram of a flow path switching valve and the like in which liquid can be reversibly transferred between the first and second liquid tanks by a circulation pump.

【図4】従来の浸漬型膜分離装置の断面図である。FIG. 4 is a cross-sectional view of a conventional immersion type membrane separation device.

【図5】反応槽と浸漬槽とを別個に設けた従来の浸漬型
膜分離装置の断面図である。
FIG. 5 is a cross-sectional view of a conventional immersion-type membrane separation device in which a reaction tank and an immersion tank are separately provided.

【符号の説明】[Explanation of symbols]

11 浸漬型膜分離装置 12 第1液槽 13 膜エレメント 14 第2液槽 15 曝気管 16 第2液槽のオーバーフロー出口 17 オーバーフロー管 18 循環ポンプ 19 吐出口 21 原液送出管 23 管 24 散気管 26 吸引ポンプ 30 仕切り壁 32 流路切換弁 11 Immersion Type Membrane Separator 12 First Liquid Tank 13 Membrane Element 14 Second Liquid Tank 15 Aeration Pipe 16 Overflow Outlet of Second Liquid Tank 17 Overflow Pipe 18 Circulation Pump 19 Discharge Port 21 Raw Liquid Delivery Pipe 23 Pipe 24 Diffuser Pipe 26 Suction Pump 30 Partition wall 32 Flow path switching valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原液を貯留する第1液槽と、膜エレメン
トを浸漬した第2液槽を設け、第1液槽と第2液槽との
間には第2液槽の原液を第1液槽にオーバーフローさせ
るオーバーフロー流路を設け、吸入側を第1液槽に接続
した循環ポンプの吐出側配管を第2液槽の膜エレメント
の下部に配設したことを特徴とする浸漬型膜分離装置。
1. A first liquid tank for storing an undiluted solution and a second liquid tank in which a membrane element is immersed are provided, and a first undiluted solution of the second liquid tank is provided between the first and second liquid tanks. An immersion type membrane separation characterized in that an overflow passage is provided for overflowing the liquid tank, and a discharge side pipe of a circulation pump whose suction side is connected to the first liquid tank is arranged below the membrane element of the second liquid tank. apparatus.
JP18416994A 1994-07-14 1994-07-14 Immersion type membrane separation device Expired - Fee Related JP3480049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18416994A JP3480049B2 (en) 1994-07-14 1994-07-14 Immersion type membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18416994A JP3480049B2 (en) 1994-07-14 1994-07-14 Immersion type membrane separation device

Publications (2)

Publication Number Publication Date
JPH0824855A true JPH0824855A (en) 1996-01-30
JP3480049B2 JP3480049B2 (en) 2003-12-15

Family

ID=16148578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18416994A Expired - Fee Related JP3480049B2 (en) 1994-07-14 1994-07-14 Immersion type membrane separation device

Country Status (1)

