JPH08247968A - Non-destructive inspecting apparatus - Google Patents

Non-destructive inspecting apparatus

Info

Publication number
JPH08247968A
JPH08247968A JP7047656A JP4765695A JPH08247968A JP H08247968 A JPH08247968 A JP H08247968A JP 7047656 A JP7047656 A JP 7047656A JP 4765695 A JP4765695 A JP 4765695A JP H08247968 A JPH08247968 A JP H08247968A
Authority
JP
Japan
Prior art keywords
radiation source
pressurized gas
capsule
pneumatic
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7047656A
Other languages
Japanese (ja)
Inventor
Keiji Iwata
圭司 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7047656A priority Critical patent/JPH08247968A/en
Publication of JPH08247968A publication Critical patent/JPH08247968A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/10Means for stopping flow from or in pipes or hoses

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Pipe Accessories (AREA)

Abstract

PURPOSE: To improve the operability of a radiation source and to accurately set the radioactive ray radiating position by controlling the supply of pressurized gas to a pneumatic tube and moving the source to the position to be inspected. CONSTITUTION: A photosensitive material F is laminated on the surface of the position to be inspected of a material T to be inspected, and a pneumatic tube 4 and a stopper 5 are disposed at the opposite positions of the material F. Then, a radiation source X is contained in a pneumatic capsule 6 to be encapsulized, the capsule 6 is charged in the communication hole 3e of a radiation source shield 3, and the tube 4 is connected to the hole 3e. When the control valves 2c, 2d of channel control means 2 are blocked and the control valves 2a, 2b are opened, the pressurized gas of a pressurized air supply source 1 is fed to the hole 3e, and the capsule 6 is fed to the stopper 5 near the material T via the tube 4. Subsequently, the gas is supplied, the capsule 6 is pressed to the stopper 5 to the stopped state, and the position to be inspected is set. The material F senses the ray radiated from the source X at the position in response to the permeated state of the material T. After it is radiated for a necessary time, the source X is recovered by the gas fed in the reverse direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非破壊検査装置に係
り、特に、遠隔操作によって放射線源を所望箇所の被検
査体に送り込みかつその回収を行なう技術に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nondestructive inspection apparatus, and more particularly to a technique for sending a radiation source to an object to be inspected at a desired location and collecting the radiation source by remote control.

【0002】[0002]

【従来の技術】従来、非破壊検査法の一つとして、いわ
ゆるレントゲン検査、つまり、金属材等の被検査体の表
面近傍にXレイフィルム等の感光材を配しておいて、放
射線で被検査体を照射し、感光材の感光状況により被検
査体の組織の状態を監視する方法が採用されている。
2. Description of the Related Art Conventionally, as one of nondestructive inspection methods, so-called X-ray inspection, that is, a photosensitive material such as an X-ray film is arranged near the surface of an object to be inspected, such as a metal material, and is exposed to radiation. A method of irradiating an inspection object and monitoring the state of the tissue of the inspection object according to the exposure state of the photosensitive material is adopted.

【0003】上記非破壊検査の実施にあたっては、作業
員の被曝低減を図るために、放射線源を遠隔操作により
所望箇所の被検査体の表面近傍に送り込むことが望まし
い。この目的を達成する技術手段として、被検査体の表
面近傍に放射線透過性に優れた移送管を配し、放射線源
を取り付けたワイヤを移送管の中に通して、ワイヤを手
動による巻き取り操作で引くことにより、放射線源を目
的の位置まで送り込む方法等が適用される。
In carrying out the non-destructive inspection, it is desirable to send the radiation source to the vicinity of the surface of the object to be inspected at a desired position by remote control in order to reduce the exposure of the worker. As a technical means to achieve this purpose, a transfer tube with excellent radiation permeability is arranged near the surface of the object to be inspected, a wire with a radiation source attached is passed through the transfer tube, and the wire is manually wound. The method of sending the radiation source to the target position by pulling with is applied.

【0004】[0004]

【発明が解決しようとする課題】しかし、放射線源をワ
イヤで操作する方法であると、放射線源とワイヤとの接
続作業及び解体作業や、放射線源の組み込み作業及び取
り出し作業等において、放射線源を完全に隔離すること
が困難となるとともに、作業性の低下も相まって作業員
の被曝線量が大きくなり易い。
However, the method of operating the radiation source with a wire requires that the radiation source be used for connecting and disassembling the radiation source and the wire, and for assembling and removing the radiation source. Difficulty in complete isolation and a decrease in workability tend to increase the radiation dose to workers.

【0005】本発明は、かかる事情に鑑みてなされたも
ので、以下の目的を達成するものである。 放射線源の移動時間を短縮すること。 被曝低減を図ること。 放射線源の操作性を向上させること。 放射線照射位置を正確に設定すること。
The present invention has been made in view of the above circumstances, and achieves the following objects. Shorten the travel time of the radiation source. To reduce radiation exposure. Improving the operability of the radiation source. Accurately set the irradiation position.

【0006】[0006]

【課題を解決するための手段】被検査体の表面近傍に感
光材を配し、放射線源を送り込んで放射線照射により、
感光材を感光させる装置であって、加圧気体発生手段に
接続され放射線源を収容する線源遮蔽体と、該線源遮蔽
体に接続され被検査体に配される感光材の反対位置に近
接状態に配され加圧気体により放射線源を検査対象位置
に移送する気送管と、該気送管に配され加圧気体の供給
の制御を行なう流路制御手段とを具備する構成が採用さ
れる。この際の加圧気体発生手段は、加圧空気供給源等
が採用される。被検査体の検査対象位置近傍における気
送管の内部には、放射線源の移動を拘束するストッパが
配され、該ストッパには通気孔が形成される。線源遮蔽
体には、気送管に対して接続される連通穴を有するケー
シングと、該ケーシングに対して回転可能に配され回転
操作時にシャッタ穴により連通穴の開閉を行なうロータ
リーシャッタとが配される。ケーシングにあっては、支
持構造物に固定状態に取り付けられることが望ましい。
気送管の両端は、流路制御手段を介在させた状態で加圧
気体発生手段に接続されるとともに、流路制御手段は、
複数の制御弁の組み合わせにより構成される。放射線源
は、気送管の内径よりも若干小さな気送カプセルの内部
中心に収納され、気送カプセルは、収納容器本体とキャ
ップとに分れ、収納容器本体のテーパ穴に放射線源を収
納して、螺合によりキャップを取り付けて、固定した状
態で密封することが望ましい。
[Means for Solving the Problems] A photosensitive material is arranged in the vicinity of the surface of an object to be inspected, a radiation source is sent, and radiation irradiation is performed.
An apparatus for exposing a photosensitive material to a source shield, which is connected to the pressurized gas generating means and accommodates a radiation source, and a photosensitive material, which is connected to the source shield and is disposed on an object to be inspected, at a position opposite to the photosensitive material. A structure is provided that includes an air feeding pipe that is arranged in a proximity state and that transfers a radiation source to a position to be inspected by a pressurized gas, and a flow path control unit that is arranged on the air feeding pipe and controls the supply of the pressurized gas. To be done. A pressurized air supply source or the like is adopted as the pressurized gas generating means at this time. A stopper for restraining the movement of the radiation source is arranged inside the air feeding tube near the inspection target position of the inspection object, and a ventilation hole is formed in the stopper. A casing having a communication hole connected to the pneumatic tube and a rotary shutter that is rotatably arranged with respect to the casing and that opens and closes the communication hole by a shutter hole during a rotation operation are arranged in the radiation source shield. To be done. The casing is preferably fixedly attached to the support structure.
Both ends of the pneumatic tube are connected to the pressurized gas generating means with the flow path control means interposed, and the flow path control means is
It is composed of a combination of a plurality of control valves. The radiation source is housed in the center of the inside of the air-carrying capsule that is slightly smaller than the inner diameter of the air-carrying tube, and the air-carrying capsule is divided into the storage container body and the cap, and the radiation source is stored in the taper hole of the storage container body. Then, it is desirable to attach the cap by screwing and seal in a fixed state.

【0007】[0007]

【作用】被検査体の表面近傍に感光材を配しておき、加
圧気体発生手段で発生させた加圧気体を、流路制御手段
の作動により線源遮蔽体に送り込んで、放射線源を気送
管を経由して感光材の反対位置近傍まで気送する。検査
対象位置における放射線源からの放射線照射により、感
光材が被検査体の透過状況に応じて感光させられる。検
査対象位置は、放射線源がストッパに接触して移動が阻
止されることにより設定され、ストッパの通気孔を経由
して加圧気体の挿通が許容される。線源遮蔽体のケーシ
ングの連通穴に収納されている放射線源は、回転操作及
び加圧気体の送り込み時に、ロータリーシャッタのシャ
ッタ穴を経由して、連通穴とストッパとの間で移送さ
れ、かつ連通穴に収納された状態ではシャッタ穴を閉じ
ることにより密閉隔離される。流路制御手段にあって
は、複数の制御弁の組み合わせにより、気送管の両端の
任意の一方に加圧気体を送り込み、他方から加圧気体を
排出させることにより、両方向の移送を可能として検査
対象位置への放射線源の送り込みと放射線源の回収とが
行なわれる。放射線源を気送カプセルの内部に収納する
と、放射線源の大きさに関係なく、気送管による気送性
が確保される。
The photosensitive material is arranged near the surface of the object to be inspected, and the pressurized gas generated by the pressurized gas generating means is sent to the radiation source shield by the operation of the flow path control means to operate the radiation source. Air is fed to the vicinity of the opposite position of the photosensitive material via a pneumatic tube. By the radiation irradiation from the radiation source at the inspection target position, the photosensitive material is exposed to light according to the transmission state of the inspection object. The inspection target position is set when the radiation source comes into contact with the stopper and its movement is blocked, and insertion of the pressurized gas is allowed through the ventilation hole of the stopper. The radiation source housed in the communication hole of the casing of the radiation source shield is transferred between the communication hole and the stopper via the shutter hole of the rotary shutter at the time of rotation operation and feeding of pressurized gas, and In the state where it is housed in the communication hole, it is hermetically separated by closing the shutter hole. In the flow path control means, by combining a plurality of control valves, the pressurized gas is sent to any one of both ends of the air feeding pipe, and the pressurized gas is discharged from the other side, thereby enabling the transfer in both directions. The radiation source is sent to the inspection target position and the radiation source is collected. When the radiation source is housed inside the air-transporting capsule, the air-transporting property of the air-transporting tube is secured regardless of the size of the radiation source.

【0008】[0008]

【実施例】以下、図1ないし図5に基づいて、本発明に
係る非破壊検査装置の一実施例について説明する。図
中、符号Xは放射線源、Tは被検査体、Fは感光材(フ
ィルム)、1は加圧気体発生手段、2は流路制御手段、
3は線源遮蔽体、4は気送管、6は気送カプセル、7は
支持構造物である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the nondestructive inspection apparatus according to the present invention will be described below with reference to FIGS. In the figure, reference numeral X is a radiation source, T is an object to be inspected, F is a photosensitive material (film), 1 is a pressurized gas generating means, 2 is a flow path controlling means,
Reference numeral 3 is a radiation source shield, 4 is a pneumatic tube, 6 is a pneumatic capsule, and 7 is a support structure.

【0009】前記加圧気体発生手段1は、加圧空気を発
生させるエアコンプレッサ等の加圧空気供給源や、加圧
ガスタンク及びガスボンベ等であり、加圧気体供給管1
aにより流路制御手段2に接続状態に配される。
The pressurized gas generating means 1 is a pressurized air supply source such as an air compressor for generating pressurized air, a pressurized gas tank and a gas cylinder, and the pressurized gas supply pipe 1
It is connected to the flow path control means 2 by a.

【0010】前記流路制御手段2は、加圧気体供給管1
aと気送管4の両端との間に介在状態、あるいは気送管
4の中間の2箇所に介在状態に配されて、加圧気体の供
給の制御を行なうものであり、図1に示すように、独立
して単独に制御される複数の制御弁2a,2b,2c,
2dの組み合わせにより構成されるとともに、加圧気体
を気送管4の管路外に放出するための放圧器2eを有し
ている。
The flow path control means 2 comprises a pressurized gas supply pipe 1
It is arranged to intervene between a and both ends of the pneumatic tube 4 or to intervene at two locations in the middle of the pneumatic tube 4 to control the supply of the pressurized gas, as shown in FIG. As described above, the plurality of control valves 2a, 2b, 2c, which are independently controlled independently,
The pressure relief device 2e is configured by a combination of 2d and discharges the pressurized gas to the outside of the pipeline of the pneumatic tube 4.

【0011】前記線源遮蔽体3は、気送管4の途中に介
在状態に配され、気送カプセル6を収納するケーシング
3aと、該ケーシング3aを支持構造物7に取り付ける
ための支持ブラケット3bと、ケーシング3aに対して
回転可能に配されるロータリーシャッタ3cとを有して
おり、ケーシング3aには、気送管4に接続具3dを介
して接続される連通穴3e,3fが、図2に示すように
偏心状態に形成され、ロータリーシャッタ3cにも、回
転操作時の位置の選択によって連通穴3e,3fに対し
て択一的に接続状態または非接続状態として開閉を行な
うための偏心状態のシャッタ穴3g,3hが形成され
る。そして、ケーシング3aとロータリーシャッタ3c
との間には、これらを回転可能に接続するための支持軸
3iが配され、ケーシング3aの外周には、遠隔等によ
り回転操作を行なうためのハンドル3jが配される。
The radiation source shield 3 is disposed in the middle of the pneumatic tube 4, and is provided with a casing 3a for accommodating the pneumatic capsule 6 and a support bracket 3b for attaching the casing 3a to the support structure 7. And a rotary shutter 3c rotatably arranged with respect to the casing 3a. In the casing 3a, communication holes 3e, 3f connected to the pneumatic tube 4 via a connector 3d are provided. As shown in FIG. 2, the eccentricity is formed in the eccentric state, and the rotary shutter 3c is also eccentric for opening and closing the communication holes 3e and 3f selectively in the connected state or the non-connected state depending on the selection of the position during the rotation operation. The shutter holes 3g and 3h in the state are formed. Then, the casing 3a and the rotary shutter 3c
A support shaft 3i for rotatably connecting these components is arranged between and, and a handle 3j for remotely rotating the casing 3a is arranged on the outer periphery of the casing 3a.

【0012】前記気送管4は、可撓性及び放射線透過性
に優れた合成樹脂管やアルミ等の軽金属薄肉管が適用さ
れ、両端が線源遮蔽体3を介在させた状態で流路制御手
段2に接続されるとともに、被検査体Tに配される感光
材(フィルム)Fの反対位置に近接状態に配される。そ
して、気送管4の途中における検査対象位置(放射線の
照射位置)には、図3に示すように管継手4aが配さ
れ、該管継手4aの通気孔4bを経由してループ状の管
路を形成するとともに、管継手4aにストッパ5が取り
付けられる。
As the pneumatic tube 4, a synthetic resin tube excellent in flexibility and radiation permeability or a light metal thin tube such as aluminum is applied, and the flow path is controlled with both ends having the radiation source shield 3 interposed. It is connected to the means 2 and is arranged in a proximity state at a position opposite to the photosensitive material (film) F arranged on the inspection object T. As shown in FIG. 3, a pipe joint 4a is arranged at a position to be inspected (radiation irradiation position) in the middle of the pneumatic pipe 4, and a loop-shaped pipe is provided via a vent hole 4b of the pipe joint 4a. A stopper 5 is attached to the pipe joint 4a while forming a passage.

【0013】前記ストッパ5は、図3に示すように、ク
ッション性を有するゴム等によりリング状に形成され、
管継手4aの端部に一体に取り付けられるとともに、気
送管4の管路を接続するための通気孔5aが配され、図
1に示すように、検査対象位置近傍の気送管4の途中
と、ケーシング3aの連通穴3eの途中とにそれぞれ介
在状態に配される。
As shown in FIG. 3, the stopper 5 is formed in a ring shape from rubber having a cushioning property.
Along with being integrally attached to the end of the pipe joint 4a, a vent hole 5a for connecting the conduit of the air feeding pipe 4 is arranged, and as shown in FIG. 1, in the middle of the air feeding pipe 4 near the inspection target position. And an intermediate state of the communication hole 3e of the casing 3a.

【0014】前記気送カプセル6は、図4及び図5に示
すように、放射線源Xを収納するものであり、全体とし
て気送管4の内径よりも若干小さな外径を有する円柱状
に形成されるとともに、収納容器本体6Aとキャップ6
Bとの部分に分割される構造が採用される。そして、収
納容器本体6Aには、内部中心に形成されるテーパ穴6
aと、該テーパ穴6aの開口部近傍に形成されるめねじ
部6bと、テーパ穴6aの底部に形成され放射線源Xを
装填するための線源収納穴6cとを有している。また、
キャップ6Bには、めねじ部6bに螺合させるためのお
ねじ部6dと、線源収納穴6cに装填された放射線源X
の移動を拘束するための線源押え部6eと、自動ねじ止
め機等によって回転操作を行なうための十字穴等の操作
部6gとを有している。なお、収納容器本体6Aとキャ
ップ6Bとの角部には、丸めた状態のガイド部6fが形
成される。
As shown in FIGS. 4 and 5, the pneumatic capsule 6 is for accommodating the radiation source X, and is formed in a cylindrical shape having an outer diameter slightly smaller than the inner diameter of the pneumatic tube 4 as a whole. The storage container body 6A and the cap 6
A structure that is divided into parts B and B is adopted. The storage container body 6A has a tapered hole 6 formed in the center thereof.
a, a female screw portion 6b formed near the opening of the tapered hole 6a, and a radiation source storage hole 6c formed at the bottom of the tapered hole 6a for loading the radiation source X. Also,
The cap 6B has a male screw portion 6d for screwing into the female screw portion 6b, and the radiation source X loaded in the radiation source storage hole 6c.
Has a radiation source pressing portion 6e for restraining the movement of the above, and an operation portion 6g such as a cross hole for performing a rotating operation by an automatic screwing machine or the like. A rolled guide portion 6f is formed at a corner between the storage container body 6A and the cap 6B.

【0015】このように構成されている非破壊検査装置
では、被検査体Tの検査対象箇所の表面に、感光材Fを
貼付するかあるいは近傍位置に対向させる等により配し
ておくとともに、気送管4及びストッパ5を感光材Fの
反対位置に配しておいて、放射線源Xを気送することに
より、放射線照射が行なわれる。
In the non-destructive inspection apparatus having the above-described structure, the photosensitive material F is attached to the surface of the inspection target portion of the inspection object T by adhering it or facing it in the vicinity thereof. Radiation irradiation is performed by arranging the feeding tube 4 and the stopper 5 at positions opposite to the photosensitive material F and pneumatically feeding the radiation source X.

【0016】放射線源Xを図4及び図5に示すように収
納容器本体6Aの線源収納穴6cに装填して、キャップ
6Bを螺合することにより、気送カプセル6の内部に収
納してカプセル化したものを、図1の破線で示すよう
に、線源遮蔽体3におけるケーシング3aの連通穴3e
に装填し、ロータリーシャッタ3cにおけるシャッタ穴
3gを開けて、連通穴3eと気送管4とを接続した状態
で、流路制御手段2を作動させる。
As shown in FIGS. 4 and 5, the radiation source X is loaded into the radiation source storage hole 6c of the storage container body 6A, and the cap 6B is screwed to be stored inside the pneumatic capsule 6. As shown by a broken line in FIG. 1, the encapsulated one is a communication hole 3e of the casing 3a in the radiation source shield 3.
And the shutter hole 3g in the rotary shutter 3c is opened, and the communication hole 3e and the pneumatic tube 4 are connected, and the flow path control means 2 is operated.

【0017】流路制御手段2における制御弁2c,2d
を閉塞状態とするとともに、制御弁2a,2bを開放す
ると、加圧気体発生手段1からの加圧気体が、図1に実
線の矢印で示すように、線源遮蔽体3におけるケーシン
グ3aの連通穴3eに送り込まれて、連通穴3eに装填
されていた気送カプセル6が、気送管4を経由して被検
査体Tの近傍位置のストッパ5まで送り込まれる。
Control valves 2c, 2d in the flow path control means 2
Is closed and the control valves 2a and 2b are opened, the pressurized gas from the pressurized gas generating means 1 communicates with the casing 3a in the radiation source shield 3 as indicated by the solid arrow in FIG. The air feeding capsule 6 loaded into the hole 3e and loaded in the communication hole 3e is fed via the air feeding tube 4 to the stopper 5 in the vicinity of the object T to be inspected.

【0018】気送カプセル6がストッパ5に接触して
も、加圧気体発生手段1から引き続き加圧気体が供給さ
れることにより、気送カプセル6はストッパ5に押し付
けられた状態で停止し、検査対象位置の設定が行なわれ
る。この際に、加圧気体は、ストッパ5の通気孔5aか
ら気送管4、線源遮蔽体3のシャッタ穴3h及び連通穴
3f、流路制御手段2における制御弁2bを経由して、
放圧器2eから気送管4の管路外に放出させられる。
Even if the pneumatic capsule 6 comes into contact with the stopper 5, the pressurized gas is continuously supplied from the pressurized gas generating means 1, so that the pneumatic capsule 6 is stopped while being pressed against the stopper 5. The inspection target position is set. At this time, the pressurized gas passes from the vent hole 5a of the stopper 5 to the air feeding pipe 4, the shutter hole 3h and the communication hole 3f of the radiation source shield 3, the control valve 2b of the flow path control means 2,
The pressure is released from the pressure relief device 2e to the outside of the conduit of the pneumatic tube 4.

【0019】検査対象位置において、気送カプセル6の
内部の放射線源Xから放射線が照射されると、被検査体
Tを透過した放射線により、感光材Fが被検査体Tの透
過状況に応じて感光させられることになる。放射線照射
を必要時間行なった後に、逆向きの気送によって放射線
源Xを回収して放射線照射を停止する。
When radiation is applied from the radiation source X inside the pneumatic capsule 6 at the inspection target position, the radiation having passed through the inspection object T causes the photosensitive material F to pass through the inspection object T according to the transmission state of the inspection object T. It will be exposed to light. After the radiation irradiation is performed for a required time, the radiation source X is collected by air feeding in the opposite direction and the radiation irradiation is stopped.

【0020】放射線源Xを回収する作業は、以下のよう
に行なわれる。流路制御手段2における制御弁2a,2
bを閉塞状態とするとともに、制御弁2c,2dを開放
すると、図1に破線の矢印で示すように、加圧気体が、
線源遮蔽体3における連通穴3f及びシャッタ穴3hか
ら気送管4の内部に送り込まれて、ストッパ5に支持さ
れていた気送カプセル6が、気送管4を経由して線源遮
蔽体3の内部のストッパ5まで送り返される。放射線源
Xの回収後、流路制御手段2における各制御弁2a,2
b,2c,2dを全て閉塞することにより、気送カプセ
ル6を線源遮蔽体3に留めた状態に保持することが行な
われる。
The work of collecting the radiation source X is performed as follows. Control valves 2a, 2 in the flow path control means 2
When b is closed and the control valves 2c and 2d are opened, as shown by the broken line arrow in FIG.
The air-supply capsule 6 that has been sent to the inside of the air supply tube 4 through the communication hole 3f and the shutter hole 3h in the radiation source shield 3 and supported by the stopper 5 passes through the air supply tube 4 and the radiation source shield. It is sent back to the stopper 5 inside 3. After collecting the radiation source X, the respective control valves 2a, 2 in the flow path control means 2
By closing all b, 2c, and 2d, the air-carrying capsule 6 is held in the state of being held on the radiation source shield 3.

【0021】線源遮蔽体3における連通穴3eに戻され
た気送カプセル6は、ロータリーシャッタ3cを回転操
作して、図2に示すように、連通穴3eの位置とシャッ
タ穴3gの位置とを90度ずらすことにより、シャッタ
穴3gが閉塞されてケーシング3aの中に隔離状態に保
持され、以後、加圧気体の供給の有無に関係なく、密閉
隔離した状態に維持することができる。
The pneumatic capsule 6 returned to the communication hole 3e in the radiation source shield 3 rotates the rotary shutter 3c so that the position of the communication hole 3e and the position of the shutter hole 3g are changed as shown in FIG. By shifting 90 ° by 90 °, the shutter hole 3g is closed and kept in the isolated state in the casing 3a, and thereafter, the closed state can be maintained regardless of whether or not the pressurized gas is supplied.

【0022】気送カプセル6について補足説明すると、
放射線源Xを線源収納穴6cに収納して、線源押え部6
eにより固定した状態とすると、放射線源Xの位置が、
放射線源Xの大きさに関係なく気送カプセル6の中心に
設定され、かつ、気送カプセル6の外径を気送管4の内
径に近似させることにより、検査対象位置における放射
線照射時の線量設定が正確になる。加えて、図4及び図
5例では、気送カプセル6が全体として円柱状でかつガ
イド部6fが形成されているため、移送途中で気送カプ
セル6が反転することがなく、所望位置まで円滑に誘導
することができ、気送性が確保される。
A supplementary explanation of the pneumatic capsule 6 is as follows.
The radiation source X is stored in the radiation source storage hole 6c, and the radiation source holding portion 6
If it is fixed by e, the position of the radiation source X is
The dose is set at the center of the air-transporting capsule 6 regardless of the size of the radiation source X, and the outer diameter of the air-transporting capsule 6 is approximated to the inner diameter of the air-transporting tube 4 to obtain a dose at the time of irradiation at the inspection target position. The settings are accurate. In addition, in the example of FIGS. 4 and 5, since the pneumatic capsule 6 has a cylindrical shape as a whole and the guide portion 6f is formed, the pneumatic capsule 6 does not invert during transfer, and can be smoothly moved to a desired position. It is possible to guide to, and the pneumaticity is secured.

【0023】[0023]

【発明の効果】本発明に係る非破壊検査装置によれば、
以下の効果を奏する。 (1) 放射線照射による非破壊検査装置として、放射
線源を収容する線源遮蔽体と、被検査体に近接状態に配
され加圧気体により放射線源を検査対象位置に移送する
気送管と、加圧気体の供給の制御を行なう流路制御手段
とを具備する構成の採用により、遠隔操作で放射線源を
短時間で速やかに検査対象箇所に送り込み、かつ回収を
行なうことができる。 (2) 遠隔操作と気送との組み合わせによって、放射
線の遮蔽を十分なものとして、従事作業員の被曝低減を
図ることができる。 (3) 検査対象位置近傍に、気送管の内部で放射線源
の移動を拘束するストッパを配することにより、放射線
源を確実に停止させ、放射線照射位置を正確に設定する
ことができる。 (4) 線源遮蔽体のケーシングの連通穴に対して放射
線源を出し入れするとともに、ロータリーシャッタによ
り連通穴の開閉を行なうことにより、放射線源の隔離及
び出し入れ等の操作性を向上させることができる。 (5) 気送管の両端に流路制御手段を接続して、複数
の制御弁の組み合わせによって加圧気体の流れを制御す
ることにより、気送方向の設定や切り替えを確実にかつ
容易に行なうことができる。 (6) 放射線源を気送カプセルの内部に収納すること
により、気送性を高めるとともに、放射線照射時の位置
の設定を正確に行なうことができる。
According to the nondestructive inspection apparatus of the present invention,
The following effects are obtained. (1) As a non-destructive inspection apparatus by irradiation of radiation, a radiation source shield that accommodates the radiation source, a pneumatic tube that is arranged in the proximity of the object to be inspected, and transfers the radiation source to the inspection target position by pressurized gas, By adopting the configuration provided with the flow path control means for controlling the supply of the pressurized gas, the radiation source can be quickly sent to the inspection target portion in a short time by remote control and the collection can be performed. (2) By combining remote operation and pneumatic transportation, radiation can be shielded sufficiently and the exposure of workers can be reduced. (3) By disposing a stopper that restricts the movement of the radiation source inside the pneumatic tube near the inspection target position, the radiation source can be reliably stopped and the radiation irradiation position can be set accurately. (4) By opening / closing the radiation source in / out of the communication hole of the casing of the radiation source shield and opening / closing the communication hole by the rotary shutter, operability such as isolation and removal of the radiation source can be improved. . (5) The flow control means is connected to both ends of the air feeding pipe, and the flow of the pressurized gas is controlled by a combination of a plurality of control valves, so that the air feeding direction can be set and switched reliably and easily. be able to. (6) By storing the radiation source inside the pneumatic capsule, it is possible to enhance the pneumaticity and accurately set the position at the time of irradiation of radiation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非破壊検査装置の一実施例を示す
配管系統を併記した正面図である。
FIG. 1 is a front view showing a piping system showing an embodiment of a nondestructive inspection device according to the present invention.

【図2】図1における線源遮蔽体部分の側面図である。FIG. 2 is a side view of a radiation source shield portion in FIG.

【図3】図1における管継手及びストッパ部分の正断面
図及び側断面図である。
FIG. 3 is a front sectional view and a side sectional view of a pipe joint and a stopper portion in FIG.

【図4】図1における気送カプセル部分の正断面図であ
る。
FIG. 4 is a front sectional view of a pneumatic capsule portion in FIG.

【図5】図4に示す気送カプセル部分の分解正断面図及
び左側面図である。
5 is an exploded front sectional view and a left side view of the pneumatic capsule portion shown in FIG. 4. FIG.

【符号の説明】[Explanation of symbols]

X 放射線源 T 被検査体 F 感光材(フィルム) 1 加圧気体発生手段(加圧空気供給源) 1a 加圧気体供給管 2 流路制御手段 2a,2b,2c,2d 制御弁 3 線源遮蔽体 3a ケーシング 3c ロータリーシャッタ 3e,3f 連通穴 3g,3h シャッタ穴 4 気送管 4a 管継手 4b 通気孔 5 ストッパ 5a 通気孔 6 気送カプセル 6A 収納容器本体 6B キャップ 6a テーパ穴 6b めねじ部 6c 線源収納穴 6d おねじ部 6e 線源押え部 6f ガイド部 6g 操作部 7 支持構造物 X radiation source T inspected object F photosensitive material (film) 1 pressurized gas generating means (pressurized air supply source) 1a pressurized gas supply tube 2 flow path control means 2a, 2b, 2c, 2d control valve 3 radiation source shielding Body 3a Casing 3c Rotary shutter 3e, 3f Communication hole 3g, 3h Shutter hole 4 Air feeding pipe 4a Pipe joint 4b Vent hole 5 Stopper 5a Vent hole 6 Air feeding capsule 6A Storage container body 6B Cap 6a Tapered hole 6b Female screw part 6c wire Source housing hole 6d Male screw part 6e Radiation source holding part 6f Guide part 6g Operation part 7 Support structure

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 加圧気体発生手段(1)に接続され放射
線源(X)を収容する線源遮蔽体(3)と、該線源遮蔽
体に接続され被検査体(T)に配される感光材(F)の
反対位置に近接状態に配され加圧気体により放射線源を
検査対象位置に移送する気送管(4)と、該気送管に配
され加圧気体の供給の制御を行なう流路制御手段(2)
とを具備することを特徴とする非破壊検査装置。
1. A radiation source shield (3) which is connected to a pressurized gas generating means (1) and accommodates a radiation source (X); and a radiation source shield (3) which is connected to the radiation source shield and is placed on an object to be inspected (T). And a pneumatic tube (4) which is arranged in the vicinity of a position opposite to the photosensitive material (F) and which moves the radiation source to the inspection target position by the pressurized gas, and the supply of the pressurized gas which is arranged in the pneumatic tube. Flow path control means (2)
A non-destructive inspection device comprising:
【請求項2】 被検査体(T)の検査対象位置近傍にお
ける気送管(4)の内部に、放射線源(X)の移動を拘
束するストッパ(5)が配されることを特徴とする請求
項1記載の非破壊検査装置。
2. A stopper (5) for restraining the movement of the radiation source (X) is arranged inside the pneumatic tube (4) in the vicinity of the inspection target position of the inspection object (T). The nondestructive inspection device according to claim 1.
【請求項3】 線源遮蔽体(3)に、気送管(4)に対
して接続される連通穴(3e,3f)を有するケーシン
グ(3a)と、該ケーシングに対して回転可能に配され
回転操作時にシャッタ穴(3g,3h)により連通穴の
開閉を行なうロータリーシャッタ(3c)とが配される
ことを特徴とする請求項1または2記載の非破壊検査装
置。
3. A casing (3a) having communication holes (3e, 3f) connected to a pneumatic tube (4) in a radiation source shield (3), and arranged rotatably with respect to the casing. The non-destructive inspection device according to claim 1 or 2, further comprising: a rotary shutter (3c) that opens and closes the communication hole by the shutter hole (3g, 3h) during a rotating operation.
【請求項4】 気送管(4)の両端が、流路制御手段
(2)を介在させて加圧気体発生手段(1)に接続され
るとともに、流路制御手段が、複数の制御弁(2a,2
b,2c,2d)の組み合わせにより構成されることを
特徴とする請求項1、2または3記載の非破壊検査装
置。
4. Both ends of the pneumatic tube (4) are connected to a pressurized gas generating means (1) with a flow path control means (2) interposed, and the flow path control means is provided with a plurality of control valves. (2a, 2
The nondestructive inspection device according to claim 1, 2 or 3, wherein the nondestructive inspection device is configured by a combination of (b, 2c, 2d).
【請求項5】 放射線源(X)が、気送管(4)の内径
よりも若干小さな気送カプセル(6)の内部中心に収納
されることを特徴とする請求項1、2、3または4記載
の非破壊検査装置。
5. Radiation source (X) is housed in the inner center of a pneumatic capsule (6) which is slightly smaller than the inner diameter of the pneumatic tube (4). 4. The nondestructive inspection device described in 4.
JP7047656A 1995-03-07 1995-03-07 Non-destructive inspecting apparatus Withdrawn JPH08247968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7047656A JPH08247968A (en) 1995-03-07 1995-03-07 Non-destructive inspecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7047656A JPH08247968A (en) 1995-03-07 1995-03-07 Non-destructive inspecting apparatus

Publications (1)

Publication Number Publication Date
JPH08247968A true JPH08247968A (en) 1996-09-27

Family

ID=12781309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7047656A Withdrawn JPH08247968A (en) 1995-03-07 1995-03-07 Non-destructive inspecting apparatus

Country Status (1)

Country Link
JP (1) JPH08247968A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584256B1 (en) * 2004-02-27 2006-05-26 주식회사 지스콥 Transparent tube for transmitting radiation resource for radiation safety
JP2009025207A (en) * 2007-07-20 2009-02-05 I-Bit Co Ltd Fluoroscopic inspection device
KR101227464B1 (en) * 2011-05-31 2013-02-15 (주)에네시스 Measuring apparatus and method of surface radiation dose
CN110336168A (en) * 2019-07-24 2019-10-15 贺菲 A kind of rubbery outer cover USB data line
WO2023032286A1 (en) * 2021-08-31 2023-03-09 株式会社島津製作所 X-ray fluorescence analyzer and x-ray aperture member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584256B1 (en) * 2004-02-27 2006-05-26 주식회사 지스콥 Transparent tube for transmitting radiation resource for radiation safety
JP2009025207A (en) * 2007-07-20 2009-02-05 I-Bit Co Ltd Fluoroscopic inspection device
KR101227464B1 (en) * 2011-05-31 2013-02-15 (주)에네시스 Measuring apparatus and method of surface radiation dose
CN110336168A (en) * 2019-07-24 2019-10-15 贺菲 A kind of rubbery outer cover USB data line
WO2023032286A1 (en) * 2021-08-31 2023-03-09 株式会社島津製作所 X-ray fluorescence analyzer and x-ray aperture member

Similar Documents

Publication Publication Date Title
US4460920A (en) Automatically traveling tube-interior manipulator for remotely controlled transportation of testing devices and tools along given feedpaths, preferably for nuclear reactor installations
US11422070B2 (en) Sampling probe, automatic sampling device, and container detection system
LT3647B (en) Apparatus for inspecting the interior of a lateral pipeline
JPH08247968A (en) Non-destructive inspecting apparatus
CN207645084U (en) A kind of radiation-resource intelligent operating system
US4678624A (en) Method for loading fuel rods into a container
US5165470A (en) Plugging apparatus for heat exchanger
JP2006293368A (en) Cover for image detector
ES8307064A1 (en) Support for an apparatus, in particular a manipulator in tubes.
US2847580A (en) Roll film holder for radiographic work
JP2006329654A (en) Cable insertion device and cable insertion method
JP3210480B2 (en) Nuclear fuel rod upper end plug welding equipment
KR102378613B1 (en) Appratus for chemical sampling
JP2590735Y2 (en) Fitting inspection equipment
JP2635419B2 (en) Drying equipment for radioactive solid waste
KR20170003240U (en) Radiation non-destructive inspection apparatus
JP2695945B2 (en) Underwater welding equipment
JP2875420B2 (en) Radiation irradiation device
JPH07298443A (en) Airtightness inspecting method for cable connector and connection closure
JPS5822942A (en) Photographing apparatus of gamma-ray transmission photograph
JPH0539520Y2 (en)
JPH04114466U (en) Surplus lining material recovery device
JP2590736Y2 (en) Radiation inspection equipment
EP0170942A2 (en) Inflatable radiological inspection tool for nuclear reactors
JPH0742701A (en) Tank device for compressed air

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507