WO2023210415A1 - Flow path switching valve - Google Patents

Flow path switching valve Download PDF

Info

Publication number
WO2023210415A1
WO2023210415A1 PCT/JP2023/015238 JP2023015238W WO2023210415A1 WO 2023210415 A1 WO2023210415 A1 WO 2023210415A1 JP 2023015238 W JP2023015238 W JP 2023015238W WO 2023210415 A1 WO2023210415 A1 WO 2023210415A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
valve
seat member
flow path
path switching
Prior art date
Application number
PCT/JP2023/015238
Other languages
French (fr)
Japanese (ja)
Inventor
大介 近藤
Original Assignee
株式会社不二工機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二工機 filed Critical 株式会社不二工機
Publication of WO2023210415A1 publication Critical patent/WO2023210415A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/06Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfaces; Packings therefor

Abstract

This flow path switching valve comprises: a valve body in which a valve chamber is formed; a valve member disposed in the valve chamber; an annular sheet member that is positioned between the valve member and the inlet/outlet of the valve body such that a side surface on the reverse side from the valve member side contacts a wall surface of the valve body, and the outer peripheral surface is separated from the valve body; an inclined seal surface which is formed on the sheet member, is inclined at a fixed angle θ relative to an axis, and is contacted by the outer peripheral surface of the valve member; an O-ring that is compressed and accommodated in an O-ring groove provided in the wall surface of the valve body; and a rotation driving unit that rotates the valve member, wherein the value of the angle θ is determined such that the pressing force between the valve member and sheet member at the minimum temperature during use and the pressing force between the valve body and the sheet member at the maximum temperature during use do not vary.

Description

流路切換弁flow path switching valve
 本開示は、流路切換弁に係り、ボール状の弁体を弁室内で回転摺動させることにより流路を切り換える流路切換弁に関する。 The present disclosure relates to a flow path switching valve, and more particularly, to a flow path switching valve that switches a flow path by rotating and sliding a ball-shaped valve body within a valve chamber.
 特開2018-115691号公報には、ボール状の弁体の回転動作によって、流路を切り換えるタイプの流路切換弁が知られている。 Japanese Unexamined Patent Publication No. 2018-115691 discloses a type of flow path switching valve that switches the flow path by rotating a ball-shaped valve body.
 この種の流路切換弁では、モータ、駆動ギア等からなる回転駆動部を用いて弁体を回転駆動している。 In this type of flow path switching valve, the valve body is rotationally driven using a rotational drive unit consisting of a motor, a drive gear, etc.
 上記文献に記載の流路切換弁では、互いに対向した一対の流出口を有する弁室に、環状に形成された一対のシート部材が各流出口に対応して配置されている。この一対のシート部材の間に、ボール状の弁体が回転摺動自在に配置されている。このシート部材の弁体側とは反対側の側面に環状凹溝が形成されており、ゴム等の弾性材料により構成されたOリングが、この環状凹溝に圧縮状態で配置されている。 In the flow path switching valve described in the above-mentioned document, a pair of annular sheet members are arranged in a valve chamber having a pair of outlet ports facing each other, corresponding to each outlet port. A ball-shaped valve body is rotatably and slidably arranged between the pair of seat members. An annular groove is formed on the side surface of the seat member opposite to the valve body side, and an O-ring made of an elastic material such as rubber is placed in the annular groove in a compressed state.
 シート部材の弁体側とは反対側の側面が弁室の壁面と離間しており、シート部材の外周面は弁室の内周面に密着している。弁室内に配置されたシート部材は、Oリングの弾性力(反発力)によって弁体の外周面に密着するように押し付けられている。これにより、弁体と各流出口との間が気密的にシールされている。 The side surface of the seat member opposite to the valve body side is spaced apart from the wall surface of the valve chamber, and the outer circumferential surface of the seat member is in close contact with the inner circumferential surface of the valve chamber. The seat member disposed within the valve chamber is pressed against the outer circumferential surface of the valve body by the elastic force (repulsive force) of the O-ring. This provides an airtight seal between the valve body and each outlet.
 弁体は、一対の環状に形成されたシート部材で挟まれ、かつ弁体にはOリングの弾性力で一対のシート部材が押し付けられているため、弁体を回転させるには回転力(トルク)が必要とされる。 The valve body is sandwiched between a pair of annular seat members, and the pair of seat members are pressed against the valve body by the elastic force of the O-ring, so rotational force (torque) is required to rotate the valve body. ) is required.
 流路切換弁の設計においては、仕様の漏れ量を担保することが求められる。そのためには、Oリングの最小圧縮率から、各部の寸法公差、温度の影響、経年劣化などを考慮した最大圧縮率が算出される。Oリングが最大圧縮率となったときの弁体を回転駆動するトルクが、最大トルクとなる。このため、回転駆動部の仕様は、上記最大トルクよりも高いトルクが出るように決められる。 When designing a flow path switching valve, it is required to ensure the specified leakage amount. To do this, the maximum compression ratio is calculated from the minimum compression ratio of the O-ring, taking into account dimensional tolerances of each part, temperature effects, aging deterioration, etc. The torque that rotates the valve body when the O-ring reaches its maximum compression ratio is the maximum torque. For this reason, the specifications of the rotary drive section are determined so that a torque higher than the above-mentioned maximum torque can be produced.
 ところで、シート部材の外周面が弁室の内周面に接触して拘束され、シート部材の弁体側とは反対側の側面が、該側面に対向する弁室の壁面に接触している場合がある。この場合、常温時に流体が漏れないようにシート部材と弁室の壁面とを接触させると共にシート部材と弁体とを接触させても、低温時と高温時の熱膨張差により、クリアランス、及び締付が発生する。 By the way, there are cases where the outer circumferential surface of the seat member is restrained by contacting the inner circumferential surface of the valve chamber, and the side surface of the seat member on the opposite side from the valve body side is in contact with the wall surface of the valve chamber opposite to the side surface. be. In this case, even if the seat member and the valve body are brought into contact with each other to prevent fluid from leaking at room temperature, and the seat member is brought into contact with the valve body, clearance and tightness may be reduced due to the difference in thermal expansion between low and high temperatures. Attaching occurs.
 即ち、シート部材が高温になると、シート部材は軸方向へ膨張してシート部材が弁体に強く押し付けられ、弁体が一対のシート部材の間で強く締め付けられることになり、弁体を回転駆動し難くなる。一方、シート部材の温度が低くなると、シート部材が縮小して、シート部材と弁体との間、及びシート部材の側面と弁室の壁面との間にクリアランス(隙間)が生じる場合が考えられる。 That is, when the seat member becomes hot, the seat member expands in the axial direction, and the seat member is strongly pressed against the valve body, and the valve body is strongly tightened between the pair of seat members, driving the valve body to rotate. It becomes difficult to do. On the other hand, when the temperature of the seat member decreases, the seat member may shrink, creating a clearance between the seat member and the valve body and between the side surface of the seat member and the wall of the valve chamber. .
 このため、シート部材の外周面を弁室の内周面に接触させ、シート部材の弁体側とは反対側の側面と、この壁面に対向する弁室の壁面との間に隙間を設け、シート部材と弁室の壁面との間に弾性体であるOリングを配することで、温度変化によるシート部材の軸方向の寸法変化を、該隙間で吸収することは可能となる。 For this purpose, the outer circumferential surface of the seat member is brought into contact with the inner circumferential surface of the valve chamber, and a gap is provided between the side surface of the seat member on the opposite side of the valve body and the wall surface of the valve chamber opposite to this wall surface. By disposing an O-ring, which is an elastic body, between the member and the wall surface of the valve chamber, it becomes possible to absorb dimensional changes in the axial direction of the seat member due to temperature changes in the gap.
 しかし、一対のシート部材、弁体、一対のOリングが直列で弁室内に配置されているため、弁体を小さなトルクで回転させるには、シート部材の厚さ、弁体の径、Oリングの線径、Oリングを配置するOリング溝の溝深さ、これらを収容する弁室の幅などの多数の寸法を管理する必要があり、寸法管理が煩雑となる。また、各部材の寸法公差によるOリングの圧縮率変動が大きくなるため、弁体を回転駆動するために高トルクの駆動部品が必要となり、サイズが大型化する場合がある。 However, since a pair of seat members, a valve body, and a pair of O-rings are arranged in series in the valve chamber, in order to rotate the valve body with a small torque, the thickness of the seat member, the diameter of the valve body, the O-ring It is necessary to manage a large number of dimensions, such as the wire diameter of the O-ring, the depth of the O-ring groove in which the O-ring is placed, and the width of the valve chamber that accommodates these, making dimension management complicated. Further, since the compressibility of the O-ring varies greatly due to the dimensional tolerance of each member, a high-torque drive component is required to rotationally drive the valve body, which may result in an increase in size.
 本開示は上記事実を考慮し、寸法の管理箇所を最低限にし、小さなトルクで弁体を回転可能とする流路切換え弁の提供を目的とする。 In consideration of the above facts, the present disclosure aims to provide a flow path switching valve that minimizes the number of dimensional control points and allows the valve body to be rotated with small torque.
 発明者らがボール状の弁体を備えた流路切換弁について種々の検討、及び実験を重ねたところ、部材同士の関わり方、弁体の外周面が接触するシート部材の傾斜シール面の角度θをある値に設定すると、弁体を回転させるトルクを小さくするための部材の寸法管理が容易になり、かつ弁体を回転させるトルクが温度の影響を受け難くなることを見出した。 The inventors conducted various studies and experiments on flow switching valves equipped with ball-shaped valve discs, and found that the relationship between the members and the angle of the inclined sealing surface of the seat member with which the outer peripheral surface of the valve disc contacts It has been found that when θ is set to a certain value, it becomes easier to manage the dimensions of the members for reducing the torque for rotating the valve body, and the torque for rotating the valve body is less affected by temperature.
 本開示は上記事実に鑑みてなされたものであって、第1の態様に係る流路切換弁は、内部に弁室が形成されると共に、少なくとも前記弁室の互いに対向する一対の壁面に入出口が開口せしめられる弁本体と、前記弁室内に回転自在に配置され、かつ内部に流路が形成されるボール状の弁体と、前記弁体と前記入出口との間を封止すべく前記弁体と前記入出口との間に配置され、前記弁体側とは反対側の側面が前記壁面に接触しており、外周面が前記弁本体とは離間している環状のシート部材と、前記シート部材の前記弁体側の開口端に形成され、前記シート部材の軸線に沿った断面で見たときに、前記軸線に対して一定の角度θで傾斜し、前記弁体の外周面が接触している傾斜シール面と、前記シート部材の前記弁本体側の側面、及び前記弁本体の前記壁面の何れか一方に設けられ、前記シート部材の前記軸線の方向に窪んだ保持溝と、前記保持溝に収容され、前記シート部材の前記側面が前記壁面に接触した状態で圧縮され、前記シート部材を前記弁体に押し付ける弾性体と、複数の前記入出口の連通状態が前記弁体の前記流路を通じて選択的に切り換えるように前記弁体を回転させる回転駆動部と、を備え、使用状態での最低温度時における前記弁体と前記シート部材との間の押圧力と使用状態での最高温度時における前記弁体と前記シート部材との間の押圧力とが変わらないように前記角度θの値が決定されている。 The present disclosure has been made in view of the above facts, and the flow path switching valve according to the first aspect has a valve chamber formed therein, and at least a pair of mutually opposing wall surfaces of the valve chamber. A valve body with an open outlet, a ball-shaped valve body rotatably disposed within the valve chamber and having a flow path formed therein, and a valve body for sealing between the valve body and the inlet/outlet. an annular seat member that is disposed between the valve body and the inlet/outlet, a side surface opposite to the valve body side is in contact with the wall surface, and an outer peripheral surface is spaced apart from the valve body; The valve body is formed at the opening end of the seat member on the valve body side, is inclined at a certain angle θ with respect to the axis when viewed in a cross section along the axis of the seat member, and is in contact with the outer peripheral surface of the valve body. a retaining groove recessed in the direction of the axis of the seat member; An elastic body that is accommodated in a holding groove and is compressed with the side surface of the sheet member in contact with the wall surface, and presses the sheet member against the valve body, and the plurality of inlets and outlets communicate with each other. a rotation drive unit that rotates the valve body so as to selectively switch through the flow path, and the pressing force between the valve body and the seat member at the lowest temperature in the use condition and the highest in the use condition. The value of the angle θ is determined so that the pressing force between the valve body and the seat member at the temperature does not change.
 この流路切換弁では、回転駆動部の回転力(トルク)を用いて弁体を回転させることができる。 In this flow path switching valve, the valve body can be rotated using the rotational force (torque) of the rotational drive section.
 この流路切換弁では、弁室の内部に弁体、一対のシート部材、一対の弾性体が、直列に配置されることになる。シート部材は、傾斜シール面が弁体と接触し、弁体側とは反対側が弁室の壁面に接触している。 In this flow path switching valve, a valve body, a pair of seat members, and a pair of elastic bodies are arranged in series inside the valve chamber. The seat member has an inclined sealing surface in contact with the valve body, and a side opposite to the valve body side in contact with a wall surface of the valve chamber.
 シート部材を弁体に押圧する弾性体は、シート部材の弁本体側の側面、及び弁本体の壁面の何れか一方に設けられた凹部内で圧縮状態にある。このため、シート部材を弁体に押し付ける弾性体による弾性力を決めるには、凹部の深さと弾性体の寸法の2つの寸法を管理して弾性体の圧縮率を決めればよい。 The elastic body that presses the seat member against the valve body is in a compressed state within a recess provided in either the side surface of the seat member on the valve body side or the wall surface of the valve body. Therefore, in order to determine the elastic force of the elastic body that presses the seat member against the valve body, the compression ratio of the elastic body can be determined by managing two dimensions: the depth of the recess and the size of the elastic body.
 シート部材が温度上昇し、シート部材の軸方向の厚みは増えると、弁体を軸方向に押圧するシート部材の押圧力が増大する方向となる。
 この流路切換弁では、シート部材の外周部と弁室の内周部とが離間して両者の間に隙間が設けられているため、シート部材の径方向への膨張は妨げられないようになっている。このため、シート部材が温度上昇するとシート部材の径が大きくなり、傾斜シール面は弁本体からシート部材の径方向へ離れる方向となり、弁体を押圧する押圧力としては減少する方向となる。
When the temperature of the seat member increases and the thickness of the seat member in the axial direction increases, the pressing force of the seat member that presses the valve body in the axial direction increases.
In this flow path switching valve, the outer periphery of the seat member and the inner periphery of the valve chamber are separated and a gap is provided between the two, so that the expansion of the seat member in the radial direction is not hindered. It has become. Therefore, when the temperature of the seat member increases, the diameter of the seat member increases, the inclined sealing surface moves away from the valve body in the radial direction of the seat member, and the pressing force for pressing the valve body decreases.
 即ち、シート部材の厚み方向(軸方向)の寸法だけでなく、シート部材の径方向の寸法も、シート部材の弁体への押圧力に関係するため、弁体に当接する傾斜シール面の角度θを適切な角度に設定すると、温度変化が生じてもシート部材の膨張に起因する弁体を押圧する力が変化しないようにできる。 In other words, not only the thickness direction (axial direction) dimension of the seat member but also the radial dimension of the seat member are related to the pressing force of the seat member against the valve body, so the angle of the inclined seal surface that contacts the valve body By setting θ to an appropriate angle, the force pressing against the valve body due to expansion of the seat member can be prevented from changing even if a temperature change occurs.
 この流路切換弁では、温度変化が生じてもシート部材の膨張に起因する弁体を押圧する力が変化しないように傾斜シール面の角度θを設定したので、弁体を回転駆動する際に必要とされるトルクが、温度の影響を受け難くなる。 In this flow path switching valve, the angle θ of the inclined seal surface is set so that the force pressing against the valve body due to the expansion of the seat member does not change even if the temperature changes, so when rotating the valve body, The required torque becomes less sensitive to temperature.
 第2の態様は、第1の態様に係る流路切換弁において、前記弁本体の前記壁面に前記シート部材が配置される環状凹部が設けられ、前記シート部材の側部が前記環状凹部の底部と常時接触しており、前記保持溝は、前記環状凹部の底部に設けられて前記弾性体が嵌め込まれている。 In a second aspect, in the flow path switching valve according to the first aspect, an annular recess in which the sheet member is disposed is provided in the wall surface of the valve body, and a side portion of the sheet member is located at a bottom of the annular recess. The holding groove is provided at the bottom of the annular recess, and the elastic body is fitted into the holding groove.
 第3の態様は、第1の態様又は第2の態様に係る流路切換弁において、前記角度θが、57.9±5.79°であることを特徴としている。 A third aspect of the flow path switching valve according to the first aspect or the second aspect is characterized in that the angle θ is 57.9±5.79°.
 以上説明したように本開示に係る流路切換弁によれば、寸法の管理箇所を最小限にし、小さなトルクで弁体を回転させることが可能となる。 As explained above, according to the flow path switching valve according to the present disclosure, it is possible to minimize the number of dimensional control points and rotate the valve body with a small torque.
本開示の一実施形態に係る流路切換弁を示す斜視図である。FIG. 1 is a perspective view showing a flow path switching valve according to an embodiment of the present disclosure. 図1に示す流路切換弁の2-2線断面図である。2 is a sectional view taken along line 2-2 of the flow path switching valve shown in FIG. 1. FIG. 流路切換弁の要部を示す拡大断面図である。FIG. 3 is an enlarged sectional view showing the main parts of the flow path switching valve. 弁体の流路を示す弁体の断面図である。It is a sectional view of the valve body showing a flow path of the valve body.
 図1~図4を用いて、本開示の一の実施形態に係る流路切換弁10について説明する。なお、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、誇張して描かれている場合がある。また、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、図1及び図2の方向矢印表示を基準としており、実際の使用状態での位置、方向を指すものではない。 A flow path switching valve 10 according to one embodiment of the present disclosure will be described using FIGS. 1 to 4. In each figure, gaps formed between members, separation distances between members, etc. may be exaggerated in order to facilitate understanding of the invention and for convenience in drawing. be. Furthermore, in this specification, descriptions expressing positions and directions such as up and down, left and right, front and rear, etc. are based on the direction arrows shown in FIGS. 1 and 2, and do not refer to positions and directions in actual use. .
(流路切換弁の構成)
 図1は、本開示の一実施形態に係る流路切換弁10の全体構成を示す斜視図であり、図2は、図1に示される流路切換弁10の縦断面図(2-2線断面図)である。
(Configuration of flow path switching valve)
FIG. 1 is a perspective view showing the overall configuration of a flow path switching valve 10 according to an embodiment of the present disclosure, and FIG. 2 is a longitudinal cross-sectional view (line 2-2) of the flow path switching valve 10 shown in FIG. sectional view).
 図1に示す実施形態の流路切換弁10は、例えば自動車のエンジンルーム内等を流れる流体の流路を多方向に切り換えるロータリー形の三方弁として使用されるもので、基本的には、図2に示すように、弁室12を有する弁本体14と、弁室12内に回転自在に配在されたボール状の弁体(ボール弁体ともいう)16と、弁体16を回転軸線(中心線)O1周りで回転させるべく、弁本体14の後部から上部にかけて配置されるモータ、駆動ギア等からなる回転駆動部18と、を備えている。
 なお、弁室12内に収容された弁体16の回転軸線(上下方向に延びる軸線)O1は、後述する回転駆動部18の弁軸18Aの中心線と同軸とされている。
The flow path switching valve 10 of the embodiment shown in FIG. 1 is used as a rotary three-way valve that switches the flow path of fluid flowing in, for example, the engine room of an automobile in multiple directions. Basically, the flow path switching valve 10 shown in FIG. 2, a valve body 14 having a valve chamber 12, a ball-shaped valve body (also referred to as a ball valve body) 16 rotatably disposed within the valve chamber 12, and a rotation axis ( In order to rotate the valve body 14 around the center line (center line) O1, the valve body 14 is provided with a rotation drive unit 18 consisting of a motor, a drive gear, etc. arranged from the rear to the top of the valve body 14.
Note that a rotational axis O1 (an axis extending in the vertical direction) of the valve body 16 housed in the valve chamber 12 is coaxial with a centerline of a valve shaft 18A of the rotation drive unit 18, which will be described later.
(弁本体、弁室)
 弁本体14は、例えば、各々が合成樹脂製とされた基体部材20と、ポート部材44とを含んで構成されている。
(valve body, valve chamber)
The valve body 14 includes, for example, a base member 20 and a port member 44, each of which is made of synthetic resin.
 図2、及び図3に示すように、基体部材20には、内部に横倒し円筒状の弁室12が形成されている。弁室12における矢印右方向側(図面右側)の右側第1壁面12Rには、後述するシート部材38が配置される環状凹部46が形成されている。環状凹部46の底部中央には弁室12に開口する横向きの流出口(入出口)26が形成されている。この流出口26の径方向外側には、Oリング溝48(保持溝)が形成されている。このOリング溝48には、弾性体とシール部材を兼ねるOリング50が嵌め込まれている。 As shown in FIGS. 2 and 3, the base member 20 has a horizontally cylindrical valve chamber 12 formed therein. An annular recess 46 in which a seat member 38 to be described later is disposed is formed in the first right wall surface 12R of the valve chamber 12 on the right side of the arrow (right side in the drawing). A horizontal outlet (inlet/outlet) 26 that opens into the valve chamber 12 is formed at the center of the bottom of the annular recess 46 . An O-ring groove 48 (retaining groove) is formed on the radially outer side of the outlet 26. An O-ring 50 is fitted into the O-ring groove 48 and serves as both an elastic body and a sealing member.
 図1、及び図2に示すように、この基体部材20の矢印右方向側の外面には、流出口26に連通するように管継手からなるL字形状のポート26Aが一体的に設けられている。 As shown in FIGS. 1 and 2, an L-shaped port 26A made of a pipe joint is integrally provided on the outer surface of the base member 20 on the right side of the arrow so as to communicate with the outlet 26. There is.
(ポート部材)
 図2に示すように、弁室12は、矢印左方向側(図面左側)が開口しており、弁本体14の矢印左方向側の端部には、弁室12に繋がるL字形状のポート部材44が固定されている。
(Port member)
As shown in FIG. 2, the valve chamber 12 is open on the left side of the arrow (left side in the drawing), and an L-shaped port connected to the valve chamber 12 is provided at the end of the valve body 14 on the left side of the arrow. A member 44 is fixed.
 ポート部材44は、管継手としてのL字形状のポート52を備えている。ポート52の弁室12側には、弁本体14の端面に当接する環状のフランジ54、及び弁室12に挿入される筒状の挿入部56が形成されている。挿入部56の弁室12側の端部には、弁室12に開口する横向きの流出口(入出口)24が設けられている。 The port member 44 includes an L-shaped port 52 as a pipe joint. An annular flange 54 that contacts the end surface of the valve body 14 and a cylindrical insertion portion 56 that is inserted into the valve chamber 12 are formed on the valve chamber 12 side of the port 52 . A horizontal outlet (inlet/outlet) 24 that opens into the valve chamber 12 is provided at the end of the insertion portion 56 on the valve chamber 12 side.
 ポート部材44の挿入部56は、弁室12に挿入されている。ポート部材44のフランジ54は、弁本体14の端面に当接された状態で弁本体14に溶着固定されている。 The insertion portion 56 of the port member 44 is inserted into the valve chamber 12. The flange 54 of the port member 44 is welded and fixed to the valve body 14 while being in contact with the end face of the valve body 14 .
 図3に示すように、挿入部56の先端部分には、後述するシート部材38が配置される環状凹部58が形成されている。環状凹部58の底部には、Oリング溝48と同様のOリング溝60(保持溝)が形成されている。Oリング溝60の内部には、Oリング溝48と同様にOリング50が嵌め込まれている。 As shown in FIG. 3, an annular recess 58 is formed at the distal end of the insertion portion 56, in which a sheet member 38, which will be described later, is placed. An O-ring groove 60 (retaining groove) similar to the O-ring groove 48 is formed at the bottom of the annular recess 58 . An O-ring 50 is fitted into the O-ring groove 60 in the same manner as the O-ring groove 48.
 図1に示すように、弁本体14には、弁室12の図面矢印前方向側の壁面に、弁室12に開口する横向きの流入口(入出口。図示せず。)が設けられている。なお、弁本体14の外面には、この流入口(入出口)に連通するように管継手からなるポート28Aが一体的に設けられている。 As shown in FIG. 1, the valve body 14 is provided with a lateral inlet (inlet/outlet; not shown) that opens into the valve chamber 12 on the wall surface of the valve chamber 12 on the forward side of the drawing arrow. . Note that a port 28A made of a pipe joint is integrally provided on the outer surface of the valve body 14 so as to communicate with this inlet (inlet/outlet).
 図2、及び図3に示すように、弁本体14の上部には、回転駆動部18の弁軸18Aが回転自在に挿通される嵌挿穴30が設けられている。弁軸18Aの軸方向中間部の外周には、Oリング溝32が形成され、そのOリング溝32にシール部材としてのOリング34が嵌め込まれている。 As shown in FIGS. 2 and 3, an insertion hole 30 is provided in the upper part of the valve body 14, into which the valve shaft 18A of the rotational drive section 18 is rotatably inserted. An O-ring groove 32 is formed on the outer periphery of the axially intermediate portion of the valve shaft 18A, and an O-ring 34 as a sealing member is fitted into the O-ring groove 32.
(回転駆動部)
 回転駆動部18の弁軸18Aは、弁体16に連結されており、弁軸18Aと弁体16とが一体となって回転するようになっている。
(Rotation drive part)
The valve shaft 18A of the rotation drive unit 18 is connected to the valve body 16, so that the valve shaft 18A and the valve body 16 rotate together.
(弁体)
 弁体16は、例えば合成樹脂から作製されている。弁本体14に設けられた流入口28(図2、及び図3では図示せず)、及び2つの流出口24,26を選択的に連通させるべく、言い換えれば、流入口28、及び2つの流出口24,26の連通状態を選択的に切り換えるべく、弁体16の内部には、図4に示すように、流路(内部流路)36が設けられている。
(valve body)
The valve body 16 is made of, for example, synthetic resin. In order to selectively communicate the inlet 28 provided in the valve body 14 (not shown in FIGS. 2 and 3) and the two outlet ports 24 and 26, in other words, the inlet 28 and the two flow In order to selectively switch the communication state of the outlets 24 and 26, a flow path (internal flow path) 36 is provided inside the valve body 16, as shown in FIG.
 詳細には、弁体16には、弁体16の回転軸線O1方向に直交する第1の方向に貫通する貫通穴36Aが形成されている。また、弁体16には、弁体16の外周(側部)から貫通穴36Aの中央に合流する横穴36Bが、弁体16の回転軸線O1に直交し、かつ貫通穴36Aと直交する方向に形成されている。 Specifically, the valve body 16 is formed with a through hole 36A that penetrates in a first direction orthogonal to the direction of the rotation axis O1 of the valve body 16. Further, the valve body 16 has a horizontal hole 36B that merges from the outer periphery (side part) of the valve body 16 to the center of the through hole 36A, and extends in a direction perpendicular to the rotation axis O1 of the valve body 16 and perpendicular to the through hole 36A. It is formed.
(シート部材)
 図3に示すように、弁本体1における各流出口24、26周りに形成された環状凹部46、及び環状凹部58には、円環状のシート部材38が各々配在されている。シート部材38は合成樹脂から作製され、各流出口24、26に対応する開口を有している。
(sheet member)
As shown in FIG. 3, an annular sheet member 38 is disposed in each of the annular recess 46 and the annular recess 58 formed around each of the outlet ports 24 and 26 in the valve body 1. The sheet member 38 is made of synthetic resin and has openings corresponding to the respective outlets 24 and 26.
 つまり、弁本体14の弁室12内において、左右一対の流出口24、26に対応して弁体16の回転軸線O1に対して反対側に対向配置されるように、一対のシート部材38、38が配在されている。その一対のシート部材38、38の間(内側)に、弁体16が回転摺動自在に配在されている。 That is, in the valve chamber 12 of the valve body 14, a pair of seat members 38, 38 are distributed. The valve body 16 is rotatably and slidably arranged between the pair of seat members 38, 38 (on the inside).
 シート部材38の弁体16側の開口端には、シート部材38の軸線O2に沿った断面で見たときに、軸線O2に対して一定の角度θ°で傾斜し、弁体16の外周面が環状かつ線状に接触する傾斜シール面38Aが形成されている。言い換えれば、傾斜シール面38Aは、凹状の円錐面の一部で構成されている。 The open end of the seat member 38 on the valve body 16 side is inclined at a constant angle θ° with respect to the axis O2 when viewed in cross section along the axis O2 of the seat member 38, and has an outer circumferential surface of the valve body 16. An inclined sealing surface 38A is formed in which the two members contact each other in an annular and linear manner. In other words, the inclined sealing surface 38A is constituted by a part of a concave conical surface.
 ここで、矢印右方向側(図面右側)のシート部材38は、傾斜シール面38Aとは反対側の側面である平面状の基端部面38bが、弁室12に設けられた環状凹部46の底部46aに常時接触してOリング50を所定量圧縮している。また、矢印右方向側(図面右側)のシート部材38の外径は、環状凹部46の内径よりも若干小さく、該シート部材38の外周面と該環状凹部46の内周面との間には隙間が設けられている。 Here, the sheet member 38 on the right side of the arrow (right side in the drawing) has a planar base end surface 38b, which is a side surface opposite to the inclined seal surface 38A, which is located in the annular recess 46 provided in the valve chamber 12. The O-ring 50 is compressed by a predetermined amount by constantly contacting the bottom portion 46a. Further, the outer diameter of the sheet member 38 on the right side of the arrow (right side in the drawing) is slightly smaller than the inner diameter of the annular recess 46, and there is a gap between the outer peripheral surface of the sheet member 38 and the inner peripheral surface of the annular recess 46. A gap is provided.
 また、矢印左方向側(図面左側)のシート部材38は、傾斜シール面38Aとは反対側の側面である平面状の基端部面38bが、ポート部材44の挿入部56に設けられた環状凹部58の底部58aに常時接触してOリング50を所定量圧縮している。なお、矢印左方向側(図面左側)のシート部材38の外径は、環状凹部58の内径よりも若干小さく、該シート部材38の外周面と該環状凹部58の内周面との間には隙間が設けられている。 In addition, the sheet member 38 on the left side of the arrow (left side in the drawing) has a planar base end surface 38b, which is the side surface opposite to the inclined seal surface 38A, in the annular shape provided in the insertion portion 56 of the port member 44. The O-ring 50 is compressed by a predetermined amount by constantly contacting the bottom 58a of the recess 58. The outer diameter of the sheet member 38 on the left side of the arrow (left side in the drawing) is slightly smaller than the inner diameter of the annular recess 58, and there is a gap between the outer peripheral surface of the sheet member 38 and the inner peripheral surface of the annular recess 58. A gap is provided.
 所定量圧縮されたOリング50の弾性力(反発力)によって各シート部材38の傾斜シール面38Aが弁体16(の外周シール面)側に密着するように押し付けられることにより、弁体16と各流出口24、26との間が気密的にシール(封止)されている。 The elastic force (repulsive force) of the O-ring 50 compressed by a predetermined amount presses the inclined sealing surface 38A of each seat member 38 so as to come into close contact with the valve body 16 (the outer peripheral sealing surface of the valve body 16). The space between the outlet ports 24 and 26 is airtightly sealed.
 なお、Oリング50の所定の弾性力(圧縮されたOリング50が元の形状に戻ろうとする力)がシート部材38を介して弁体16に作用するように、Oリング溝48の溝深さ、Oリング溝60の溝深さ、及びOリング50の線径が決められている。Oリング50の弾性力を予め設定した値とすることで、弁体16の回転トルクを決めることができる。 Note that the groove depth of the O-ring groove 48 is adjusted so that a predetermined elastic force of the O-ring 50 (a force that causes the compressed O-ring 50 to return to its original shape) acts on the valve body 16 via the seat member 38. The groove depth of the O-ring groove 60 and the wire diameter of the O-ring 50 are determined. By setting the elastic force of the O-ring 50 to a preset value, the rotational torque of the valve body 16 can be determined.
 図4に示すように、本実施形態では、傾斜シール面38Aの開口側の径をa(mm)としている。また、シート部材38におけるOリング50が接触している面(Oリング溝40の底面)からシート部材38の弁体側の側面までの厚さ寸法をb(mm)としている。更に、弁体16の直径をd(mm)としている。また、弁室12の互いに対向する図面矢印左方向側(図面左側)の環状凹部58の底部と図面矢印右方向側(図面右側)の環状凹部46の底部との間隔をe(mm)としている。 As shown in FIG. 4, in this embodiment, the diameter of the opening side of the inclined sealing surface 38A is set to a (mm). Further, the thickness dimension from the surface of the seat member 38 in contact with the O-ring 50 (the bottom surface of the O-ring groove 40) to the side surface of the seat member 38 on the valve body side is defined as b (mm). Furthermore, the diameter of the valve body 16 is d (mm). Further, the distance between the bottom of the annular recess 58 on the left side of the drawing arrow (left side in the drawing) and the bottom of the annular recess 46 on the right side of the drawing arrow (right side in the drawing) of the valve chamber 12, which face each other, is set to e (mm). .
 そして、本実施形態の流路切換弁10では、使用状態での最低温度時における弁体16とシート部材38との間の押圧力と、使用状態での最高温度時における弁体16とシート部材38との間の押圧力とが変わらないように角度θの値が決定されている。 In the flow path switching valve 10 of the present embodiment, the pressing force between the valve body 16 and the seat member 38 at the lowest temperature in the use state, and the pressure force between the valve body 16 and the seat member 38 at the highest temperature in the use state. The value of the angle θ is determined so that the pressing force between 38 and 38 does not change.
 具体的には、各部材の線膨張率を考慮すると共に、上記a、b、d、及びeの値をそれぞれ最適な値とすることで、使用状態での最低温度時における弁体16とシート部材38との間の押圧力と、使用状態での最高温度時における弁体16とシート部材38との間の押圧力とが変わらないように角度θを決定している。 Specifically, by considering the coefficient of linear expansion of each member and setting the values of a, b, d, and e to the respective optimal values, the valve body 16 and the seat at the lowest temperature in use are The angle θ is determined so that the pressing force between the valve body 16 and the seat member 38 is the same as the pressing force between the valve body 16 and the seat member 38 at the highest temperature in use.
 なお、本実施形態では、シート部材38、及びOリング50には、弁本体14、及び弁体16よりも相対的に線膨張係数の大きな材料が使用されている。一例として、弁本体14、及び弁体16にPPS(ポリフェニレンサルファイド)を使用し、シート部材38にPTFE(フッ素樹脂)を使用し、Oリング50に合成ゴムを使用することができる。 Note that in this embodiment, the seat member 38 and the O-ring 50 are made of a material that has a relatively larger coefficient of linear expansion than the valve body 14 and the valve body 16. As an example, the valve body 14 and the valve body 16 may be made of PPS (polyphenylene sulfide), the seat member 38 may be made of PTFE (fluororesin), and the O-ring 50 may be made of synthetic rubber.
 ポート部材44の挿入部56は、弁室12に挿入されている。ポート部材44のフランジ54は、弁本体14の端面に当接された状態で弁本体14に溶着固定されている。 The insertion portion 56 of the port member 44 is inserted into the valve chamber 12. The flange 54 of the port member 44 is welded and fixed to the valve body 14 while being in contact with the end face of the valve body 14 .
 本実施形態の流路切換弁10では、弁室12の開口部からOリング50、シート部材38、弁体16、及びシート部材38を順に挿入した後、Oリング50を装着したポート部材44の挿入部56を、Oリング50を圧縮するように弁室12に所定の力で挿入し、ポート部材44のフランジ54を弁本体14の側面に溶着している。 In the flow path switching valve 10 of this embodiment, after the O-ring 50, the seat member 38, the valve body 16, and the seat member 38 are inserted in order from the opening of the valve chamber 12, the port member 44 with the O-ring 50 attached is inserted. The insertion portion 56 is inserted into the valve chamber 12 with a predetermined force so as to compress the O-ring 50, and the flange 54 of the port member 44 is welded to the side surface of the valve body 14.
(作用、効果)
 本実施形態の流路切換弁10では、弁室12の内部に弁体16、2つのシート部材38、2つのOリング50が直列に配置されることになるが、Oリング溝48内のOリング50、及びOリング溝60内のOリング50は、Oリング溝内に圧縮状態で密封されている。
(action, effect)
In the flow path switching valve 10 of this embodiment, the valve body 16, two seat members 38, and two O-rings 50 are arranged in series inside the valve chamber 12. The ring 50 and the O-ring 50 within the O-ring groove 60 are sealed in compression within the O-ring groove.
 図3に示すように、本実施形態の流路切換弁10では、矢印右方向側(図面右側)のシート部材38において、傾斜シール面38Aとは反対側の基端部面38b(弁体と逆側の面)が環状凹部46の底部46aに常時当接している。矢印左方向側(図面左側)のシート部材38においては、傾斜シール面38Aとは反対側の基端部面38b(弁体と逆側の面)が環状凹部58の底部58aに常時当接している。 As shown in FIG. 3, in the flow path switching valve 10 of the present embodiment, in the seat member 38 on the right side of the arrow (right side in the drawing), the base end surface 38b (valve body) on the opposite side to the inclined seal surface 38A The opposite surface) is always in contact with the bottom 46a of the annular recess 46. In the seat member 38 on the left side of the arrow (left side in the drawing), the base end surface 38b (the surface opposite to the valve body) opposite to the inclined seal surface 38A is always in contact with the bottom 58a of the annular recess 58. There is.
 したがって、シート部材38の基端部面38bを環状凹部46の底部46aに当接させた状態では、Oリング溝48の溝深さと、Oリング溝48の溝底からシート部材38の基端部面38bまでの距離とは同一となる。同様に、シート部材38の基端部面38bを環状凹部58の底部58aに当接させた状態では、Oリング溝48の溝深さと、Oリング溝60の溝底からシート部材38の基端部面38bまでの距離とは同一となる。 Therefore, when the base end surface 38b of the sheet member 38 is in contact with the bottom 46a of the annular recess 46, the groove depth of the O-ring groove 48 and the base end of the sheet member 38 from the groove depth of the O-ring groove 48 are The distance to the surface 38b is the same. Similarly, when the base end surface 38b of the seat member 38 is in contact with the bottom 58a of the annular recess 58, the groove depth of the O-ring groove 48 and the base end of the seat member 38 from the groove depth of the O-ring groove 60 are The distance to the portion 38b is the same.
 このため、シート部材38を弁体16に押し付けるOリング50の弾性力(Oリングの圧縮率)を決めるには、Oリング溝48、及びOリング溝60の溝深さとOリング50の線径の2つの寸法を管理してOリング溝60の圧縮率を決めればよく、部材の寸法管理が容易になる。 Therefore, in order to determine the elastic force (compressibility of the O-ring) of the O-ring 50 that presses the seat member 38 against the valve body 16, the groove depth of the O-ring groove 48 and the O-ring groove 60 and the wire diameter of the O-ring 50 are determined. The compression ratio of the O-ring groove 60 can be determined by managing the two dimensions, which makes it easy to manage the dimensions of the member.
 また、シート部材38の外周面38c(シート部材38の軸線O2の周方向の外周面)は、環状凹部46(58)と当接しないように離間している。このため、シート部材38は軸線O2の周方向から弁本体14やポート部材44の押圧を受けないため部材の寸法管理が容易になるとともに、シート部材38の変形や傾斜シール面38Aの角度の変化を抑えることができる。 Further, the outer circumferential surface 38c of the seat member 38 (the outer circumferential surface in the circumferential direction of the axis O2 of the seat member 38) is spaced apart so as not to come into contact with the annular recess 46 (58). Therefore, the seat member 38 is not subjected to pressure from the valve body 14 or the port member 44 from the circumferential direction of the axis O2, making it easy to manage the dimensions of the member, as well as deforming the seat member 38 and changing the angle of the inclined sealing surface 38A. can be suppressed.
 次に、本実施形態の流路切換弁10において、使用状態での最低温度時における弁体16とシート部材38との間の押圧力と、使用状態での最高温度時における弁体16とシート部材38との間の押圧力とが変わり難いメカニズムを説明する。 Next, in the flow path switching valve 10 of this embodiment, the pressing force between the valve body 16 and the seat member 38 at the lowest temperature in the use state, and the pressure force between the valve body 16 and the seat member 38 at the highest temperature in the use state. The mechanism by which the pressing force between the member 38 and the member 38 is difficult to change will be explained.
 シート部材38は圧縮されたOリング50により弁体16側に付勢され、シート部材38の傾斜シール面38Aが弁体16の外周に接触している。 The seat member 38 is urged toward the valve body 16 by the compressed O-ring 50, and the inclined sealing surface 38A of the seat member 38 is in contact with the outer periphery of the valve body 16.
 なお、本実施形態では、シート部材38、及びOリング50を構成する材料の線膨張係数が、弁体16、及び弁本体14を構成する材料の線膨張係数よりも相対的に大きい場合を前提としている。 In this embodiment, it is assumed that the coefficient of linear expansion of the material forming the seat member 38 and the O-ring 50 is relatively larger than the coefficient of linear expansion of the material forming the valve body 16 and the valve body 14. It is said that
 本実施形態のように、シート部材38の外周部と弁室12の内周部との間に隙間を設け、シート部材38の径方向への膨張を妨げないように構成すると、シート部材38が温度上昇した際に、シート部材38の径が大きくなり傾斜シール面38Aが弁本体14からシート部材38の径方向へ離れる方向となり、弁体16を押圧する押圧力としては減少する方向となる。 As in this embodiment, if a gap is provided between the outer circumference of the seat member 38 and the inner circumference of the valve chamber 12 so that the expansion of the seat member 38 in the radial direction is not hindered, the seat member 38 When the temperature rises, the diameter of the seat member 38 increases, the inclined sealing surface 38A moves away from the valve body 14 in the radial direction of the seat member 38, and the pressing force that presses the valve body 16 decreases.
 即ち、シート部材38の厚み方向(軸方向)の寸法だけでなく、シート部材38の径方向の寸法も、シート部材38の弁体16への押圧力に関係するため、弁体16に当接する傾斜シール面38Aの角度θを適切な角度に設定すると、温度変化が生じても(言い換えれば、シート部材38が温度変化で寸法変化しても)、シート部材38の膨張に起因する弁体16を押圧する力が変化しないようにできる。 That is, not only the dimension in the thickness direction (axial direction) of the seat member 38 but also the dimension in the radial direction of the seat member 38 are related to the pressing force of the seat member 38 on the valve body 16. If the angle θ of the inclined sealing surface 38A is set to an appropriate angle, even if a temperature change occurs (in other words, even if the seat member 38 changes dimensions due to a temperature change), the valve body 16 due to the expansion of the seat member 38 will It is possible to prevent the pressing force from changing.
 本実施形態では、各構成部材の線膨張係数を考慮し、上述したa、b、d、及びeの値をそれぞれ決定し、温度変化によって使用状態での最低温度時における弁体16とシート部材38との間の押圧力と、使用状態での最高温度時における弁体16とシート部材38との間の押圧力とが変わらない、即ち、温度変化によって弁体16とシート部材38との間の押圧力が変わらない傾斜シール面38Aの角度θを求めた。本実施形態の流路切換弁10では、求められた角度θが57.9°であった。なお、この角度θは、10%以下の誤差は含むものとする(即ち、角度θ=57.9±5.79°)。角度θは、シミュレーションや実験等により求めることもできる。 In this embodiment, the values of a, b, d, and e described above are determined by considering the linear expansion coefficient of each component, and the valve body 16 and the seat member at the lowest temperature in use are determined by temperature changes. 38 and the pressing force between the valve body 16 and the seat member 38 at the highest temperature in use are the same, that is, the pressure between the valve body 16 and the seat member 38 due to temperature change The angle θ of the inclined seal surface 38A at which the pressing force remains unchanged was determined. In the flow path switching valve 10 of this embodiment, the obtained angle θ was 57.9°. Note that this angle θ includes an error of 10% or less (ie, angle θ=57.9±5.79°). The angle θ can also be determined by simulation, experiment, or the like.
 これにより、使用時における最低温度時、及び最高温度時のいずれの場合も、シート部材38は、実質的にOリング50の弾性力のみで弁体16に押し付けられるようになり、弁体16を回転駆動する際に必要とされるトルクが温度の影響を受け難くなり、かつ小さなトルクで弁体16を回転できる流路切換弁10が実現できる。 As a result, the seat member 38 is substantially pressed against the valve body 16 only by the elastic force of the O-ring 50, both at the lowest temperature and at the highest temperature during use. It is possible to realize a flow path switching valve 10 in which the torque required for rotational driving is less affected by temperature, and the valve body 16 can be rotated with a small torque.
 本実施形態の流路切換弁10は、弁体16を駆動するのに必要な回転力が温度上昇に伴って増大することが抑制されるため、回転駆動部18に回転力の大きなものを用いる必要が無くなり、回転力の小さい小型のものを使用することが可能となり、流路切換弁10の小型化を図ることもできる。 The flow path switching valve 10 of this embodiment uses a rotary drive unit 18 with a large rotational force so that the rotational force required to drive the valve body 16 is suppressed from increasing as the temperature rises. This eliminates the need for such a valve, and it becomes possible to use a small valve with low rotational force, and it is also possible to downsize the flow path switching valve 10.
[その他の実施形態]
 以上、本開示の一実施形態について説明したが、本開示は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
[Other embodiments]
Although one embodiment of the present disclosure has been described above, the present disclosure is not limited to the above, and it is of course possible to implement various modifications other than the above without departing from the spirit thereof. It is.
 上記実施形態では、Oリング50を、右側第1壁面12Rに形成したOリング溝48、及びポート部材44に形成したOリング溝60に取り付けて、シート部材38を弁体16に押し付けていたが、本開示はこれに限らず、シート部材38にOリング溝を形成し、シート部材38に形成したOリング溝にOリング50を取り付ける構成としてもよい。 In the above embodiment, the O-ring 50 was attached to the O-ring groove 48 formed in the first right wall surface 12R and the O-ring groove 60 formed in the port member 44, and the seat member 38 was pressed against the valve body 16. However, the present disclosure is not limited to this, and may have a configuration in which an O-ring groove is formed in the sheet member 38 and the O-ring 50 is attached to the O-ring groove formed in the sheet member 38.
 弁本体14に形成される入出口(流入口、流出口)の数や配置構成は、当該流路切換弁10の適用箇所等に応じて、適宜に変更できることは言うまでも無い。上記実施形態では、流路切換弁10として三方弁を例にとって説明したが、例えば、二方弁や、四方以上の切換弁としても良いことは言うまでも無い。 It goes without saying that the number and arrangement of the inlets and outlets (inflow port, outflow port) formed in the valve body 14 can be changed as appropriate depending on the application location of the flow path switching valve 10. In the above embodiment, a three-way valve is used as an example of the flow path switching valve 10, but it goes without saying that a two-way valve or a four-way or more switching valve may also be used.
 また、上記実施形態の流路切換弁10は、車両におけるエンジンルーム内等(エンジン冷却用回路や電子機器冷却用回路等)の流路切換用に使用されるものとしているが、用途はこれに限らず、例えば給湯設備における流路切換用に使用しても良いことは勿論である。 Furthermore, the flow path switching valve 10 of the above embodiment is assumed to be used for flow path switching in the engine compartment of a vehicle (engine cooling circuit, electronic device cooling circuit, etc.); Of course, the present invention is not limited to this, and may be used, for example, for switching channels in hot water supply equipment.
 2022年4月28日に出願された日本国特許出願2022-75459号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-75459 filed on April 28, 2022 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (3)

  1.  内部に弁室が形成されると共に、少なくとも前記弁室の互いに対向する一対の壁面に入出口が開口せしめられる弁本体と、
     前記弁室内に回転自在に配置され、かつ内部に流路が形成されるボール状の弁体と、
     前記弁体と前記入出口との間を封止すべく前記弁体と前記入出口との間に配置され、前記弁体側とは反対側の側面が前記壁面に接触しており、外周面が前記弁本体とは離間している環状のシート部材と、
     前記シート部材の前記弁体側の開口端に形成され、前記シート部材の軸線に沿った断面で見たときに、前記軸線に対して一定の角度θで傾斜し、前記弁体の外周面が接触している傾斜シール面と、
     前記シート部材の前記弁本体側の側面、及び前記弁本体の前記壁面の何れか一方に設けられ、前記シート部材の前記軸線の方向に窪んだ保持溝と、
     前記保持溝に収容され、前記シート部材の前記側面が前記壁面に接触した状態で圧縮され、前記シート部材を前記弁体に押し付ける弾性体と、
     複数の前記入出口の連通状態が前記弁体の前記流路を通じて選択的に切り換えるように前記弁体を回転させる回転駆動部と、
     を備え、
     使用状態での最低温度時における前記弁体と前記シート部材との間の押圧力と使用状態での最高温度時における前記弁体と前記シート部材との間の押圧力とが変わらないように前記角度θの値が決定されている、
     流路切換弁。
    a valve body having a valve chamber formed therein, and at least a pair of opposing walls of the valve chamber having an inlet and an outlet;
    a ball-shaped valve body rotatably disposed within the valve chamber and having a flow path formed therein;
    The valve body is arranged between the valve body and the inlet/outlet to seal the gap between the valve body and the inlet/outlet, the side surface opposite to the valve body side is in contact with the wall surface, and the outer peripheral surface is in contact with the wall surface. an annular seat member spaced apart from the valve body;
    The valve body is formed at the opening end of the seat member on the valve body side, is inclined at a certain angle θ with respect to the axis when viewed in a cross section along the axis of the seat member, and is in contact with the outer peripheral surface of the valve body. with an inclined sealing surface,
    a holding groove provided on either one of the side surface of the seat member on the valve body side and the wall surface of the valve body and recessed in the direction of the axis of the seat member;
    an elastic body accommodated in the holding groove and compressed with the side surface of the sheet member in contact with the wall surface to press the sheet member against the valve body;
    a rotation drive unit that rotates the valve body so that the communication state of the plurality of input and outlet ports is selectively switched through the flow path of the valve body;
    Equipped with
    The pressing force between the valve body and the seat member at the lowest temperature in the use state is the same as the pressing force between the valve body and the seat member at the highest temperature in the use state. The value of angle θ has been determined,
    Flow path switching valve.
  2.  前記弁本体の前記壁面に前記シート部材が配置される環状凹部が設けられ、
     前記シート部材の側部が前記環状凹部の底部と常時接触しており、
     前記保持溝は、前記環状凹部の底部に設けられて前記弾性体が嵌め込まれている、
     請求項1に記載の流路切換弁。
    An annular recess in which the seat member is disposed is provided on the wall surface of the valve body,
    A side portion of the sheet member is always in contact with a bottom portion of the annular recess,
    The holding groove is provided at the bottom of the annular recess and the elastic body is fitted therein.
    The flow path switching valve according to claim 1.
  3.  前記角度θは、57.9±5.79°である、
     請求項1または請求項2に記載の流路切換弁。
    The angle θ is 57.9±5.79°,
    The flow path switching valve according to claim 1 or 2.
PCT/JP2023/015238 2022-04-28 2023-04-14 Flow path switching valve WO2023210415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-075459 2022-04-28
JP2022075459A JP2023164115A (en) 2022-04-28 2022-04-28 Flow passage switching valve