Country Link
JP (1) JP3480049B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176480A (en) * 1998-12-15 2000-06-27 Kurita Water Ind Ltd Device for activated sludge treatment
JP2001038178A (en) * 1999-07-30 2001-02-13 Daicel Chem Ind Ltd Separation membrane module
JP2001104760A (en) * 1999-10-05 2001-04-17 Mitsubishi Heavy Ind Ltd Immersion type membrane filtration apparatus and method for washing filtration membrane
JP2001334282A (en) * 2000-05-29 2001-12-04 Shinko Pantec Co Ltd Apparatus and method for treating wastewater
JP2002205087A (en) * 2001-01-09 2002-07-23 Kubota Corp Air diffuser
KR100348417B1 (en) * 1999-09-08 2002-08-13 에스케이건설 주식회사 Apparatus and method of submerged membrane wastewater treatment with stabilized sludge
JP2005500156A (en) * 2001-08-24 2005-01-06 エンビロゲン,インコーポレイティド System and method for collecting permeate through a filter and cleaning the filter in that position
JP2007185660A (en) * 2007-04-09 2007-07-26 Ebara Corp Method and apparatus for treating organic waste water
JP2010125360A (en) * 2008-11-26 2010-06-10 Daiki Ataka Engineering Co Ltd Membrane separation apparatus
JP2012176396A (en) * 2010-11-30 2012-09-13 Jfe Engineering Corp Membrane separation activated sludge apparatus
JP2013121570A (en) * 2011-12-12 2013-06-20 Jfe Engineering Corp Membrane separation activated sludge apparatus
JP2015136654A (en) * 2014-01-22 2015-07-30 ダイセン・メンブレン・システムズ株式会社 Multistage separation membrane device and operational method of the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176480A (en) * 1998-12-15 2000-06-27 Kurita Water Ind Ltd Device for activated sludge treatment
JP2001038178A (en) * 1999-07-30 2001-02-13 Daicel Chem Ind Ltd Separation membrane module
KR100348417B1 (en) * 1999-09-08 2002-08-13 에스케이건설 주식회사 Apparatus and method of submerged membrane wastewater treatment with stabilized sludge
JP2001104760A (en) * 1999-10-05 2001-04-17 Mitsubishi Heavy Ind Ltd Immersion type membrane filtration apparatus and method for washing filtration membrane
JP2001334282A (en) * 2000-05-29 2001-12-04 Shinko Pantec Co Ltd Apparatus and method for treating wastewater
JP2002205087A (en) * 2001-01-09 2002-07-23 Kubota Corp Air diffuser
JP2005500156A (en) * 2001-08-24 2005-01-06 エンビロゲン,インコーポレイティド System and method for collecting permeate through a filter and cleaning the filter in that position
JP2007185660A (en) * 2007-04-09 2007-07-26 Ebara Corp Method and apparatus for treating organic waste water
JP4611334B2 (en) * 2007-04-09 2011-01-12 荏原エンジニアリングサービス株式会社 Organic wastewater treatment method and apparatus
JP2010125360A (en) * 2008-11-26 2010-06-10 Daiki Ataka Engineering Co Ltd Membrane separation apparatus
JP2012176396A (en) * 2010-11-30 2012-09-13 Jfe Engineering Corp Membrane separation activated sludge apparatus
JP2013121570A (en) * 2011-12-12 2013-06-20 Jfe Engineering Corp Membrane separation activated sludge apparatus
JP2015136654A (en) * 2014-01-22 2015-07-30 ダイセン・メンブレン・システムズ株式会社 Multistage separation membrane device and operational method of the same

Also Published As

Publication number Publication date
JP3480049B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
US5451317A (en) Solid-liquid separator
US6878282B2 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
JP5217159B2 (en) Sewage treatment apparatus and method
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
KR100768841B1 (en) Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same
JP3671473B2 (en) Immersion membrane separator
JPH0824855A (en) Immersion type membrane separator
CN108892320A (en) A kind of industrial oily waste water processing system
JP2008246357A (en) Membrane separation method and apparatus
JP5648387B2 (en) Aeration device and method of operating membrane separation device
JP3676157B2 (en) Foam separator and water purification system using the same
JPH0722749B2 (en) Sewage treatment equipment
JP4530621B2 (en) Cleaning method for air diffuser
JP2012106161A (en) Membrane separation biological treatment apparatus
JP2008093607A (en) Organic waste water treatment device and organic waste water treatment method
JP6411051B2 (en) Immersion membrane separator and method for operating the same
JP2012096125A (en) Membrane-separation-type activated sludge process equipment and method for the same
JP2001170677A (en) Air diffuser for high-concentration sewage
JP5048637B2 (en) Membrane separator
JP3480050B2 (en) Immersion type membrane separation device
JP2001047046A (en) Membrane separation type water treatment apparatus
JP3419257B2 (en) Immersion membrane solid-liquid separator
JP3739242B2 (en) Multi-stage concentration equipment for excess sludge
JP3784252B2 (en) Air diffuser
JP4111579B2 (en) Operation method and apparatus of organic sewage treatment apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees