JPH08247306A - Valve seat - Google Patents

Valve seat

Info

Publication number
JPH08247306A
JPH08247306A JP8199195A JP8199195A JPH08247306A JP H08247306 A JPH08247306 A JP H08247306A JP 8199195 A JP8199195 A JP 8199195A JP 8199195 A JP8199195 A JP 8199195A JP H08247306 A JPH08247306 A JP H08247306A
Authority
JP
Japan
Prior art keywords
valve seat
valve
fiber
seat
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8199195A
Other languages
Japanese (ja)
Inventor
Tsutomu Saito
斉藤勉
Kumeo Usuda
臼田久米雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWAMURA KK
Nippon Carbon Co Ltd
Original Assignee
IWAMURA KK
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWAMURA KK, Nippon Carbon Co Ltd filed Critical IWAMURA KK
Priority to JP8199195A priority Critical patent/JPH08247306A/en
Publication of JPH08247306A publication Critical patent/JPH08247306A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres

Landscapes

  • Taps Or Cocks (AREA)

Abstract

PURPOSE: To provide a valve seat furnished with a wide working temperature and corrosion resistance by changing the shape of the valve seat used for a turning valve, etc., hitherto and constituting it with simple parts dispensing with a metal plate spring and 'O' ring. CONSTITUTION: By using a rigid material such as a metal, a nonferrous metal, FRP, FRM, FRG as the constitution material of a valve seat 4, the sliding part 15 of the valve seat for a valve element 3 is formed and machined into a shape by which an elastic effect required to the operation of the valve like compression restoration can be displayed and an adequate surface pressure is held on the sliding part between the valve seat and the valve body to seal a fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温、高温、高圧、耐
蝕性に優れた広い範囲で使用可能な弁の弁座に関するも
のである。更に詳しくは、本発明は弁の弁箱内に装着し
て使用する回動弁などの弁座であって弁箱との接触面及
び弁体との摺動面で流体のシールを行う、弁座の構造と
材質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a valve seat of a valve which is excellent in low temperature, high temperature, high pressure and corrosion resistance and can be used in a wide range. More specifically, the present invention relates to a valve seat such as a rotary valve that is mounted and used in a valve box of a valve, in which fluid is sealed at a contact surface with the valve box and a sliding surface with a valve body. It concerns the structure and material of the seat.

【0002】[0002]

【従来の技術及びその問題点】回動弁の代表的な、ボー
ル弁やバタフライ弁の、弁箱内に装着して使用する弁座
は、弁箱との接触面及び弁体との摺動面で流体をシール
する弁座(以下単に「弁座」と称する)は、圧縮復元性
や、弾性機能が要求される。弁座のシール機能に必要な
諸性能は (1)摺動部材間の摩擦係数が小さくかつ不浸透性であ
ること。 (2)摩耗を抑止できる硬度及び機械的強度を有するこ
と。 (3)圧力変動に追随し得る圧縮復元性に優れているこ
と。 (4)広い温度範囲で上記性能が保たれること。 (5)耐化学薬品等に対し耐蝕性がすぐれていること…
…等である。
2. Description of the Related Art A typical valve seat of a rotary valve, such as a ball valve or a butterfly valve, which is mounted and used in a valve box has a contact surface with the valve box and sliding with a valve body. A valve seat (hereinafter, simply referred to as “valve seat”) that seals a fluid on a surface is required to have a compression restoring property and an elastic function. The various properties required for the valve seat sealing function are: (1) The friction coefficient between sliding members is small and impermeable. (2) It has hardness and mechanical strength capable of suppressing wear. (3) It has excellent compressibility and resilience that can follow pressure fluctuations. (4) The above performance is maintained in a wide temperature range. (5) Excellent corrosion resistance against chemicals ...
… And so on.

【0003】上記の如き弁座の諸性能を満足させるた
め、従来から弁座の材質及び構造について各種の試みが
なされている。金属材料や炭素材料の様な弾性に乏しい
ものを弁座に用いる場合は、第15図の如き構造の弁座
が使われて来た。第15図中、1は弁箱、3弁体、4は
弁座、5は弁棒、18は”Oリング”、19は板バネで
ある。
In order to satisfy the various performances of the valve seat as described above, various attempts have hitherto been made on the material and structure of the valve seat. When a material having poor elasticity such as a metal material or a carbon material is used for the valve seat, a valve seat having a structure as shown in FIG. 15 has been used. In FIG. 15, 1 is a valve box, 3 valve body, 4 is a valve seat, 5 is a valve rod, 18 is an "O-ring", and 19 is a leaf spring.

【0004】第15図の弁座構造に於て、弁体と弁座の
シールは弁座本体4と弁体3の摺動面で達成され、弁箱
1と弁座4とのシールは”O”リング18により行われ
る。また、弁座にかかる圧力の変動に対する追随は、金
属板バネ19の弾性により行われる。
In the valve seat structure of FIG. 15, the seal between the valve body and the valve seat is achieved by the sliding surface between the valve seat body 4 and the valve body 3, and the seal between the valve box 1 and the valve seat 4 is " This is done by the O ″ ring 18. The elasticity of the metal leaf spring 19 follows the fluctuation of the pressure applied to the valve seat.

【0005】この弁座の構造は”O”リングがフッ素ゴ
ムや、PTFEの如き高分子材料から成っているので、
高温領域では劣化や熱分解されシール機能が失なわれ
る。また高圧流体では”O”リングが著しく変形してシ
ールが達成できないなどの欠点が避けられない。
The structure of this valve seat is that the "O" ring is made of fluorocarbon rubber or a polymer material such as PTFE.
In a high temperature region, the sealing function is lost due to deterioration and thermal decomposition. Also, with high-pressure fluid, the "O" ring is significantly deformed and a seal cannot be achieved.

【0006】また、板バネが金属板のため高温度領域で
は劣化を生じ弾性機能が損なわれる。従って、火災時の
様な緊急時に流体を遮断しなければならない時に”O”
リングの損傷や板バネの劣化などにより流体の閉止が不
可能となる問題が起きている。
Further, since the leaf spring is a metal plate, it deteriorates in a high temperature region and the elastic function is impaired. Therefore, when it is necessary to shut off the fluid in an emergency such as a fire, "O"
There is a problem that the fluid cannot be closed due to damage to the ring or deterioration of the leaf spring.

【0007】また、弁座の材質にも問題がある。金属材
料では強度、耐熱性などに優れているが摩擦係数が大き
い。弁座と弁体に硬度差を付けないと、焼き付きやカジ
リ付きの問題を起こし、弁の操作が不能になる恐れがあ
る。そのため弁座及び弁体に盛金などの表面処理をしな
ければならない。
There is also a problem with the material of the valve seat. Metallic materials have excellent strength and heat resistance, but have a large friction coefficient. If there is no hardness difference between the valve seat and the valve body, problems such as seizure and galling may occur, and the valve may become inoperable. Therefore, the valve seat and the valve body must be subjected to surface treatment such as plating.

【0008】更に、弁体と弁座双方が金属であるため、
摺動面でシールを確実にするためには、両者の表面を平
滑に仕上げると共に寸法精度、真球度などは極めて、精
度の高い加工が要求される。また、両者は、剛体のた
め、圧縮復元性や弾性がまったく期待できないため、前
述の如く板バネなどのスプリングを用いて弁座にかかる
圧力の変動に追随させなければならない。
Furthermore, since both the valve body and the valve seat are made of metal,
In order to ensure a seal on the sliding surface, both surfaces must be finished to be smooth and dimensional accuracy and sphericity must be extremely high. Further, since both of them are rigid bodies, compression recovery and elasticity cannot be expected at all, so that it is necessary to follow the fluctuation of the pressure applied to the valve seat by using a spring such as a leaf spring as described above.

【0009】また、最近、弁座の材料として、多く用い
られる炭素材料ではそれ自体が固体潤滑材として使用さ
れているものであり、金属材料に比べ数段に摩擦係数や
耐熱性に優れているが、固体炭素材では、透過性がある
事や、機械的強度が不充分であり、充分なシール面圧が
とれない事と共に、摩耗が比較的多いなどの欠点があ
る。
Further, recently, a carbon material, which is widely used as a material for a valve seat, is itself used as a solid lubricant, and has a friction coefficient and heat resistance much higher than those of metal materials. However, the solid carbon material has drawbacks such as permeability, insufficient mechanical strength, insufficient sealing surface pressure, and relatively large wear.

【0010】このため、炭素材の空隙、空孔にフェノー
ル樹脂などの熱硬化性樹脂を含浸させる方法がとられて
いるが、その効果は通常200℃〜250℃の使用温度
に耐える程度であり、更に加熱処理を施して耐熱姓を向
上させても300℃以上の温度領域での使用には耐え得
ない。
For this reason, a method of impregnating the voids and pores of the carbon material with a thermosetting resin such as phenol resin has been used, but the effect is such that it normally withstands a use temperature of 200 ° C to 250 ° C. Even if it is further heat-treated to improve heat resistance, it cannot withstand use in a temperature range of 300 ° C. or higher.

【0011】この様な、高精度な機械加工や、耐熱処理
加工は、非常に経済的負担が大きい。一方、高分子材料
であるポリテトラフロロエチレン樹脂(以下単に「PT
FE」と称す)はPTFE自体が弾性体であるので第1
6図に示した単体材料で弁座として使用されている。第
16図中、1は弁箱、3は弁体、4は弁座、5は弁棒で
ある。PTFE製の弁座4は、摩擦係数、不浸透性、耐
薬品性、弾性に優れているが其の他の要件に欠けてい
る。
Such high-precision machining and heat-resistant processing impose a great economic burden. On the other hand, polytetrafluoroethylene resin (hereinafter simply referred to as “PT
(Referred to as "FE") is the first because PTFE itself is an elastic body.
It is used as a valve seat with the single material shown in FIG. In FIG. 16, 1 is a valve box, 3 is a valve body, 4 is a valve seat, and 5 is a valve stem. The PTFE valve seat 4 has excellent friction coefficient, impermeability, chemical resistance, and elasticity, but lacks other requirements.

【0012】即ち、極低温領域では、液体窒素ガス、L
NG、LPGの流体に使用したり、また高温領域である
250℃以上の流体に使用した場合、PTEFは高い膨
張係数により寸法変化を起こし、弁座としてのシール機
能が果せなくなる。
That is, in the cryogenic region, liquid nitrogen gas, L
When used as a NG or LPG fluid, or when used as a fluid at a temperature of 250 ° C. or higher, which is a high temperature region, PTEF causes a dimensional change due to a high expansion coefficient, and the sealing function as a valve seat cannot be achieved.

【0013】更に、非常事態などの火災時には数百℃以
上の高温にさらされるとPTFEは熱分解して昇華する
ので、可燃性流体を閉止することが困難となり、大災害
を起こす危険性がある。
Furthermore, in the event of a fire such as an emergency, when exposed to a high temperature of several hundreds of degrees Celsius or more, PTFE thermally decomposes and sublimes, making it difficult to close the flammable fluid, which may cause a great disaster. .

【0014】また極低温領域では、弁座が著しく収縮
し、シール機能が失われる他に弾性が無くなり脆くなる
ので圧力に依り破壊され易くなる。またPTFEは、常
温領域でも圧力によりコールドフローを起すのでシール
性を維持し難く、温度が加わると更に加速度的に伸びが
大きくなり150℃で20Kg/cm2 までの圧力が使
用許容範囲である。
In the extremely low temperature range, the valve seat contracts remarkably, the sealing function is lost, the elasticity is lost, and the valve seat becomes brittle, so that it easily breaks due to pressure. Further, since PTFE causes cold flow due to pressure even in the normal temperature region, it is difficult to maintain the sealing property, and when temperature is applied, the elongation further increases at an accelerated rate, and a pressure up to 20 Kg / cm 2 at 150 ° C. is a permissible range.

【0015】上記の欠点を補うためにPTFEにアスベ
ストやグラスファイバー、カーボンファイバーなどを充
填したり、金属製の外環を付けてコールドフローの防止
改良策を施しているが耐熱性及び機械的強度が若干向上
するにすぎないのが現状である。
In order to make up for the above-mentioned drawbacks, PTFE is filled with asbestos, glass fiber, carbon fiber or the like, or a metal outer ring is attached to prevent cold flow and improve its heat resistance and mechanical strength. The situation is that is only slightly improved.

【0016】また、黒鉛材料では耐熱性、不浸透性、機
械強度に優れた改良品も開発されているが、黒鉛材料は
流体中に特定の化学薬品を含む場合は、黒鉛材料の特徴
でもある層間に、薬品が浸透して層間化合物を形成し、
黒鉛構造を崩壊したり、層間化合物を生成する流体での
使用温度領域が極端に狭くなる。
Further, improved graphite products having excellent heat resistance, impermeability and mechanical strength have also been developed. However, when a graphite material contains a specific chemical, the graphite material is also a characteristic of the graphite material. Chemicals permeate between layers to form intercalation compounds,
The temperature range used in the fluid that collapses the graphite structure or produces intercalation compounds becomes extremely narrow.

【0017】[0017]

【発明の目的】本発明の目的は、従来の回動弁などに使
用されている弁座及び弁座に用いられる材料や構造では
弁座としての諸要件を充分に満足することが不可能であ
った弁座を、満足すべき諸要件を兼ね備えた弁座として
提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is that the valve seat used in a conventional rotary valve and the material and structure used for the valve seat cannot fully satisfy the requirements for the valve seat. The purpose is to provide the existing valve seat as a valve seat that has various requirements to be satisfied.

【0018】更に詳しくは、弁座の要求する諸要件及び
性能を剛体材料を用い、構造的にはネジシール固定や、
テーパー固定或は脱着容易な弁座取付けとし、弁体との
摺動部に圧縮復元性などの弾性が、発揮できる様に成形
加工を施すことに依り、剛体材料に弁座としての必要な
諸要件としての作用効果を発揮させ本発明の目的を達成
しようとするものである。
More specifically, various requirements and performances required for the valve seat are determined by using a rigid material, structurally fixing with a screw seal,
By mounting the valve seat so that it can be easily fixed or detached and the sliding part with the valve body is subjected to molding so that elasticity such as compression resilience can be exerted, it is possible to use the rigid material for the necessary valve seats. The purpose of the present invention is to be achieved by exerting the effect as a requirement.

【0019】[0019]

【問題を解決するための手段】本発明は、前述の問題点
を解決するために弁座自体の形状を変更し、弁座にシー
ル機能と弾性スプリング機能とを持たせる。即ち弁座の
形状を弁体に摺動接触シールするリップ型に形成し、リ
ップ部の弾性によってシールさせることを提案するもの
である。
In order to solve the above-mentioned problems, the present invention changes the shape of the valve seat itself so that the valve seat has a sealing function and an elastic spring function. That is, it is proposed that the valve seat is formed in a lip type that seals the valve body in sliding contact, and the elasticity of the lip portion is used for sealing.

【0020】即ち、本発明は弁の弁箱にネジ込み若しく
はテーパー面嵌合或は着脱容易に装着して使用する弁座
であり、弁箱との接触面及び弁体との摺動面で流体のシ
ールを行う弁座に於て、該弁座が剛体材料から成り、弁
箱との接触面はネジ止めシールやテーパーシール若しく
は弁座背面でシールし、弁体との摺動面も剛体材料から
成り、弁座としての圧縮復元性などの弾性機能が発揮で
きる構造を特徴とする弁座の材料と構造に関するもので
ある。
That is, the present invention is a valve seat that is used by being screwed into a valve box of a valve, fitted with a tapered surface, or easily attached and detached, and has a contact surface with the valve box and a sliding surface with a valve body. In a valve seat that seals fluid, the valve seat is made of a rigid material, the contact surface with the valve box is sealed with a screw seal, a taper seal, or the back surface of the valve seat, and the sliding surface with the valve body is also a rigid body. The present invention relates to a material and a structure of a valve seat, which is characterized by a structure made of a material and capable of exerting an elastic function such as compression recovery as a valve seat.

【0021】本発明の弁座部材である金属材料、非鉄金
属材料、強化複合材料は、耐摩耗性、機械的強度、不浸
透性に優れて居り、材料を適宣選択する事により、低温
から高温領域の範囲まで、これ等の性質を保持できる。
The metal material, the non-ferrous metal material, and the reinforced composite material which are the valve seat members of the present invention have excellent wear resistance, mechanical strength and impermeability. These properties can be maintained up to the high temperature range.

【0022】回動弁であるボール弁などに最も多く使わ
れている着脱容易に装着して使用するソフト弁座の形状
を、剛体材質のもので代替しようとしても柔軟性が全く
無く圧縮復元性が、まったく期待できないため、単体で
弁座として使用しようとすれば、流体のシールを達成す
るために過大な面圧を要し、弁体と弁座面にカジリ付き
が生ずる恐れがあり、弁の開閉操作は非常に困難とな
る。
The soft valve seat, which is most often used in rotary valves such as ball valves, and which is easily attached and detached, has no flexibility even if an attempt is made to replace it with a rigid material. However, since it can not be expected at all, if it is used alone as a valve seat, excessive surface pressure will be required to achieve fluid sealing, and there is a risk of galling on the valve body and valve seat surface. It becomes very difficult to open and close.

【0023】従って、他の部材との併用を考慮して圧縮
復元性などの弾性機能を付与せざるを得ない。そのた
め、弁体との摺動部材を炭素材料や金属材料とし、弁箱
との接触部材もソフト材料で流体をシールする弁座が提
案されているが、圧縮復元性などの弾性不足で満足でき
ない。
Therefore, it is unavoidable that an elastic function such as compression restoring property is imparted in consideration of joint use with other members. Therefore, a valve seat has been proposed in which the sliding member with the valve body is made of a carbon material or a metal material, and the contact member with the valve box also seals the fluid with a soft material, but it is not satisfactory due to lack of elasticity such as compression recovery. .

【0024】本発明の弁座は、前記第15図の如く、”
O”リング、板バネ、弁座と三種類の材料によりシール
機能を分担させることなく、単一の材料で弁座としての
諸要件を満たすことができ、従来の弁座で得られなかっ
た作用効果を発揮する。
The valve seat of the present invention, as shown in FIG.
The O "ring, leaf spring, and valve seat do not have to share the sealing function with three types of materials, and various requirements as a valve seat can be satisfied with a single material, which is not possible with conventional valve seats. Be effective.

【0025】以下図面を参照しながら、本発明を更に詳
細に説明する。第1図は、弁の一例としてのボール弁の
断面図である。図中、1は弁箱、2は弁箱蓋、3は弁
体、4は弁座、5は弁棒、6はガスケット、7はパッキ
ン押え輪、8はパッキン押え、9はグランドパッキン
グ、10はボルトナット、11はハンドルである。
The present invention will be described in more detail with reference to the drawings. FIG. 1 is a sectional view of a ball valve as an example of the valve. In the figure, 1 is a valve box, 2 is a valve box cover, 3 is a valve body, 4 is a valve seat, 5 is a valve rod, 6 is a gasket, 7 is a packing retaining ring, 8 is a packing retaining ring, 9 is a gland packing, 10 Is a bolt and nut, and 11 is a handle.

【0026】第1図の如きボール弁の弁座は環状(リン
グ状)であり、その断面を第2図から第13図に例示す
る。
The valve seat of the ball valve as shown in FIG. 1 is annular (ring-shaped), and its cross section is illustrated in FIGS. 2 to 13.

【0027】第2図〜第4図の弁座は、環状外周面にネ
ジ部を設けて圧接嵌合する弁座であって、1は弁箱、3
は弁体、4は弁座、12はネジ部を嵌合するための弁座
取付治具穴、13は雄ネジ、14は弁箱と弁座の接触
部、15は弁体と弁座の摺動部、16はシートチャンバ
ー(Seat Chamber)、17はシールリッ
プ、20はスプリングである。
The valve seats shown in FIGS. 2 to 4 are valve seats provided with a threaded portion on the annular outer peripheral surface and press-fitted.
Is a valve body, 4 is a valve seat, 12 is a valve seat mounting jig hole for fitting a threaded portion, 13 is a male screw, 14 is a contact portion between a valve box and a valve seat, and 15 is a valve body and a valve seat. A sliding portion, 16 is a seat chamber, 17 is a seal lip, and 20 is a spring.

【0028】第5図〜第7図の弁座は、第2図〜第4図
の弁座と同じく、環状外周面にネジで嵌合する弁座に於
て4Aは弁座保持環である、第8図〜第10図は、弁座
の環状外周面にテーパーを設けて、弁箱に同じく設けら
れたテーパー面に嵌合する弁座において、1は弁箱、3
は弁体、4は弁座、14は弁箱と弁座の接触部、15は
弁体と弁座の摺動部、16はシートチャンバー、17は
シールリップである。
The valve seats shown in FIGS. 5 to 7 are, like the valve seats shown in FIGS. 2 to 4, a valve seat 4A which is a valve seat retaining ring. 8 to 10 show a valve seat in which the annular outer peripheral surface of the valve seat is provided with a taper, and the taper surface is also provided in the valve box.
Is a valve body, 4 is a valve seat, 14 is a contact portion between the valve box and the valve seat, 15 is a sliding portion between the valve body and the valve seat, 16 is a seat chamber, and 17 is a seal lip.

【0029】また、第11図〜第13図の弁座は、弁の
弁箱内に着脱容易に嵌合して使用する弁座に於て1は弁
箱、3は弁体、4は弁座、14は弁箱と弁座の接触部、
15は弁体と弁座の摺動部、16はシートチャンバー、
17はシールリップである。
Further, the valve seats shown in FIGS. 11 to 13 are valve seats which are used by being easily detachably fitted into the valve housing of the valve, where 1 is a valve housing, 3 is a valve body, and 4 is a valve. Seat, 14 is a contact portion between the valve box and the valve seat,
15 is a sliding portion between the valve body and the valve seat, 16 is a seat chamber,
Reference numeral 17 is a seal lip.

【0030】第14図は、第2図の弁座をボール弁に組
込んだ場合の断面図である。第17図は弁の他の例とし
てのバタフライ弁の断面図であり、第18図〜第20図
はこの弁に使用される弁座の態様を断面図で示すが、3
1は弁箱、32は弁箱蓋、33は弁体、34は弁座、3
5は弁棒、36はガスケット、39はグランドパッキ
ン、40はボルト、41はハンドル、42は弁座を嵌合
するための治具穴、43はネジ部、44弁箱と弁座の接
触部、45は弁体と弁座の摺動部、46はシートチャン
バーである。
FIG. 14 is a sectional view of the valve seat of FIG. 2 assembled into a ball valve. FIG. 17 is a cross-sectional view of a butterfly valve as another example of the valve, and FIGS. 18 to 20 show cross-sectional views of aspects of a valve seat used in this valve.
1 is a valve box, 32 is a valve box lid, 33 is a valve body, 34 is a valve seat, 3
5 is a valve rod, 36 is a gasket, 39 is a gland packing, 40 is a bolt, 41 is a handle, 42 is a jig hole for fitting a valve seat, 43 is a screw part, 44 is a contact part between a valve box and a valve seat Reference numeral 45 is a sliding portion between the valve body and the valve seat, and 46 is a seat chamber.

【0031】弁座4の材質は次の材料の中から適宜選択
される。 a)金属材料 b)非鉄金属材料 c)強化複合材料 などである。
The material of the valve seat 4 is appropriately selected from the following materials. a) Metal materials b) Non-ferrous metal materials c) Reinforced composite materials.

【0032】弁箱1と弁座4の接触部14及び弁体3と
弁座4の摺動部15は、金属材料、非鉄金属材料及び繊
維強化複合材料の中から使用条件により適宜選択され
る。弁用の弁座は、用途に応じて高圧用、中圧用、低圧
用、高温用、常温用、低温用に大別される。
The contact portion 14 between the valve box 1 and the valve seat 4 and the sliding portion 15 between the valve body 3 and the valve seat 4 are appropriately selected from metal materials, non-ferrous metal materials and fiber reinforced composite materials depending on the use conditions. . Valve seats for valves are roughly classified into high pressure, medium pressure, low pressure, high temperature, normal temperature, and low temperature depending on the application.

【0033】高圧弁の場合、弁座は高速の流体による侵
蝕や摩耗を最も受け易い部分であり、これを考慮してク
ロム系耐蝕鋼及びニッケル系耐蝕鋼が好ましい。また高
温弁の場合は、焼付きやカジリ付きを防止するために高
炭素の高クローム鋼や、オーステナイト系ステンレス鋼
を使用する。
In the case of a high pressure valve, the valve seat is the portion most susceptible to corrosion and wear by a high speed fluid, and in consideration of this, chromium-based corrosion resistant steel and nickel-based corrosion resistant steel are preferable. Further, in the case of a high temperature valve, high carbon high chromium steel or austenitic stainless steel is used to prevent seizure and galling.

【0034】但し、18:8ステンレス鋼等に於て、5
00℃前後で粒界に炭化物が析出し、粒界腐食が起るこ
とがあり、防止策として高耐蝕性の金属材料、例えばア
ロイコ20の如き高ニッケルステンレス鋼や、ハステロ
イBや、モネルの如き高ニッケル合金等を盛金したり、
或は耐熱、耐摩耗、焼付けカジリ付き等を防止するため
にステライト合金(コバルト−クローム、ダングステン
合金)やコロモノイ(ニッケル・クローム、ホウ素合
金)或はT、W、C合金(タングステン、カーバイド)
合金などを盛金する。
However, in 18: 8 stainless steel, etc., 5
Carbide may be precipitated at grain boundaries around 00 ° C to cause grain boundary corrosion. As a preventive measure, a metal material having high corrosion resistance, for example, high nickel stainless steel such as Aloyco 20, Hastelloy B, or Monel is used. High nickel alloy etc.
Alternatively, in order to prevent heat resistance, wear resistance, seizure, etc., stellite alloy (cobalt-chrome, dungsten alloy), coromonoy (nickel-chrome, boron alloy) or T, W, C alloys (tungsten, carbide)
Weld alloys etc.

【0035】この様な盛金は表面硬化処理であり、高温
用以外に於ても本発明の実施に好ましい処理である。中
圧、常温弁の場合、13クローム鋼が耐摩耗性、耐蝕性
に優れ、機械的強度も400℃〜450℃までほとんど
低下しないので好ましい。
Such a metal deposit is a surface hardening treatment, which is a preferable treatment for carrying out the present invention, even when it is not used at a high temperature. In the case of a medium pressure and normal temperature valve, 13 chrome steel is preferable because it has excellent wear resistance and corrosion resistance, and the mechanical strength does not almost drop from 400 ° C to 450 ° C.

【0036】低圧用の場合、流体が水、温水、空気など
の場合は、アルミ青銅や、リン青銅などが用いられる
が、ステンレス鋼は不銹性、剛性の点から好ましい。ま
た、低温用弁には安全性の高いオーステナイト系ステン
レス鋼が好ましい。
In the case of low pressure, when the fluid is water, warm water, air, etc., aluminum bronze, phosphor bronze, etc. are used, but stainless steel is preferable from the viewpoint of corrosion resistance and rigidity. Further, austenitic stainless steel having high safety is preferable for the low temperature valve.

【0037】上記の他にアルミニウム、アルミニウム合
金、銅、銅合金、ニッケル、ニッケル合金、チタン、チ
タン合金、フェライト系ステンレス鋼、マルテンサイト
系ステンレス鋼等いづれの材料使用も可能である。
In addition to the above, any material such as aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, ferritic stainless steel, martensitic stainless steel can be used.

【0038】材料の選択は、使用流体、温度、圧力に応
じて、適宜選択し得るものであるが、摩擦係数や流体や
弁体に対する耐摩耗性、硬度、降伏点、引張り強度など
の機械的性質、耐酸化性、耐蝕性などの化学的性質、熱
膨張係数、熱伝導度、組織の安定性、機械的加工性及び
経済性を考慮して最適材料を選定する。
The material can be selected as appropriate according to the fluid used, temperature and pressure. Mechanical factors such as friction coefficient, wear resistance to fluid and valve body, hardness, yield point, tensile strength, etc. The optimum material is selected in consideration of properties, chemical properties such as oxidation resistance and corrosion resistance, thermal expansion coefficient, thermal conductivity, structural stability, mechanical workability and economic efficiency.

【0039】また、本発明の弁座材料として、前述の金
属材料や、非鉄金属の材料の他に、繊維強化樹脂複合材
(F.R.P)や繊維強化金属複合材(F.R.M)お
よび繊維強化ガラス複合材(F.R.G)の材料を用い
ることができる。
Further, as the valve seat material of the present invention, in addition to the above-mentioned metallic materials and non-ferrous metal materials, fiber reinforced resin composite materials (FRP) and fiber reinforced metal composite materials (FR. M) and fiber reinforced glass composite (FRG) materials can be used.

【0040】繊維強化樹脂複合材(以下単にFRPと称
す)の本弁座に使用する繊維は、炭素繊維や炭化けい素
繊維が望ましいが、その他の繊維としては、ガラス繊
維、アラミド繊維、ホウ素繊維、石綿繊維と多くの繊維
を用いる事が可能であり、樹脂母材は、エポキシ樹脂
や、ポリイミド樹脂、フェノール樹脂が使われる。
The fiber used in the main valve seat of the fiber-reinforced resin composite material (hereinafter simply referred to as FRP) is preferably carbon fiber or silicon carbide fiber, but other fibers are glass fiber, aramid fiber, boron fiber. It is possible to use asbestos fibers and many fibers, and epoxy resin, polyimide resin, or phenol resin is used as the resin base material.

【0041】但し、上記繊維の中で石綿繊維は、価格が
安く、比較的入手が容易で、かつ耐熱性に極めて、優れ
ている素材であるが、人体への影響が常に問題視される
ので該、弁座材料用繊維から除外することにした。
However, among the above-mentioned fibers, asbestos fiber is a material that is inexpensive, relatively easy to obtain, and extremely excellent in heat resistance, but its influence on the human body is always regarded as a problem. It was decided to exclude it from the fiber for valve seat material.

【0042】FRPでは、繊維の配列方向と、それ等の
斜角に依り、物性が異なる。そのため、一方向性プリプ
レイグを単純に一方向に積層すると、縦方向には強い
が、横方向には極めて弱い成形体が得られる。材料とし
て使用する場合、成形体に加わる応力が、単一方向のみ
と云うのは、稀であり、複数方向の応力が加わる。従っ
て、成形体と繊維を複数の角度で積層していく必要があ
る。
In the FRP, the physical properties are different depending on the arrangement direction of the fibers and their oblique angles. Therefore, if the unidirectional prepregs are simply laminated in one direction, a molded product that is strong in the longitudinal direction but extremely weak in the lateral direction can be obtained. When used as a material, it is rare that the stress applied to the molded body is in only one direction, and stress in multiple directions is applied. Therefore, it is necessary to stack the molded body and the fibers at a plurality of angles.

【0043】FRPの製造は、一方向に引き揃えた繊維
や若しくは、平織、朱子織などの織布や不織布などの代
わりにウィスカー、フェルト、チョップ、ストランド、
トウ、マットなどの繊維に母材となる樹脂のエポキシ樹
脂やポリイミド樹脂等を含浸させて、プリプレイグを作
り、これを繊維の配列を複数方向に積層してホットプレ
スやオートクレーブで熱圧成形して、FRP成形体が得
られる。
FRP is manufactured by whiskers, felts, chops, strands instead of unidirectionally aligned fibers or woven or non-woven fabrics such as plain weave and satin weave.
Fibers such as tows and mats are impregnated with a base resin such as epoxy resin or polyimide resin to make a prepreg, which is laminated in multiple directions and thermocompressed by a hot press or an autoclave. , FRP molded body is obtained.

【0044】他の方法としては、繊維束を樹脂浴に通し
て、マンドレル上にヘルカリ巻きなどワインディング
し、その後加熱硬化する方法や、更に、短繊維を用いた
インジェクションモールドやスプレー法などでも材料を
得る事ができる。
As another method, the fiber bundle is passed through a resin bath, wound around a mandrel with a spiral wound, and then heat-cured. Further, an injection mold using short fibers or a spray method may be used as a material. You can get it.

【0045】この方法では、強化繊維の形態や配向、体
積含有率など複合材料の基本的な、性能を決定するた
め、材料の設計は、用途に応じた任意な方向を採用する
事が肝心である。この様にして、得られたFRPは、強
度、弾性率が極めて高く、疲労特性及びクリープ特性に
優れ、金属に比べて振動減衰特性が良く、熱的寸法安定
性、極低温性、耐薬品性に優れた材料である。
In this method, since the basic performance of the composite material such as the morphology, orientation and volume content of the reinforcing fiber is determined, it is essential to design the material in any direction depending on the application. is there. The FRP thus obtained has extremely high strength and elastic modulus, excellent fatigue properties and creep properties, better vibration damping properties than metals, thermal dimensional stability, cryogenic temperature, and chemical resistance. It is an excellent material.

【0046】一方、FRPの唯一の弱点である耐熱性を
向上させるために、母材であるエポキシ樹脂及びポリイ
ミド樹脂の加熱処理温度を前者で120℃(250°
F)後者を180℃(350°F)で加熱硬化する事に
より、それぞれ150℃〜200℃、250℃〜300
℃の℃で長時間の耐熱特性を得ることができる。
On the other hand, in order to improve heat resistance which is the only weak point of FRP, the heat treatment temperature of the epoxy resin and the polyimide resin as the base materials is 120 ° C. (250 ° C.) in the former case.
F) By heat-curing the latter at 180 ° C (350 ° F), 150 ° C to 200 ° C and 250 ° C to 300, respectively.
It is possible to obtain long-term heat resistance at a temperature of ° C.

【0047】繊維強化金属複合材(以下、単に「FR
M」と称す)を本弁座に使用する繊維としては、炭素繊
維や、炭化けい素繊維が望ましいが、其の他の繊維とし
ては、ガラス繊維、アラミド繊維、ホウ素繊維と多くの
繊維を用いる事が出来るが、その中でも炭素繊維、炭化
けい素繊維が好ましい。
Fiber-reinforced metal composite (hereinafter referred to simply as "FR
Carbon fiber or silicon carbide fiber is preferable as the fiber for which M) is used for the valve seat, but other fibers such as glass fiber, aramid fiber, boron fiber and many other fibers are used. However, carbon fibers and silicon carbide fibers are preferable among them.

【0048】FRPの場合は、使用温度が極低温から2
50℃の温度範囲で金属では得られない機械的特性を期
待して用いたが、高温領域で使用可能な、弁座を得るた
めにFRM複合材を使用する。
In the case of FRP, the operating temperature is 2 to 2
Although used with the expectation of mechanical properties that cannot be obtained with metals in the temperature range of 50 ° C., FRM composite material is used to obtain a valve seat that can be used in a high temperature region.

【0049】FRMは炭素繊維や、炭化けい素繊維の束
を一方向にそれぞれ平行に並べてサイジング樹脂で固定
し、繊維のシートを作る。このシートとアルミニウム板
を交互に積み重ねて積層体を作り、オートクレーブに入
れ、減圧下で高温加熱し、サイジング樹脂分を熱分解に
より除去した後、再度減圧下で再加熱し、其の後、高温
に加熱した状態で加圧し、溶融アルミニウムを繊維間に
浸透させて、繊維強化アルミニウム複合材を得る。
In the FRM, a bundle of carbon fibers and silicon carbide fibers are arranged in parallel in one direction and fixed with a sizing resin to form a fiber sheet. This sheet and aluminum plates are stacked alternately to form a laminate, which is placed in an autoclave and heated at high temperature under reduced pressure.The sizing resin component is removed by thermal decomposition, and then reheated again under reduced pressure. The molten aluminum is permeated between fibers to obtain a fiber-reinforced aluminum composite material.

【0050】また、繊維のシートを互いに直角になる様
に複数方向にアルミニウム板と積層することにより、複
数方向に強い複合材が得られる。上記材料は、繊維チョ
ップで母材をアルミニウムとすることで複合材を得るこ
とができる。
By laminating the fiber sheets on the aluminum plate in a plurality of directions so as to be at right angles to each other, a composite material that is strong in a plurality of directions can be obtained. A composite material can be obtained by fiber-chopping the above material and using aluminum as a base material.

【0051】繊維のチョップとアルミニウムを高圧鋳造
法により複合化しビレットを製造する。このビレット材
を高温で押し出し成形すると繊維チョップ強化アルミニ
ウム複合材の丸棒を作ることができる。
A billet is produced by compounding fiber chops and aluminum by a high pressure casting method. By extruding this billet material at high temperature, a round bar of fiber chop reinforced aluminum composite material can be produced.

【0052】以上の他に繊維の束を溶融アルミニウムの
中に入れることによりプリフォームワイヤーを作る。こ
のプリフォームワイヤーを中間素材として丸棒や、パイ
プなど各種の形状の材料を得る事が出来る。
In addition to the above, a bundle of fibers is put into molten aluminum to make a preformed wire. Using this preformed wire as an intermediate material, it is possible to obtain various shapes of materials such as round bars and pipes.

【0053】しかし、FRMは、高温領域で各種機械的
特性を発揮させる目的で使われる場合が多いので、FR
Mに用いる繊維が炭素繊維の場合、酸、アルカリなど耐
薬品性は優れているが、最大の欠点は高温での酸化に弱
いことである。
However, since FRM is often used for the purpose of exerting various mechanical properties in a high temperature region, FR
When the fiber used for M is a carbon fiber, it has excellent chemical resistance such as acid and alkali, but its greatest drawback is that it is weak against oxidation at high temperature.

【0054】炭素材の酸化は、主として欠陥を起点とし
て、進行する事が多く、炭素は酸化性雰囲気が400〜
450℃から酸化消耗が始まり温度が高くなるに従っ
て、酸化消耗の速度も増してくる。
Oxidation of carbon material often proceeds mainly from defects, and carbon has an oxidizing atmosphere of 400-400.
Oxidation consumption starts at 450 ° C, and as the temperature increases, the rate of oxidation consumption also increases.

【0055】繊維自身の構造が黒鉛結晶の配列状態に依
っても組織がさまざまに変化し、複合材料中に種々な欠
陥が多数内存するので、特に高温領域で使用する場合は
炭化けい素繊維を強化材としたFRMが望ましい。
Since the structure of the fiber itself changes variously depending on the arrangement state of the graphite crystals, and various defects are inherent in the composite material, the silicon carbide fiber should be used especially when used in a high temperature region. FRM used as a reinforcing material is desirable.

【0056】炭化けい素繊維は有機けい素ポリマーのポ
リカルボシランを出発物質として、溶融紡糸の後、焼成
して作られる。この繊維状の炭化けい素繊維は強度、弾
性率が高く、高温に於ても高強度を保持し、また金属と
の反応性が低く、濡れ性が良好であるためFRMの強化
繊維として最も有効である。
The silicon carbide fiber is produced by using polycarbosilane, which is an organic silicon polymer, as a starting material, followed by melt spinning and firing. This fibrous silicon carbide fiber has high strength and elastic modulus, retains high strength even at high temperature, has low reactivity with metal, and has good wettability, so it is most effective as a reinforcing fiber for FRM. Is.

【0057】炭化けい素繊維は、現在ニカロンの商品名
で日本カーボン株式会社から製造、販売されている。こ
の繊維は、空気中で1273°Kまで非酸化性雰囲気中
で1523°Kまで強度の低下が起らず、耐酸化性、耐
高熱性に優れた無機繊維である。
Silicon carbide fibers are currently manufactured and sold by Nippon Carbon Co., Ltd. under the trade name of Nicalon. This fiber is an inorganic fiber excellent in oxidation resistance and high heat resistance without lowering its strength up to 1273 ° K in air and up to 1523 ° K in a non-oxidizing atmosphere.

【0058】また、細い繊維であるために可撓性があり
平織、朱子織から三次元織りまで各種の織物を織る事が
できる。用途としては、耐熱材料の用途としてよりも、
むしろFRMの強化繊維として、非常に有力な繊維であ
る。
Further, since it is a thin fiber, it has flexibility and can be woven into various kinds of fabrics such as plain weave, satin weave and three-dimensional weave. As an application, rather than as a heat resistant material
Rather, it is a very effective fiber as a reinforcing fiber for FRM.

【0059】また、炭化けい素ウィスカーで強化され
た、アルミニウム複合材は以下の如き方法で製造され
る。炭化けい素ウィスカーは絡み合った状態で得られる
ので良くほぐした後、アルミニウム粉末と混合したの
ち、溶湯加圧成形法により、炭化けい素ウィスカー/ア
ルミニウムのビレットが得られる。
An aluminum composite material reinforced with silicon carbide whiskers is manufactured by the following method. Since the silicon carbide whiskers are obtained in a entangled state, they are thoroughly disentangled, then mixed with aluminum powder, and then the molten metal pressure molding method is performed to obtain silicon carbide whiskers / aluminum billets.

【0060】このビレット材を高圧加圧して、炭化けい
素ウィスカー/アルミニウムの板や、棒、パイプを製造
することができる。この複合材はVf:35容量%で引
張強度は56Kg/mm2 弾性率は12,000Kg/
mm2 である。
This billet material can be pressed under high pressure to produce silicon carbide whisker / aluminum plates, rods and pipes. This composite material has a Vf of 35% by volume, a tensile strength of 56 Kg / mm 2 and an elastic modulus of 12,000 Kg /
mm 2 .

【0061】特に弾性は高く、他の繊維で強化されたア
ルミニウム複合材よりも高い値を有している。また、こ
の複合材料は圧延ができるためホットプレスなどにより
各種の形状に加工することができる。
The elasticity is particularly high and has a higher value than the aluminum composite material reinforced with other fibers. Further, since this composite material can be rolled, it can be processed into various shapes by hot pressing or the like.

【0062】この他にボロン繊維強化アルミニウム複合
材や炭化けい素繊維強化チタン複合材にも前述の炭化け
い素繊維強化アルミニウム複合材と同様の方法で得られ
るが、最大の欠陥は、価格が高価であるのと界面反応に
依る特性の劣化で、このために一般成形は、例えばボロ
ン繊維強化アルミニウム複合材では、803°Kまで数
10Kg/cm2 の高加圧力下での拡散接合を必要とす
るので大幅なコスト増を招くことになる。
Besides this, boron fiber reinforced aluminum composite materials and silicon carbide fiber reinforced titanium composite materials can be obtained by the same method as the above-mentioned silicon carbide fiber reinforced aluminum composite materials, but the biggest defect is that the price is high. However, the general molding requires diffusion bonding under high pressure of several tens of Kg / cm 2 up to 803 ° K for boron fiber reinforced aluminum composites. As a result, the cost will increase significantly.

【0063】ボロン繊維/チタン合金は、チタン合金母
材に対して反応性が高く問題がある。この欠点を克服す
るために炭化ホウ素被覆ボロン繊維が開発されボロン系
繊維の高温安定性は改善されたが、高度な多層化処理に
より素材価格が非常に高価となる。
Boron fiber / titanium alloy has a problem because it is highly reactive with the titanium alloy base material. In order to overcome this drawback, boron carbide-coated boron fibers have been developed, and the high temperature stability of boron-based fibers has been improved, but the material price becomes very expensive due to the advanced multi-layer treatment.

【0064】また、これ等の複合材は、ボロン繊維の硬
さがモース硬度で9以上と極めて硬いため切削加工は困
難であり研削に頼る他になく、ダイヤモンドを用いた特
殊な工具が必要となり経済負担が大きい。
Further, in these composite materials, since the hardness of boron fiber is extremely hard as Mohs hardness of 9 or more, it is difficult to perform cutting work, and it is necessary to rely on grinding, and a special tool using diamond is required. Economic burden is large.

【0065】一方、炭化けい素や、窒化けい素、アルミ
ナ、ジルコニア等のセラミック材は、800℃以上の高
温で強度を保持するがセラッミック特有の脆さという性
質が改善されないため、弁座材料として実用化されにく
い。
On the other hand, ceramic materials such as silicon carbide, silicon nitride, alumina, and zirconia retain strength at high temperatures of 800 ° C. or higher, but the brittleness peculiar to ceramics is not improved, so they are used as valve seat materials. Hard to be put to practical use.

【0066】そこで、高温耐熱材料として最も期待され
るのが繊維強化ガラス(FRG)や繊維強化セラミック
ス(FRC)である。この内、FRG複合材は、高温に
於ける高強度、高靭性、軽量という優れた特徴をもち、
耐熱材料として有望である。
Therefore, the most promising materials for high temperature heat resistance are fiber reinforced glass (FRG) and fiber reinforced ceramics (FRC). Among them, FRG composite material has excellent features such as high strength at high temperature, high toughness, and light weight.
Promising as a heat resistant material.

【0067】この繊維強化ガラス複合材の強化繊維とし
ては黒鉛繊維、アルミナ繊維、炭化けい素繊維等がある
が、黒鉛繊維強化ガラス複合材では高水準の強度、破壊
靭性を有しているが、前述の如く繊維が空気中で400
〜450℃以上から酸化消耗するため高温酸化性雰囲気
中では耐熱材料として機能が失なわれる。
The reinforcing fibers of this fiber-reinforced glass composite material include graphite fiber, alumina fiber, silicon carbide fiber and the like. The graphite fiber-reinforced glass composite material has a high level of strength and fracture toughness. As mentioned above, the fibers are 400
Since it is consumed by oxidation at temperatures above 450 ° C, it loses its function as a heat resistant material in a high temperature oxidizing atmosphere.

【0068】また、アルミナ繊維強化ガラス複合材で
は、高温に於てアルミナとガラスが反応してガラス化す
るため、繊維が浸蝕され、強度や靭性が得られない。し
かし、炭化けい素繊維強化ガラス複合材では、炭化けい
素自体が高温の空気中でも耐酸化性を有し、優れた強度
を維持すると共にガラスと反応しないため、高温に於
て、高強度、高靭性、耐酸化安定性を有する材料を得る
事ができる。
Further, in the alumina fiber reinforced glass composite material, alumina reacts with glass at a high temperature to vitrify, so that the fibers are eroded and strength and toughness cannot be obtained. However, in the silicon carbide fiber reinforced glass composite material, the silicon carbide itself has an oxidation resistance even in high temperature air, maintains excellent strength and does not react with glass, so at high temperature, it has high strength and high strength. A material having toughness and oxidation resistance can be obtained.

【0069】この炭化けい素繊維強化ガラス複合材はガ
ラス粉末をポリビニールアルコール等の樹脂を介して炭
化けい素繊維に含浸させて炭化けい素繊維/ガラスのプ
リフォーム体を作り、このプリフォーム体を所定の形状
としたのち、加熱成形することで成形体を得る事ができ
る。
This silicon carbide fiber-reinforced glass composite material is obtained by impregnating glass powder with a resin such as polyvinyl alcohol into a silicon carbide fiber to form a silicon carbide fiber / glass preform body. A molded product can be obtained by subjecting to a predetermined shape and then heat-molding.

【0070】繊維強化セラミック複合材(FRC)で
は、複合材と構成する、素材の種類から分類すると、炭
素繊維、炭化けい素繊維、アルミナ繊維などの耐熱性を
もつ既存のものに絞ることができるが、母材の種類はあ
らゆるセラミックスが対象となる。主な母材を使用温度
の低い順に挙げると、ガラス、ガラスセラミックス、酸
化物系セラミックス、窒化物系セラミックス、炭化物と
なる。
Fiber-reinforced ceramic composite materials (FRC) can be narrowed down to existing heat-resistant materials such as carbon fibers, silicon carbide fibers, and alumina fibers, when classified according to the type of material constituting the composite material. However, all types of ceramics can be used as the base material. When the main base materials are listed in ascending order of use temperature, they are glass, glass ceramics, oxide ceramics, nitride ceramics, and carbides.

【0071】上記繊維中、炭素繊維や、アルミナ繊維は
前述の如く、耐酸化性の問題や、価格的な問題を含め、
FRCの強化繊維としては適さない。その中で、炭化け
い素繊維強化セラミックス複合材は、炭化けい素繊維か
ら成る織布や不織布の代りにウィスカー、クロス、フェ
ルト、チョップ、ストランド、マット、織物、引揃え品
などの繊維に無機バインダーとしてコロイダルシリカに
微粒子の結晶質シリカを分散させた。
Among the above-mentioned fibers, the carbon fiber and the alumina fiber have the problems of oxidation resistance and the cost as described above.
Not suitable as a reinforcing fiber for FRC. Among them, the silicon carbide fiber reinforced ceramics composite material is an inorganic binder for fibers such as whiskers, cloths, felts, chops, strands, mats, fabrics, and aligned products, instead of woven and non-woven fabrics made of silicon carbide fibers. As a result, fine particles of crystalline silica were dispersed in colloidal silica.

【0072】ペースト状液を刷毛塗りなどで塗布し、こ
れを成形焼成して炭化けい素繊維強化セラミックス複合
材料を得る。ここで採用される炭化けい素繊維は有機け
い素化合物を原料として製造された繊維径50μ以下の
繊維である。
A paste-like liquid is applied by brushing or the like, and this is molded and fired to obtain a silicon carbide fiber-reinforced ceramic composite material. The silicon carbide fiber adopted here is a fiber having a fiber diameter of 50 μm or less, which is manufactured by using an organic silicon compound as a raw material.

【0073】従来800℃以上に耐える耐熱材料として
はニッケル、コバルト、タングステン、鉄、クローム系
の合金や、チタン合金などが使用されて来た。しかしこ
の金属材料は、高温では強度が50%以下、多くは10
%〜20%に低下するのが現状である。
Conventionally, nickel, cobalt, tungsten, iron, chrome-based alloys, titanium alloys, etc. have been used as heat-resistant materials capable of withstanding 800 ° C. or higher. However, this metal material has a strength of 50% or less at high temperatures, often 10% or less.
The current situation is that the percentage falls to 20%.

【0074】そこで、軽くて強い高強度繊維化複合材及
びセラミックス材料が検討され、これ等の材料で広範な
用途利用が計られて居り、その中で繊維強化金属複合材
は現状では炭化けい素繊維強化アルミニウム合金が主力
となって居り、耐熱度も500℃以下であるが、回動弁
などの弁座の耐熱度は450℃以下が圧倒的に多く、弁
座の選択は使用条件に於て前述した材料の中から、最適
な材料を選定することが肝要である。
Therefore, light and strong high-strength fiberized composite materials and ceramics materials have been studied, and widespread use of these materials has been planned. Among them, fiber-reinforced metal composite materials are currently silicon carbide. Fiber-reinforced aluminum alloys are the mainstay, and the heat resistance is less than 500 ° C, but the heat resistance of valve seats such as rotating valves is over 450 ° C, and the seat selection depends on the operating conditions. It is important to select the most suitable material from the materials mentioned above.

【0075】[0075]

【本発明の効果】本発明の弁座は、前述の如く従来の回
動弁であるボール弁や、バタフライ弁に多く使用されて
いるソフト弁座の諸性質がまったく期待できない剛性の
材料を上記回動弁用弁座に用い、弁座に必要な諸特性を
発揮できる構造及び材料を選択し得る画期的な弁座であ
る。
As described above, the valve seat of the present invention is made of a rigid material that cannot be expected to have the various properties of the conventional rotary valve such as the ball valve and the soft valve seat often used for butterfly valves. It is an epoch-making valve seat that can be used for a rotary valve valve seat and can select a structure and material that can exhibit various characteristics required for the valve seat.

【0076】この弁座を組込んだ弁は、弁座の材質及び
構造を使用条件に応じて選択する事に依り、極低温から
高温、低圧から高圧に至る広い領域で弁座としての機能
を発揮するものである。
A valve incorporating this valve seat functions as a valve seat in a wide range from extremely low temperature to high temperature and from low pressure to high pressure by selecting the material and structure of the valve seat according to usage conditions. It is something to demonstrate.

【0077】[0077]

【実施例】実施例および比較例により本発明を更に詳細
に説明する。 (実施例1〜6、比較例1〜3)
The present invention will be described in more detail with reference to Examples and Comparative Examples. (Examples 1 to 6, Comparative Examples 1 to 3)

【0078】第1図に示した構造の呼び径2インチ(5
0A)のボール弁の弁座として表1に示した構造、材質
のものを各々用意した。実施例1〜3で使用した弁座構
造、材質及び実施例4〜5に用いた弁座構造及び材料は
次の方法で得られたものである。
The nominal diameter of the structure shown in FIG. 1 is 2 inches (5
0A) ball valves having the structure and material shown in Table 1 were prepared. The valve seat structures and materials used in Examples 1 to 3 and the valve seat structures and materials used in Examples 4 to 5 were obtained by the following method.

【0079】[0079]

【表1】 [Table 1]

【0080】[0080]

【表2】 [Table 2]

【0081】[0081]

【表3】 [Table 3]

【0082】[0082]

【実施例1】実施例1に於ける弁座の材質は、鉄にクロ
ームとニッケルを加えたオーステナイト系ステンレス鋼
は、標準の組成がクローム18%、ニッケル12%、モ
リブデン2.5%であるので18−12鋼と呼ばれ、耐
蝕性耐酸性が非常に大きく、常温に於ては大抵の酸やア
ルカリに溶けない不銹鋼のJIS−G−4303、SU
S−316の鋼材を用い第4図の如く、弁座環外周面に
弁箱の弁座収納個所の環状内面にメートル細目平行雌ネ
ジを機械加工で設けそれに合致する雄ネジを機械加工で
設けた。
[Example 1] The material of the valve seat in Example 1 is 18% chrome, 12% nickel, and 2.5% molybdenum for the standard composition of austenitic stainless steel in which chrome and nickel are added to iron. Therefore, it is called 18-12 steel and has a very high corrosion resistance and acid resistance, and is a stainless steel JIS-G-4303, SU that does not dissolve in most acids and alkalis at room temperature.
As shown in Fig. 4, using the steel material of S-316, a metric fine parallel female screw is machined on the outer peripheral surface of the valve seat ring on the annular inner surface of the valve seat housing part of the valve box, and a male screw matching it is machined. It was

【0083】また、シートチャンバー16は、ボール弁
の弁座に加わる面圧などを考慮して、密封性や、弾性効
果が最も発揮しやすいシールリップ17の厚さのものを
用意した。(図面第4図参照のこと)
Further, the seat chamber 16 has a thickness of the seal lip 17 which is most likely to exhibit the sealing property and the elastic effect in consideration of the surface pressure applied to the valve seat of the ball valve. (See Figure 4)

【0084】[0084]

【実施例2】実施例2に於ける弁座の材質は、チタン鋼
棒JIS−H−4650 4種 TB−550H相当品
の市販の丸棒を用いた。チタン鋼は比重が小さく、か
つ、引張強度、弾性率などの機械的強度が非常に優れて
居り、500℃位まではその特性がほとんど変らず保持
し、耐蝕性にも優れている。
Example 2 As the material of the valve seat in Example 2, a commercially available round bar equivalent to titanium steel rod JIS-H-4650 type 4 TB-550H was used. Titanium steel has a small specific gravity, and is very excellent in mechanical strength such as tensile strength and elastic modulus, its characteristics are almost unchanged up to about 500 ° C., and it is also excellent in corrosion resistance.

【0085】この材料を前記実施例1と同様に第2図の
如く、弁座環外周面に弁箱の弁座収納個所に設けたメー
トル細目平行ネジに合致する同じ雄ネジを機械加工で設
けた。また、シートチャンバー16及びシールリップ1
7は、前記実施例1と同様ボール弁の面圧や、チタン材
の弾性率などを考慮し、一番弾性効果が発揮できる構造
のものを用意した。(第2図参照のこと)
Similar to the first embodiment, this material is machined with the same male screw as the first embodiment, which matches the metric fine parallel screw provided on the valve seat accommodating portion of the valve box, as shown in FIG. It was In addition, the seat chamber 16 and the seal lip 1
As for No. 7, the structure having the most elastic effect is prepared in consideration of the surface pressure of the ball valve, the elastic modulus of the titanium material, and the like as in the first embodiment. (See Figure 2)

【0086】[0086]

【実施例3】実施例3に於ける、弁座の材質はニッケル
−銅合金(70Ni−30Cu)のJIS−H−455
3 NCuBの市販丸棒を用いた。一般にモネルメタル
として有名なニッケル銅合金鋼である。モネルメタルは
チタン同様、高温でも機械的強度を保ち、海水、中性塩
類の溶液、アルカリ溶液、有機酸ガソリンなど多くの化
学薬品に対して耐蝕性が優れている。
[Embodiment 3] In Embodiment 3, the valve seat is made of nickel-copper alloy (70Ni-30Cu) JIS-H-455.
A commercially available 3 NCuB round bar was used. It is a nickel-copper alloy steel generally known as monel metal. Like titanium, monel metal retains mechanical strength even at high temperatures and has excellent corrosion resistance to many chemicals such as seawater, neutral salt solutions, alkaline solutions, and organic acid gasoline.

【0087】この材料を使い弁箱の弁座収容個所にテー
パー面を設け、このテーパー面とテーパー角度が合致し
て流体を封止し得るテーパー面を第10図の如く弁座環
の外周面に設け、実施例1および2と同様にモネルメタ
ルの材料特性を生かし、弁座として必要な流体の密封性
や、弾性効果が発揮しやすいシートチャンバー16及び
シールリップ17の厚さに機械加工したものを用意し
た。(第10図参照のこと)
This material is used to form a taper surface in the valve seat accommodating portion of the valve box, and the taper surface that matches the taper angle and can seal the fluid is formed on the outer peripheral surface of the valve seat ring as shown in FIG. Which is machined to the thickness of the seat chamber 16 and the seal lip 17 which are easy to exert the sealing property of the fluid required for the valve seat and the elastic effect by utilizing the material characteristics of Monel metal similarly to the first and second embodiments. Prepared. (See Figure 10)

【0088】[0088]

【実施例4】実施例4に於ける、弁座材質は、炭化けい
素繊維強化金属複合材であるFRMを用いた。炭化けい
素繊維はニカロンの商品名で日本カーボン(株)が、製
造販売している繊維とし、母材(Matrix)はアル
ミニウムを用いた。炭化けい素繊維の短繊維を溶融した
アルミニウムに30〜35wt%混合分散し、弁座形状
の鋳型に注入する鋳造法で成形体を得て、仕上加工を行
った。(第5図参照のこと)弁座保持環4AはSUS−
304を使用した。
Example 4 In Example 4, the valve seat material used was FRM which is a silicon carbide fiber reinforced metal composite material. The silicon carbide fiber was a fiber manufactured and sold by Nippon Carbon Co., Ltd. under the trade name of Nicalon, and aluminum was used as the base material (Matrix). Short-forms of silicon carbide fibers were mixed and dispersed in molten aluminum in an amount of 30 to 35% by weight, and a molded body was obtained by a casting method of injecting into a valve seat-shaped mold, and finishing processing was performed. (See FIG. 5) The valve seat retaining ring 4A is made of SUS-
304 was used.

【0089】[0089]

【実施例5】実施例5に於ける、弁座材質は、炭化けい
素繊維強化ガラス複合材であるFRGを用いた。炭化け
い素繊維は、実施例4と同様にニカロン繊維と母材はリ
チウムアルミノシリケート(結晶化ガラス)を用いた。
(第6図参照のこと)弁座保持環4AはSUS−304
とした。
Fifth Embodiment In the fifth embodiment, the valve seat material is FRG which is a silicon carbide fiber reinforced glass composite material. As in the case of Example 4, the silicon carbide fiber was Nicalon fiber and the base material was lithium aluminosilicate (crystallized glass).
(See FIG. 6) The valve seat retaining ring 4A is made of SUS-304.
And

【0090】本弁座を組み込んだボール弁は、各種の性
能評価試験により、広い温度領域用弁座として、安全性
を確認して居り、その代表的な試験内容及び結果は以下
の通りである。
The ball valve incorporating this valve seat has been confirmed to be safe as a valve seat for a wide temperature range by various performance evaluation tests. Typical test contents and results are as follows. .

【0091】(1)帯電防止 ボール弁では、弁座及びグランドパッキングにPTFE
樹脂などの絶縁体を使用すると、弁体と弁座樹脂の摩擦
に依り静電気が発生し、特に引火点の低い、ガソリンや
天然ガス、LPGなどに使用すると危険である。
(1) Antistatic Ball valve uses PTFE for the valve seat and gland packing.
When an insulator such as resin is used, static electricity is generated due to friction between the valve body and the valve seat resin, which is dangerous when used for gasoline, natural gas, LPG, etc., which have a particularly low flash point.

【0092】従来のソフト弁座を用いた弁は、弁棒や、
弁棒と弁体の嵌合部に静電除去の機構が設けられている
が、本弁座は弁座そのものが電気の良導体のため、静電
気は、弁体に帯電することなく、そのままで優れた帯電
防止機構を備えたことになり、帯電防止に気を配る必要
が全くなく経済的である。
A valve using a conventional soft valve seat is a valve rod or
A mechanism for removing static electricity is provided in the fitting portion between the valve rod and the valve body.However, since the valve seat itself is a good conductor of electricity in this valve seat, static electricity is excellent as it is without charging the valve body. Since it has an antistatic mechanism, it is economical because there is no need to pay attention to antistatic.

【0093】実施例1〜5、比較例1〜3は、いづれも
合格であった。但し、比較例3は、弁座がPTFE樹脂
製であるが帯電防止機構が取りつけられているため、問
題なかった。
All of Examples 1 to 5 and Comparative Examples 1 to 3 passed. However, Comparative Example 3 had no problem because the valve seat was made of PTFE resin but the antistatic mechanism was attached.

【0094】(2)水圧試験 弁座の水漏試験として、18Kg/cm2 、21Kg/
cm2 、53Kg/cm2 、105Kg/cm2 、15
5Kg/cm2 の各圧力で試験した。
(2) Water pressure test As a water leak test of a valve seat, 18 Kg / cm 2 , 21 Kg / cm 2
cm 2 , 53 Kg / cm 2 , 105 Kg / cm 2 , 15
The test was conducted at each pressure of 5 Kg / cm 2 .

【0095】弁の内部に上記の各圧力に相当する水圧を
加え、一端を解放して水を排除後、上記の各試験圧力を
加圧して、5分間保持し、弁座と弁体との摺動面及び背
面からの漏水や滲みの有無を検査した。その結果、実施
例1〜5、比較例1〜3共いずれも合格であった。
Water pressure corresponding to each of the above pressures is applied to the inside of the valve, one end is released to eliminate water, and then each of the above test pressures is increased and held for 5 minutes to maintain the valve seat and the valve disc. The presence or absence of water leakage or bleeding from the sliding surface and the back surface was inspected. As a result, all of Examples 1 to 5 and Comparative Examples 1 to 3 passed.

【0096】(3)気密試験 弁の一端にブラインドフランジを取付け、他端より2K
g/cm2 、6Kg/cm2 、10Kg/cm2 、16
Kg/cm2 、20Kg/cm2 の各試験圧力の空気圧
を加えた後、弁を閉止し、弁、内部に空気圧を内封し
て、両端フランジ面より、石鹸水により弁座の弁体との
摺動面及び背面からの漏れの有無を検査した。
(3) Airtightness test A blind flange is attached to one end of the valve and 2K from the other end.
g / cm 2, 6Kg / cm 2, 10Kg / cm 2, 16
After addition of air pressure of each test pressure Kg / cm 2, 20Kg / cm 2, closing the valve, the valve, inside and encapsulates the air pressure, from both end flange surface, a valve body of the valve seat by soapy water The presence or absence of leakage from the sliding surface and the back surface of the above was inspected.

【0097】比較例1の弁では、10Kg/cm2 以上
の圧力で全流量の0.01%以上の漏れが確認された
が、この漏れ量は許容漏れ量以内であった。其の他の弁
の実施例1〜5、比較例2〜3共総て合格であった。
In the valve of Comparative Example 1, a leak of 0.01% or more of the total flow rate was confirmed at a pressure of 10 kg / cm 2 or more, but this leak amount was within the allowable leak amount. All of the other valves, Examples 1 to 5 and Comparative Examples 2 to 3, passed.

【0098】(4)蒸気試験 蒸気として6Kg/cm2 (164℃)、10Kg/c
2 (183℃)、15Kg/cm2 (200℃)、2
0Kg/cm2 (214℃)の飽和蒸気を用い、弁全体
が、ほぼ等温になるまで段階的に昇温し、上記、各温度
に於て、弁座と弁体との摺動面及び背面からの漏れを、
鏡(ミラー)に依り検査した。
(4) Steam test 6 kg / cm 2 (164 ° C.) as steam, 10 kg / c
m 2 (183 ° C.), 15 Kg / cm 2 (200 ° C.), 2
Using saturated steam of 0 kg / cm 2 (214 ° C.), the temperature of the entire valve is raised stepwise until it becomes almost isothermal, and at each of the above temperatures, the sliding surface and back surface between the valve seat and the valve body Leakage from
It was inspected with a mirror.

【0099】比較例2〜3の弁は、20Kg/cm2
(214℃)での検査で漏れがあった。部材を点検した
処、弁座及びOリングの熱変形が生じていた。其の他の
弁は全数合格であった。また、弁の開閉作動試験も行っ
たが弁棒、弁座、弁体などに焼付けや、カジリ付きなど
は認められずスムーズに作動操作できた。
The valves of Comparative Examples 2 and 3 were 20 kg / cm 2
There was a leak in the inspection at (214 ° C). When the members were inspected, the valve seat and the O-ring were thermally deformed. All other valves passed. In addition, a valve opening / closing operation test was also conducted, but the valve rod, valve seat, valve body, etc. could be operated smoothly without seizing or galling.

【0100】(5)低温試験 弁の内部に液体窒素ガスにより空気を置換した後、冷媒
中(−55℃)に浸漬して、圧力6Kg/cm2 に保
ち、弁体及び弁箱などの内部が上記温度に冷却され、更
に温度が安定するのに必要な時間を保持した後に、温度
を確認し、弁をくり返し開閉操作をしてその時の開弁力
及び閉弁力などの作動試験を行った。
(5) Low temperature test After substituting air with liquid nitrogen gas into the inside of the valve, the valve was immersed in a refrigerant (-55 ° C) and kept at a pressure of 6 Kg / cm 2 , and the inside of the valve body and valve box, etc. Is cooled to the above temperature, and after holding the time necessary for the temperature to stabilize further, the temperature is checked, and the valve is repeatedly opened and closed to perform operation tests such as the valve opening force and valve closing force. It was

【0101】作動試験後、温度を安定させるため、更に
20分間放置して、弁内部に液体窒素ガスを封入して弁
を閉止し、上流側から6Kg/cm2 の圧力を加圧し、
5分間保持して下流側の弁座の漏洩を検査した。その結
果、比較例3の弁では、弁座がPTFE樹脂のため収縮
し、漏れが認められた。その他の実施例、比較例の弁は
いづれも合格であった。
After the operation test, in order to stabilize the temperature, it was left for another 20 minutes, liquid nitrogen gas was sealed inside the valve to close the valve, and a pressure of 6 Kg / cm 2 was applied from the upstream side.
After holding for 5 minutes, the downstream valve seat was inspected for leakage. As a result, in the valve of Comparative Example 3, the valve seat contracted because of the PTFE resin, and leakage was recognized. The valves of the other Examples and Comparative Examples all passed.

【0102】(6)ファイヤーセーフ試験 通常のボール弁では、弁座、グランドパッキン、ガスケ
ット等のシール材にPTFE樹脂やゴムなどの非金属材
料が多く使用されている。そのため、弁が火災などにあ
い、こられが焼損する様な場合、グランド部やガスケッ
ト部から外部への漏洩や、弁座漏れ、或は作動不良を起
すなどして火災を著しく増大させたり、弁の操作に支障
を来たすなど、ボール弁であるが故にウィークポイント
にならない事が肝要である。
(6) Fire-safe test In a normal ball valve, a nonmetal material such as PTFE resin or rubber is often used as a sealing material such as a valve seat, a gland packing and a gasket. Therefore, if the valve is exposed to fire or the like and it is burned out, the fire will increase significantly by causing leakage from the gland or gasket to the outside, valve seat leakage, or malfunction. It is important that the valve does not become a weak point because it is a ball valve and it interferes with the operation of the valve.

【0103】このファイヤーセーフ試験は、弁の1次側
に水を満たし、内部に空気が残っていない事を確認後、
3.5Kg/cm2 の水圧を加え反対の2次側ブライン
ドフランジを取外し、LPG(液化プロパンガス)バー
ナー2基を用いて760℃(1400°F)〜980℃
(1800°F)の火炎で30分間または、弁の表面が
595℃(1100°F)の温度に達した後、更に10
分間燃焼を続け、2次側からの弁座漏れを確認した。
In this fire-safe test, after the primary side of the valve was filled with water and it was confirmed that no air remained inside,
The water pressure of 3.5 Kg / cm 2 was applied and the secondary blind flange on the opposite side was removed, and 760 ° C (1400 ° F) to 980 ° C using two LPG (liquefied propane gas) burners.
10 minutes after reaching a temperature of 595 ° C (1100 ° F) on the valve surface for 30 minutes in a (1800 ° F) flame.
Burning was continued for a minute, and valve seat leakage from the secondary side was confirmed.

【0104】LPガスを消火した後に弁が100℃(2
12°F)または、それ以下に自然冷却されたのちに次
の順番で試験を行った。 弁の開閉を数回くり返し操作して、操作性の確認を行
った。 弁を閉とし1次側に水圧3.5Kg/cm2 を加圧し
て弁座漏れを確認した。 弁内部に水圧10Kg/cm2 の高圧締切試験を行い
漏れの有無を確認した。
After extinguishing the LP gas, the valve was set to 100 ° C (2
The test was conducted in the following order after being naturally cooled to 12 ° F.) or lower. The operability was confirmed by repeatedly opening and closing the valve several times. The valve was closed and hydraulic pressure of 3.5 Kg / cm 2 was applied to the primary side to confirm valve seat leakage. The inside of the valve was subjected to a high pressure cutoff test at a water pressure of 10 kg / cm 2 to confirm the presence or absence of leakage.

【0105】尚この試験に際して、実施例、比較例の弁
とも、弁座以外の部分の耐熱性を保証するために、グラ
ンドパッキング及びガスケットの材質は、日本カーボン
株式会社製の膨張黒鉛成形体である商品名ニカフィルム
を各々に使用した。
In this test, in both the valves of Examples and Comparative Examples, in order to guarantee the heat resistance of the parts other than the valve seat, the materials of the gland packing and the gasket were expanded graphite moldings made by Nippon Carbon Co., Ltd. A certain trade name Nika film was used for each.

【0106】上記試験後に各々の弁を分解し、各部材を
点検した。実施例1〜5の弁は上記の過酷な条件での試
験にも拘らずいづれも合格であった。比較例1について
は、弁座から著しい漏れがあった。部材を点検した結
果、”Oリングの損傷が酷く、ゴムが炭化してシール機
能が全く失なわれていた。また、金属板バネは、焼鈍さ
れ、弾性が不足して居り、適正な面圧を保持し得なかっ
た。
After the above test, each valve was disassembled and each member was inspected. The valves of Examples 1 to 5 all passed the test under the above-mentioned severe conditions. Regarding Comparative Example 1, there was significant leakage from the valve seat. As a result of inspecting the members, "O-ring was severely damaged, the rubber was carbonized and the sealing function was completely lost. Also, the metal leaf spring was annealed and lacked elasticity, so that the proper surface pressure was applied. Could not be held.

【0107】比較例2に付いても比較例1と同様に著し
い漏れがあった。部材は比較例1と同様にOリングが炭
化していた。また、弁座は炭素材に含浸されているフェ
ノール樹脂が炭化して摺動面は細かい亀裂が多数認めら
れた弁座としての役目を果たしていなかった。
Similar to Comparative Example 1, there was a significant leakage in Comparative Example 2. The O-ring of the member was carbonized as in Comparative Example 1. Further, the valve seat did not serve as a valve seat in which many fine cracks were observed on the sliding surface due to carbonization of the phenol resin impregnated in the carbon material.

【0108】比較例3に付いては、他の比較例の弁より
も一層激しい漏れがあった。部材を点検した結果、弁座
の材質であるPTFE樹脂は、高温のため熱分解し、弁
座の形態をとどめて居らず消失していた。
In Comparative Example 3, there was more severe leakage than in the valves of other Comparative Examples. As a result of inspecting the members, the PTFE resin, which is the material of the valve seat, was thermally decomposed due to the high temperature and disappeared without remaining the shape of the valve seat.

【0109】[0109]

【図面の簡単な説明】[Brief description of drawings]

第1図は、弁の一例としてのボール弁の断面図。第2図
から第13図は、本発明の弁座の種々の態様を例示する
断面図、第14図は第2図の弁座を弁に組込んだ場合の
断面図。第15図は”Oリング”金属板バネを有する従
来型の弁座の一例の断面図および第16図はPTFE製
弁座の従来型弁座の一例の断面図、第17図は弁の一例
としてのバタフライの弁の断面図。第18図〜第20図
は、本発明の弁座の種々の態様を例示する断面図であ
る。
FIG. 1 is a sectional view of a ball valve as an example of the valve. 2 to 13 are sectional views illustrating various aspects of the valve seat of the present invention, and FIG. 14 is a sectional view when the valve seat of FIG. 2 is incorporated into a valve. FIG. 15 is a sectional view of an example of a conventional valve seat having an “O-ring” metal leaf spring, FIG. 16 is a sectional view of an example of a conventional valve seat of a PTFE valve seat, and FIG. 17 is an example of a valve. View of a butterfly valve as a. 18 to 20 are cross-sectional views illustrating various aspects of the valve seat of the present invention.

【符号の説明】[Explanation of symbols]

1.弁箱 2.弁箱蓋 3.弁体 4.弁座 4A.弁
座保持環 5.弁棒 6.ガスケット 7.パッキン押え輪 8.
パッキン押え 9.グランドパッキン 10.ボルトナット 11.ハ
ンドル 12.弁座取付治具穴 13.雄ネジ 14.弁箱と弁
座接触部 15.弁体と弁座の摺動部 16.シートチャンバー 17.シールリップ 18.Oリング 19.板バネ 20.コイルスプリング 31.弁箱 32.弁箱蓋
33.弁体 34.弁座 35.弁棒 36.ガスケット 37.パ
ッキン押え輪 38.パッキン押え 39.グランドパキン 40.ボ
ルト 41.ハンドル 42.弁座取付治具穴 43.雄ネジ 44.44A.弁箱と弁座接触部 45.弁体と弁座の
摺動部 46.シートチャンバー 47.シールリップ
1. Valve box 2. Valve box lid 3. Valve body 4. Valve seat 4A. Valve seat retaining ring 5. Valve rod 6. Gasket 7. Packing retaining ring 8.
Packing foot 9. Gland packing 10. Bolt nut 11. Handle 12. Valve seat mounting jig hole 13. Male screw 14. Valve box and valve seat contact part 15. Sliding part between valve body and valve seat 16. Seat chamber 17. Seal lip 18. O-ring 19. Leaf spring 20. Coil spring 31. Valve box 32. Valve box lid
33. Valve body 34. Valve seat 35. Valve stem 36. Gasket 37. Packing retaining ring 38. Packing foot 39. Grand Pakin 40. Bolt 41. Handle 42. Valve seat mounting jig hole 43. Male screw 44.44A. Valve box and valve seat contact part 45. Sliding part between valve body and valve seat 46. Seat chamber 47. Seal lip

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】弁の弁箱内に装着して使用する回動弁など
の弁座であり弁箱と弁座の接触部及び弁体と弁座の摺動
部で流体のシールを行う弁座に於て、弁座の弁体との摺
動部が圧縮復元など弁の操作に必要な弾性効果を発揮で
きる形状に成形、加工され、弁座と弁体の摺動部に適切
な面圧を保持させ流体をシールするを特徴とする弁座。
1. A valve seat, such as a rotary valve, which is mounted and used in a valve housing of a valve, wherein a fluid is sealed at a contact portion between the valve housing and the valve seat and a sliding portion between the valve body and the valve seat. In the seat, the sliding part of the valve seat with the valve body is molded and processed into a shape that can exert the elastic effect necessary for valve operation such as compression restoration, and a suitable surface for the sliding part of the valve seat and the valve body. A valve seat characterized by holding pressure and sealing fluid.
【請求項2】前記、弁座が金属若しくは非鉄金属、炭素
繊維、炭化けい素繊維などの強化複合材料であるF.
R.P(Fiber ReinforcedPlast
ics)、F.R.M.(Fiber Reinfor
ced Metal)若しくは、F.R.G.(Fib
er Reintorced Glass)などから成
る事を特徴とする特許請求範囲第1項記載の弁座。
2. The F.V. wherein the valve seat is a reinforced composite material made of metal or non-ferrous metal, carbon fiber, silicon carbide fiber or the like.
R. P (Fiber ReinforcedPlast)
ics), F.I. R. M. (Fiber Reinfor
ced Metal) or F.C. R. G. (Fib
er Reinforced Glass) or the like, and the valve seat according to claim 1.
【請求項3】前記弁座の固定方法及びシール方法が弁箱
内に設けられた雌ネジ部に弁座の外周面に設けた雄ネジ
とを嵌合固定し弁座背面を弁箱面に圧接してシールする
か、弁座収納個所にテーパーを設け、同じく弁座外周面
に上記弁箱内に設けたテーパーと合致するテーパー面を
設け、弁座をテーパー面で嵌合させ、弁箱と弁座の接触
部をシールするか、弁箱内に着脱容易に装着して使用す
る弁座で弁体と弁座の接触面圧により、弁座背面及び摺
動面で流体をシールする特許請求範囲第1項及び第2項
記載の弁座。
3. The valve seat fixing method and sealing method are such that a female screw portion provided in a valve box is fitted and fixed to a male screw provided on an outer peripheral surface of the valve seat, and a back surface of the valve seat is made a valve box surface. Either press-contact and seal, or provide a taper on the valve seat storage part, and also provide a taper surface on the outer peripheral surface of the valve seat that matches the taper provided inside the valve box. Patent that seals the contact part between the valve seat and the valve seat, or seals fluid on the back surface and sliding surface of the valve seat by the contact surface pressure between the valve body and the valve seat, which is used by being easily installed and removed in the valve box. The valve seat according to claims 1 and 2.
【請求項4】前記、弁座の弁体との摺動部の弾性を補助
するために、弁座に設けたチャンバー(chambe
r)にスプリングを装着した事を特徴とする特許請求範
囲第1項乃至第3項記載の弁座。
4. A chamber provided in the valve seat to assist the elasticity of the sliding portion of the valve seat with the valve body.
The valve seat according to any one of claims 1 to 3, wherein a spring is attached to r).
【請求項5】特許請求範囲第3項の弁座の保持環を汎用
金属使用の異種材料と組み合わせたことを特徴とする特
許請求範囲第1項乃至4項記載の弁座。
5. The valve seat according to any one of claims 1 to 4, wherein the retaining ring of the valve seat according to claim 3 is combined with a different material using a general-purpose metal.
JP8199195A 1995-03-15 1995-03-15 Valve seat Pending JPH08247306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8199195A JPH08247306A (en) 1995-03-15 1995-03-15 Valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8199195A JPH08247306A (en) 1995-03-15 1995-03-15 Valve seat

Publications (1)

Publication Number Publication Date
JPH08247306A true JPH08247306A (en) 1996-09-27

Family

ID=13761949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8199195A Pending JPH08247306A (en) 1995-03-15 1995-03-15 Valve seat

Country Status (1)

Country Link
JP (1) JPH08247306A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194666A (en) * 2000-12-25 2002-07-10 Kumeo Usuda CERAMIC FIBER USABLE FOR FIBER-REINFORCED METAL COMPOSITE MATERIAL, HAVING FIBER DIAMETER OF 30 mum OR LESS, AND WITH REMOVAL OF CARBON COMPONENT, AND METHOD FOR PRODUCING THE SAME
KR100725602B1 (en) * 2006-02-02 2007-06-08 최종묵 A device for sealing of a valve
WO2013176158A1 (en) * 2012-05-24 2013-11-28 株式会社ミクニ Rotary valve
WO2013176234A1 (en) * 2012-05-24 2013-11-28 株式会社ミクニ Rotary valve
JP6472924B1 (en) * 2018-10-17 2019-02-20 東フロコーポレーション株式会社 Ball valve
WO2022230782A1 (en) * 2021-04-27 2022-11-03 Ntn株式会社 Seal for flow control valve and flow control valve device
KR20230126552A (en) * 2022-02-23 2023-08-30 동아대학교 산학협력단 Cryogenic Needle Valve
WO2023210415A1 (en) * 2022-04-28 2023-11-02 株式会社不二工機 Flow path switching valve

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194666A (en) * 2000-12-25 2002-07-10 Kumeo Usuda CERAMIC FIBER USABLE FOR FIBER-REINFORCED METAL COMPOSITE MATERIAL, HAVING FIBER DIAMETER OF 30 mum OR LESS, AND WITH REMOVAL OF CARBON COMPONENT, AND METHOD FOR PRODUCING THE SAME
KR100725602B1 (en) * 2006-02-02 2007-06-08 최종묵 A device for sealing of a valve
WO2013176158A1 (en) * 2012-05-24 2013-11-28 株式会社ミクニ Rotary valve
WO2013176234A1 (en) * 2012-05-24 2013-11-28 株式会社ミクニ Rotary valve
JP2013245737A (en) * 2012-05-24 2013-12-09 Mikuni Corp Rotary valve
CN104412016A (en) * 2012-05-24 2015-03-11 株式会社三国 Rotary valve
CN104508338A (en) * 2012-05-24 2015-04-08 株式会社三国 Rotary valve
US9567894B2 (en) 2012-05-24 2017-02-14 Mikuni Corporation Rotary valve
JP6472924B1 (en) * 2018-10-17 2019-02-20 東フロコーポレーション株式会社 Ball valve
WO2022230782A1 (en) * 2021-04-27 2022-11-03 Ntn株式会社 Seal for flow control valve and flow control valve device
KR20230126552A (en) * 2022-02-23 2023-08-30 동아대학교 산학협력단 Cryogenic Needle Valve
WO2023210415A1 (en) * 2022-04-28 2023-11-02 株式会社不二工機 Flow path switching valve

Similar Documents

Publication Publication Date Title
MacKay et al. Continuous fiber-reinforced titanium aluminide composites
CA2651100C (en) Pressure-proof fluid-charged body
KR102222185B1 (en) Engineered SIC-SIC composite and monolithic SIC layered structure
Baker Carbon fibre reinforced metals—a review of the current technology
JPH08247306A (en) Valve seat
US5046703A (en) Carbonaceous sintered compact and fluid sealing member with this contact
Waterhouse Fretting at high temperatures
CN111151756B (en) 4D printing rapid manufacturing method of shape memory alloy pipe joint and product
JP4175525B2 (en) Sealing material
Davies et al. Mechanical properties in compression of low density carbon/carbon composites
Lagace et al. Response of notched graphite/epoxy and graphite/PEEK systems
US20060099434A1 (en) Low-friction and low-wear solid body sliding system
Hatta et al. Applications of carbon-carbon composites to an engine for a future space vehicle
Tang et al. Metallic and ceramic coatings for enhanced accident tolerant fuel cladding
Thakare et al. Evaluation of cyclic hot corrosion resistance of plasma-sprayed composite coating in Na 2 SO 4-60% V 2 O 5 molten salt environment
US20220010929A1 (en) High-temperature and/or high pressure gas enclosure
Chen et al. Ultra-high-temperature ceramic materials modified by graphene: an overview
JPS5818554B2 (en) valve seat
JP2001056061A (en) Ball valve using carbon material as material for valve element
Ma et al. Mechanical Properties and Failure Behavior of 3D‐SiCf/SiC Composites with Different Interphases
Geng et al. Interfacial Reaction and Mechanical Properties Of SiC Bonded With Zircaloy‐4 Using Ni, Zr/Al Double Interlayers
Wolf Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems
Ellis et al. Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites
Lawal et al. Emerging Behaviour of Alloy Steel Microstructure in Hydrogen Sulphide Environment-A Review
RA Carbon-Carbon Composites as Recuperator Materials for Direct Gas Brayton Systems

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000201