Publications (1)

Publication Number Publication Date
WO2023210415A1 true WO2023210415A1 (en) 2023-11-02

Family

ID=88518554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015238 WO2023210415A1 (en) 2022-04-28 2023-04-14 Flow path switching valve

Country Status (2)

Country Link
JP (1) JP2023164115A (en)
WO (1) WO2023210415A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217215A (en) * 1975-07-30 1977-02-09 Tlv Co Ltd Ball valve
JPH0671975U (en) * 1993-03-23 1994-10-07 株式会社日阪製作所 Ball valve seat
JPH08247306A (en) * 1995-03-15 1996-09-27 Iwamura Kk Valve seat
US6217002B1 (en) * 1998-01-13 2001-04-17 Terry C. Shafer Valve assembly having floating retainer rings
JP2019011867A (en) * 2018-10-24 2019-01-24 株式会社キッツ Trunnion-type ball valve
JP2020063787A (en) * 2018-10-17 2020-04-23 東フロコーポレーション株式会社 Ball valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217215A (en) * 1975-07-30 1977-02-09 Tlv Co Ltd Ball valve
JPH0671975U (en) * 1993-03-23 1994-10-07 株式会社日阪製作所 Ball valve seat
JPH08247306A (en) * 1995-03-15 1996-09-27 Iwamura Kk Valve seat
US6217002B1 (en) * 1998-01-13 2001-04-17 Terry C. Shafer Valve assembly having floating retainer rings
JP2020063787A (en) * 2018-10-17 2020-04-23 東フロコーポレーション株式会社 Ball valve
JP2019011867A (en) * 2018-10-24 2019-01-24 株式会社キッツ Trunnion-type ball valve

Also Published As

Publication number Publication date
JP2023164115A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
CN107366754B (en) Butterfly valve
EP2619489B1 (en) Butterfly valve
KR101738321B1 (en) Ball valve with internal seal arrangement
KR101567739B1 (en) Ball valve having an external seal arrangement
CA2633972A1 (en) Dynamic ball valve sealing device for three-way valves
US20130220445A1 (en) Plug valve with a spring biased plug
JP2023528531A (en) Variable cylinder wall for sealing plug valve
US20190162320A1 (en) Flow control valve
WO2023210415A1 (en) Flow path switching valve
WO2023139881A1 (en) Flow path switch valve
CN115380182A (en) Hard sealing element for plug valve on cylindrical wall
WO2021197117A1 (en) Electric valve and assembly method therefor
JP2018071554A (en) Flow passage selector valve
KR101545223B1 (en) Automotive valve apparatus for vehicles
WO2005036036A1 (en) Two-way ball valve
CN220749119U (en) Valve device
EP3260746B1 (en) Flow control valve
WO2023139882A1 (en) Flow passage switching valve, and flow passage switching valve assembly method
CN220749118U (en) Valve device
US11644112B2 (en) Seal for rotary plug valve
US20240003441A1 (en) Three-way valve for flow rate control and temperature control device
US20230417331A1 (en) Three-way valve for flow rate control and temperature control device
TWM650386U (en) ball valve device
CN112780800A (en) Valve device
JP2574119Y2 (en) Sealing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796158

Country of ref document: EP

Kind code of ref document: A1