WO2022230782A1 - Seal for flow control valve and flow control valve device - Google Patents

Seal for flow control valve and flow control valve device Download PDF

Info

Publication number
WO2022230782A1
WO2022230782A1 PCT/JP2022/018624 JP2022018624W WO2022230782A1 WO 2022230782 A1 WO2022230782 A1 WO 2022230782A1 JP 2022018624 W JP2022018624 W JP 2022018624W WO 2022230782 A1 WO2022230782 A1 WO 2022230782A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
rotor
control valve
flow control
resin
Prior art date
Application number
PCT/JP2022/018624
Other languages
French (fr)
Japanese (ja)
Inventor
健 安田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022230782A1 publication Critical patent/WO2022230782A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/04Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/06Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfaces; Packings therefor

Definitions

  • the present invention provides a flow control valve seal used in a flow control valve device that adjusts the flow rate and flow path of cooling water for cooling an engine, etc., in order to improve fuel efficiency by increasing the thermal efficiency of automobiles, and It relates to a flow control valve device with the seal.
  • the circulation flow path has a plurality of flow paths such as, for example, a flow path for circulating cooling water to a radiator and a flow path for circulating cooling water to a heater core of an air conditioner.
  • a flow rate control valve device for controlling the flow rate of the cooling water is arranged in this circulation flow path, and the flow rate of the cooling water in each flow path is adjusted by this valve device.
  • Patent Document 1 discloses a valve housing having an inflow portion and an outflow portion, a spherical valve having a valve inflow portion and a valve outflow portion and rotated by a motor, and a An electric water valve is disclosed that includes a sealing member that has a circumferential main lip and a circumferential secondary lip that is concentric with and outside the main lip.
  • a pressure receiving surface facing the water flow direction is formed on the rear side of the main lip of the seal member and upstream in the water flow direction, and a pressing force is generated against the spherical valve.
  • the cooling water that has flowed into the gap reservoir surrounded by the main lip, the auxiliary lip, and the spherical valve slightly reduces the force with which the main lip presses the spherical valve against the water pressure that flows into the spherical valve from the inflow portion. It is supposed that the spherical valve can be rotated with a slight force.
  • Patent Document 2 discloses a rotary valve that uses a cylindrical sealing member that contacts the outer surface of the rotor.
  • the tip abutting portion of the seal member is cylindrical and curved along the outer peripheral surface of the rotor.
  • the tip contact part has an inner curved part that narrows inward toward the tip side and curves so as to be folded back, and an outer side that expands outward toward the tip side and curves so as to be folded back. It has at least one curved portion.
  • the inner curved portion and the outer curved portion of the seal member function as springs, and the tip contact portion is pressed against the outer peripheral surface of the rotor.
  • Patent Document 1 proposes an annular seal having a main lip and an auxiliary lip. The accumulation of water allows the spherical valve to rotate with a slight force. Further, Patent Document 2 proposes an annular seal with a curved tip abutment portion, which is said to function as a spring and press the tip abutment portion against the outer peripheral surface of the rotor.
  • Patent Document 2 if the tip contact portion (particularly the inner contact portion) is short, the area of the pressure-receiving surface on which the pressure of the cooling water acts is narrowed, so there is a risk that the amount of leakage will increase. On the other hand, if the tip abutment portion (especially the inner abutment portion) is long, the area of the pressure-receiving surface becomes large, so the pressing force on the rotor increases, resulting in high friction. If the thickness is large, the pressing force on the rotor increases, and it is thought that the friction becomes high.
  • the present invention has been made in view of such circumstances, and provides a flow control valve seal that can be easily and inexpensively manufactured and has excellent low leakage and low friction properties, and a flow control valve device equipped with the seal. intended to
  • a flow control valve seal (hereinafter also simply referred to as "seal") of the present invention includes a housing having an introduction portion for receiving cooling water and a discharge portion for sending out cooling water; Alternatively, it is used in a flow control valve device that has a cylindrical outer peripheral surface and an opening that communicates from the outer peripheral surface to the inner peripheral surface, and is provided with a resin rotor that rotates with respect to the housing.
  • An annular resin-made flow control valve seal provided between the rotor and the introduction portion or the discharge portion and slidingly contacting the outer peripheral surface of the rotor, wherein the flow control valve seal has an axial direction has a substantially L-shaped cross-section, one of the two sides forming the substantially L-shape forms a tubular portion, and the other side forms a rotor-side end of the tubular portion d 1 is the inner diameter of the flow control valve seal, d 2 is the inner diameter of the opening, and d 2 is the inner diameter of the seal. It is characterized by satisfying a relational expression of (d 2 -d 1 )/2 ⁇ L, where L is the radial length of the lip portion.
  • the seal lip portion is characterized in that it has a convex projection on the seal surface that is in sliding contact with the outer peripheral surface of the rotor.
  • the flow control valve seal is characterized in that it is attached to the rotor-side end face of the cylindrical introduction portion or the discharge portion.
  • the flow control valve seal is characterized by being an injection-molded body of a resin composition having a base resin of injection-moldable fluororesin.
  • the resin composition is characterized by containing 3% to 30% by volume of a non-fibrous filler with respect to the entire resin composition, the balance being the fluororesin, and containing no fibrous filler.
  • a flow control valve device (hereinafter also simply referred to as a "valve device”) of the present invention includes a housing having an introduction portion for receiving cooling water and a discharge portion for sending out cooling water; Alternatively, a rotor made of resin having a cylindrical outer peripheral surface and an opening communicating from the outer peripheral surface to the inner peripheral surface and rotating with respect to the housing; A flow control valve device provided between the discharge part and an annular flow control valve seal that slides on the outer peripheral surface of the rotor, wherein the flow control valve seal is made of fluororesin as a base resin.
  • the rotor is a molded body made of a resin composition whose base resin is different from that of the flow control valve seal, and the flow control valve seal has an axial cross-sectional shape of approximately L.
  • One of the two sides forming the substantially L shape forms a tubular portion, and the other side extends from the rotor-side end of the tubular portion toward the inner diameter side.
  • a seal lip portion that extends and is in sliding contact with the outer peripheral surface of the rotor is formed. It is characterized by satisfying the relational expression of (d 2 -d 1 )/2 ⁇ L, where L is the length.
  • the flow control valve seal of the present invention has a substantially L-shaped axial cross section and a relatively simple structure, it can be manufactured easily and inexpensively by injection molding or the like.
  • the two sides of the substantially L-shaped seal form a cylindrical portion and a seal lip portion, respectively.
  • the relational expression (d 2 -d 1 )/2 ⁇ L is satisfied.
  • the seal lip portion has a convex projection on the seal surface that is in sliding contact with the outer peripheral surface of the rotor, even if the seal lip portion is worn, the contact area with the outer peripheral surface of the rotor does not increase easily, and the rotational torque increases. can be suitably suppressed.
  • the flow control valve seal is an injection-molded body of a resin composition having an injection-moldable fluororesin as a base resin, and the resin composition further contains 3% to 30% by volume of a non-fibrous filler, Since the remainder is fluororesin and does not contain a fibrous filler, even if the mating material with which the seal contacts is a rotor made of resin, the rotor is less likely to be worn and damaged, resulting in further excellent low friction and low wear properties.
  • the flow control valve device of the present invention includes the flow control valve seal of the present invention, it is excellent in low leakage. Furthermore, since the flow control valve seal is a molded body made of a fluororesin composition, and the rotor, which is the mating material, is a molded body made of a resin composition having a different base resin from the flow control valve seal, The sliding occurs between resin materials different from the rotor. Therefore, it is possible to prevent an increase in wear due to a high friction coefficient, which is a concern when the same resin materials slide against each other, and obtain low friction and low wear properties.
  • FIG. 4 is a cross-sectional view of the essential parts of the flow control valve device of the present invention when the valve is opened; 1 is a cross-sectional view showing an example of a flow control valve seal of the present invention; FIG. It is the figure which showed the pressure-receiving surface by cooling water. FIG. 4 is a cross-sectional view showing another example of the flow control valve seal of the present invention;
  • the valve device 1 includes a housing 2, a rotating shaft 3 rotatably supported with respect to the housing 2, and a rotor 4 housed in the housing 2 and rotating integrally with the rotating shaft 3. , and a seal 6 slidably contacting the outer peripheral surface 4 a of the rotor 4 .
  • the housing 2 is provided with a tubular introduction portion 5 for receiving cooling water from the engine and a tubular discharge portion (not shown) for sending the cooling water to each device such as a radiator.
  • a fixed seal such as an O-ring is provided between the introduction portion 5 and the housing 2 .
  • FIG. 1 is a cross-sectional view of the main part of the valve device 1 on the inlet side.
  • the rotating shaft 3 is connected to a motor (not shown).
  • the seal 6 is attached to the end face of the introduction portion 5 on the rotor 4 side. More specifically, the seal 6 has a cylindrical portion 6a fixed to a circumferential groove 5a provided in the inner diameter side edge of the end face. In this case, the seal 6 is supported by the introduction portion 5 from the outer diameter side. The seal 6 may be press-fitted into the circumferential groove 5a. By press-fitting the seal 6, the seal 6 and the introduction portion 5 can be firmly coupled.
  • a seal lip portion 6b of the seal 6 is in contact with the outer peripheral surface 4a of the rotor.
  • the inner diameter dimension of the seal 6 is d 1
  • the inner diameter dimension of the rotor opening 4b of the rotor 4 is d 2
  • the radial length of the seal lip portion 6b is L
  • the rotor 4 is a spherical rotating rotor having a hollow inside, and the outer peripheral surface 4a that comes into sliding contact with the seal 6 is formed in a convex spherical shape.
  • the rotor 4 has a rotor opening 4b penetrating inside and outside, and the seal 6 has a seal opening penetrating in the center.
  • the central axis of the rotor opening 4b and the central axis of the seal 6 are aligned, and the shape of the rotor opening 4b is symmetrical with respect to the central axis.
  • the rotating shaft 3 rotates in the direction of the arrow, and the rotor 4 also rotates accordingly.
  • the rotor 4 is made of resin, and is, for example, an injection-molded body of a resin composition with a thermoplastic resin as a base resin.
  • the thermoplastic resin is not particularly limited, but it is preferable to use a thermoplastic resin other than fluororesin.
  • a thermoplastic resin other than fluororesin for example, polyphenylene sulfide (PPS) resin, polyamide 66 (PA66) resin, semi-aromatic PA resin, polyether ether ketone (PEEK) resin or the like can be used.
  • PPS polyphenylene sulfide
  • PA66 polyamide 66
  • PA resin polyamide 66
  • PEEK polyether ether ketone
  • PES resin polyamide 9T resin and polyamide 10T resin having low water absorption are preferred.
  • PPS resin is more preferable because it has low water absorbency, excellent heat resistance and alkali resistance, and is inexpensive.
  • the resin composition used for the rotor 4 preferably contains glass fibers in order to obtain high strength, high elasticity, and high dimensional accuracy.
  • a PPS resin compounded with glass fibers is more preferable because it is excellent in high strength and high elasticity.
  • the blending amount is 10% by mass to 50% by mass, preferably 20% by mass to 40% by mass, based on the total resin composition. If the amount of glass fiber is more than the predetermined amount, the seal is likely to be worn and damaged, and if it is less, it becomes difficult to obtain sufficient strength. Further, in order to eliminate the anisotropy of the molding shrinkage rate and improve the dimensional accuracy, the resin composition may contain a glass fiber and a non-fibrous filler in combination.
  • the introduction part 5 is made of resin, and is, for example, a cylindrical injection-molded body of a resin composition using a thermoplastic resin as a base resin.
  • the thermoplastic resin is not particularly limited, for example, PPS resin, PA66 resin, semi-aromatic PA resin, PEEK resin, etc. can be used.
  • As the semi-aromatic PA resin polyamide 9T resin and polyamide 10T resin having low water absorption are preferred.
  • PPS resin is more preferable because it has low water absorbency, excellent heat resistance and alkali resistance, and is inexpensive.
  • the seal 6 may be attached by being pressed against the rotor 4 via a spring. By using the biasing force of the spring, it becomes easier to maintain the low leak property.
  • the end face on the side (lower side in the drawing) where the seal 6 is not attached may be pressed by a coil spring.
  • a metal ring having a flat portion for mounting the seal 6 may be installed inside the introduction portion 5, and the seal 6 mounted on the metal ring may be pressed against the rotor 4 via a coil spring.
  • FIG. 1 shows the configuration on the side of the introduction part
  • the basic configuration on the side of the discharge part is the same.
  • a rotor 4 and a cylindrical discharge portion (not shown) are provided in the housing 2, and a seal made of the same shape and material as the seal 6 is attached to the discharge portion.
  • the seal lip portion of this seal has, for example, a convex projection, which contacts the outer peripheral surface 4a of the rotor 4.
  • the discharge portion is provided in the housing 2 at a position (for example, the position opposite to the introduction portion 5 in FIG. 1) spaced apart from the introduction portion 5 in the circumferential direction of the rotor 4 by a predetermined distance.
  • FIG. 2 is an axial cross-sectional view of the seal.
  • the seal 6 is an annular member and has a substantially L-shaped cross section. Of the two substantially L-shaped side portions, one side portion forms the cylindrical portion 6a, and the other side portion is a seal lip portion extending from one side end of the cylindrical portion 6a toward the inner diameter side. 6b.
  • the tubular portion 6a is an edge on the outer diameter side.
  • the seal lip portion 6b is arranged on the rotor side and comes into sliding contact with the outer peripheral surface of the rotor (see FIG. 1).
  • the seal lip portion 6b extends while being inclined inward in the axial direction with respect to a plane perpendicular to the axial direction of the seal.
  • the seal lip portion 6b extends so that the internal angle of the L shape (the angle formed by the two sides) is an acute angle. This angle is, for example, between 50° and 80°. Since the seal lip portion 6b is inclined and extended in this manner, it can easily follow the outer peripheral surface of the rotor and can be easily brought into close contact with the rotor.
  • the surface of the seal lip portion 6b on the rotor side, that is, the seal surface may be an inclined plane (linear in cross section) as shown in FIG. arc).
  • a convex projection 6c is provided on the tip side of the sealing surface of the seal lip portion 6b.
  • the projection 6c is formed continuously over the entire circumference of the seal.
  • the inner diameter dimension d1 of the seal 6 is the dimension of the seal opening, specifically the distance between the tips of the opposing seal lip portions 6b. Further, the radial length L of the seal lip portion 6b is the distance in the seal radial direction from the inner peripheral surface of the cylindrical portion 6a to the tip portion of the seal lip portion 6b.
  • FIG. 3 is an enlarged view of the vicinity of the sliding contact portion between the seal and the rotor shown in FIG.
  • the seal lip portion 6b When cooling water flows in the flow control valve device, fluid pressure acts on the seal lip portion 6b.
  • the area of the pressure receiving surface S1 of the seal lip portion 6b on the side opposite to the rotor is larger than the area of the pressure receiving surface S2 on the rotor 4 side. will also grow. Therefore, since the seal lip portion 6b can be easily pressed against the rotor 4, the sealing performance can be improved.
  • the size relationship between the inner diameter dimension d1 of the seal 6 and the inner diameter dimension d2 of the rotor opening is not particularly limited, and may be d2>d1 ( see FIG . 3 ) or d2 ⁇ d1 . good.
  • d 2 ⁇ d 1 the inner peripheral surface of the rotor opening is located radially inward of the tip of the seal lip portion 6 b, and the area of the pressure receiving surface S 2 on the rotor 4 side becomes zero. .
  • the sealing performance is excellent, the rotational torque when the rotor 4 rotates is greater than in the case of d 2 >d 1 . Therefore, it is more preferable that 0 ⁇ (d 2 ⁇ d 1 )/2 ⁇ L/2 from the viewpoint of compatibility between rotational torque and sealing performance.
  • the seal lip portion 6b has a convex protrusion 6c on the sealing surface.
  • the contact area is less likely to increase.
  • the rotational torque when the rotor 4 rotates can be reduced.
  • the shape of the protrusion 6c is not limited, but the protrusion height h is preferably 0.1 mm to 2 mm, more preferably 0.5 mm to 2 mm. If the projection height h is less than 0.1 mm, the contact area tends to increase early due to wear of the projections 6c, and the rotational torque tends to increase when the rotor 4 rotates. Moreover, it is preferable that the radial width of the protrusion 6c does not exceed the lip length L, as shown in FIG.
  • the thickness of the seal lip portion 6b is preferably 0.3 mm to 2 mm excluding the portion where the protrusion 6c is formed. If it is less than 0.3 mm, short shots are likely to occur when the seal 6 is injection molded. If it exceeds 2 mm, the rigidity of the seal lip portion 6b increases, and the seal lip portion 6b is less likely to be pressed by the rotor 4 when the fluid pressure of the cooling water acts. In addition, as shown in FIG. 3, in the seal lip portion 6b, the thickness of the portion where the projection 6c is formed is larger than the thickness of the portion where the projection 6c is not formed. In order to prevent the seal lip portion 6b of the seal 6 from being caught in the rotor opening when the rotor 4 rotates, the edge of the seal opening may be chamfered or rounded.
  • the thickness of the tubular portion 6a may be larger than the thickness of the seal lip portion 6b (excluding the portion where the projection 6c is formed).
  • FIG. 4 shows another example of the seal of the present invention.
  • the seal 7 in FIG. 4 has a substantially L-shaped cross-section, and one side of the two substantially L-shaped sides forms a tubular portion 7a, and the other side extends from the tubular portion 7a.
  • a seal lip portion 7b extending toward the inner diameter side is formed so as to reduce the diameter.
  • the seal lip portion 7b of the seal 7 of FIG. 4 is not formed with a projection.
  • the seal lip portion 7b extends toward the inner diameter side with a substantially constant thickness (for example, 0.3 mm to 2 mm). The thickness of the seal lip portion 7b may be changed so as to decrease continuously or stepwise from the outer diameter side to the inner diameter side.
  • the rotor When opening and closing the valve device, the rotor rotates while the seal is pressed. Since the seal is fixed and the seal surface is always in sliding contact with the outer peripheral surface of the rotor, wear progresses more easily than the outer peripheral surface of the rotor. In addition, since the seal needs to be in close contact with the curved surface of the rotor, it is required to have appropriate deformability. Furthermore, since the cooling water generally uses an aqueous solution (antifreeze) with a pH of 7 to 11, the main component of which is ethylene glycol, etc., the seal 6 that comes into contact with the cooling water has alkali resistance and low water absorption. Desired.
  • the flow control valve seal of the present invention is a molded body of a resin composition.
  • the base resin of the resin composition is not particularly limited, it is preferable to use a fluororesin.
  • a fluororesin composition having a fluororesin as a base resin has low elasticity and low hardness, so that it is easily deformed along the curved (spherical or cylindrical) outer peripheral surface of a rotor made of resin, making it easy to seal.
  • fluororesin is excellent in alkali resistance and low water absorbency, and deterioration of the resin can be suppressed even in an environment in which it comes into contact with cooling water. As a result, it can be manufactured at a low cost, and the rotor with which it is in sliding contact is less likely to be worn and damaged, and is excellent in low leakage and low friction properties.
  • the fluororesin composition preferably contains a non-fibrous filler and does not contain a fibrous filler. As a result, the resin rotor, which is the mating material, is less likely to be worn and damaged, and low friction and low wear characteristics can be obtained.
  • fluorine resins examples include tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) resin, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, tetrafluoroethylene-ethylene copolymer (ETFE) resin, poly Tetrafluoroethylene (PTFE) resin or the like can be used.
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • PTFE poly Tetrafluoroethylene
  • the raw materials are dry-mixed with a Henschel mixer, ball mixer, ribbon blender, Loedige mixer, etc., and then biaxially extruded. After melt kneading with a melt extruder such as a machine to obtain molding pellets, they can be molded by injection molding.
  • Fillers include carbon fiber, graphite, PTFE resin, inorganic substances (mica, talc, calcium carbonate, etc.), whiskers (calcium carbonate, potassium titanate, etc.).
  • inorganic substances mica, talc, calcium carbonate, etc.
  • whiskers calcium carbonate, potassium titanate, etc.
  • the non-fibrous filler may be carbon fiber, glass fiber, whisker, or any other fibrous filler having an aspect ratio, and examples thereof include amorphous granular, spherical, scale-like, and plate-like fillers. Among these, granular and spherical fillers having no anisotropy are preferred.
  • Graphite is preferably used as the non-fibrous filler. Graphite has the effect of imparting low friction and low wear properties in cooling water. Although scaly, granular, and spherical graphite can be used, it is more preferable to use granular graphite or spherical graphite, which does not increase the elastic modulus of the fluororesin composition. Although the average particle size of graphite is not limited, it is preferably 3 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m. If it exceeds 50 ⁇ m, the tensile elongation properties of the fluororesin composition are lowered.
  • the average particle size can be measured, for example, using a particle size distribution measuring device using a laser light scattering method.
  • a seal made of the above-described fluororesin composition in which graphite is blended with the base resin is less likely to wear and damage the resin-made rotor, and a stable sealing performance can be obtained over a long period of time.
  • it since it has excellent alkali resistance, it can be used for a long period of time without deterioration.
  • PTFE resin when PFA resin, FEP resin, or ETFE resin, which is a molten fluororesin, is used as the base resin of the fluororesin composition, PTFE resin may be blended as a filler.
  • the average particle size of the PTFE resin is not particularly limited, it is preferably 10 ⁇ m to 50 ⁇ m.
  • additives for resin may be added to the fluororesin composition to the extent that the effects of the present invention are not impaired.
  • the additive include friction property improvers such as boron nitride, molybdenum disulfide and tungsten disulfide, and coloring agents such as carbon powder, iron oxide and titanium oxide.
  • the resin composition used for the seal of the present invention contains 70% to 97% by volume of the base resin described above with respect to the entire resin composition.
  • a filler is added to the resin composition, it is preferable to use a composition in which the filler is 3% to 30% by volume and the balance is a base resin, and the filler is 5% to 20% by volume and the balance is a fluororesin. things are more preferred.
  • the filler it is preferable to use a non-fibrous filler. If the filler content exceeds 30% by volume, the tensile elongation properties of the fluororesin composition may deteriorate.
  • the seal for the flow control valve is a molding of a fluororesin composition
  • the rotor is a molding of a resin composition made of a base resin different from that of the seal. It becomes sliding between different resin materials. Therefore, it is possible to prevent an increase in wear due to a high coefficient of friction that is assumed when the same resin materials slide against each other, and good low friction and low wear properties can be obtained.
  • Graphite Japan Graphite Industry Co., Ltd.: ACP average particle size: 24 ⁇ m
  • a test jig simulating a state in which the various seals obtained above were pressed against a spherical rotor (PPS resin composition containing 40% by mass of glass fiber) was prepared. Cooling water was passed through this test jig to conduct a seal leak test.
  • the cooling water used in the test is automobile engine cooling water, the main component of which is ethylene glycol.
  • Table 1 shows the conditions of the leak test. Moreover, the test results are collectively shown in Table 2.
  • Rotor ⁇ 60 (outer diameter), surface roughness Ra1 ⁇ m
  • Seal ⁇ 23 (outer diameter) x ⁇ 15 (inner diameter d 1 ) x 2.5 mm (height)
  • Thickness of seal lip part 0.8mm (excluding the part where protrusions are formed)
  • Protrusion height 0.2 mm (in the case of seal shape in Fig. 2)
  • the flow control valve seal of the present invention can be easily and inexpensively produced by injection molding or the like, and can be widely used for flow control valve seals excellent in low leakage and low friction properties, and flow control valve devices equipped with such seals. .
  • valve device 2 housing 3 rotating shaft 4 rotor 5 introduction portion 6 seal 7 seal

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Taps Or Cocks (AREA)

Abstract

To provide a seal for a flow control valve and a flow control valve device provided with the seal such that the seal can be easily and inexpensively manufactured with low leakage and low friction. A seal 6 is an annular seal in sliding contact with an outer surface 4a of a rotor 4, the seal 6 being used for a valve device 1 comprising a housing 2 having an introduction portion 5 and the resin rotor 4 that is provided in the housing 2, has the spherical outer surface 4a and a rotor opening 4b, and rotates with respect to the housing 2. The seal 6 is substantially L-shaped in cross section in the axial direction. One of two side portions forming the substantially L-shaped seal forms a cylindrical portion 6a and the other side portion forms a seal lip portion 6b that extends inward from the rotor-side end of the cylindrical portion 6a and is in sliding contact with the outer surface 4a of the rotor 4. A relational expression (d2 - d1)/2 < L is satisfied where d1 is the inside diameter of the seal 6, d2 is the inside diameter of the rotor opening 4b, and L is the length of the seal lip portion 6b in a radial direction.

Description

流量制御バルブ用シールおよび流量制御バルブ装置Seals for flow control valves and flow control valve devices
 本発明は、自動車の熱効率を高めることで低燃費化を図るために、エンジンなどを冷却するための冷却水の流量および流路を調整する流量制御バルブ装置に用いられる流量制御バルブ用シール、およびそのシールを備える流量制御バルブ装置に関する。 The present invention provides a flow control valve seal used in a flow control valve device that adjusts the flow rate and flow path of cooling water for cooling an engine, etc., in order to improve fuel efficiency by increasing the thermal efficiency of automobiles, and It relates to a flow control valve device with the seal.
 従来、自動車には、冷却水を循環させてエンジンなどを冷却するための循環流路が設けられている。循環流路は、例えば、ラジエータに冷却水を循環させる流路や、エアコンのヒータコアに冷却水を循環させる流路など複数の流路を有する。この循環流路内には、冷却水の流量を制御する流量制御バルブ装置が配置され、このバルブ装置によって、各流路の冷却水の流量などが調整される。 Conventionally, automobiles are provided with circulation channels for circulating cooling water to cool the engine. The circulation flow path has a plurality of flow paths such as, for example, a flow path for circulating cooling water to a radiator and a flow path for circulating cooling water to a heater core of an air conditioner. A flow rate control valve device for controlling the flow rate of the cooling water is arranged in this circulation flow path, and the flow rate of the cooling water in each flow path is adjusted by this valve device.
 流量制御バルブ装置として、例えば特許文献1には、流入部と流出部とを有するバルブハウジングと、弁流入部と弁流出部とを有し且つモータにて回動する球状弁と、内側に位置する円周状の主リップと該主リップと同心円で且つ外側に位置する円周状の副リップとを有するシール部材とを具備した電動ウォータバルブが開示されている。この電動ウォータバルブにおいて、シール部材の主リップの背面側で且つ水流方向上流に水流方向へ対向する受圧面が形成され、球状弁に対する押圧力が発生するとしている。また、主リップ、副リップ、球状弁に囲まれた空隙溜り部に流入した冷却水が、流入部から球状弁内に流入する水圧に抗して主リップが球状弁を押圧する力を僅かに減少させ、球状弁は僅かな力で回動可能となるとしている。 As a flow control valve device, for example, Patent Document 1 discloses a valve housing having an inflow portion and an outflow portion, a spherical valve having a valve inflow portion and a valve outflow portion and rotated by a motor, and a An electric water valve is disclosed that includes a sealing member that has a circumferential main lip and a circumferential secondary lip that is concentric with and outside the main lip. In this electric water valve, a pressure receiving surface facing the water flow direction is formed on the rear side of the main lip of the seal member and upstream in the water flow direction, and a pressing force is generated against the spherical valve. In addition, the cooling water that has flowed into the gap reservoir surrounded by the main lip, the auxiliary lip, and the spherical valve slightly reduces the force with which the main lip presses the spherical valve against the water pressure that flows into the spherical valve from the inflow portion. It is supposed that the spherical valve can be rotated with a slight force.
 特許文献2には、ロータの外面に当接する筒状のシール部材を用いたロータリ式バルブが開示されている。該シール部材の先端当接部は、筒状でかつロータの外周面に沿った湾曲形状にされている。さらに、この先端当接部は、先端側に向かうにつれて内側に狭まり、かつ、折り返されるように湾曲する内側湾曲部、および、先端側に向かうにつれて外側に広がり、かつ、折り返されるように湾曲する外側湾曲部の少なくともいずれかを有している。シール部材の内側湾曲部や外側湾曲部はバネとして機能し、先端当接部がロータの外周面に押し付けられる。 Patent Document 2 discloses a rotary valve that uses a cylindrical sealing member that contacts the outer surface of the rotor. The tip abutting portion of the seal member is cylindrical and curved along the outer peripheral surface of the rotor. Furthermore, the tip contact part has an inner curved part that narrows inward toward the tip side and curves so as to be folded back, and an outer side that expands outward toward the tip side and curves so as to be folded back. It has at least one curved portion. The inner curved portion and the outer curved portion of the seal member function as springs, and the tip contact portion is pressed against the outer peripheral surface of the rotor.
特開2016-188693号公報JP 2016-188693 A 特開2015-218775号公報JP 2015-218775 A
 近年、自動車の低燃費規制が厳しくなる中で、熱効率を高めることで低燃費化を図るために、エンジンなどを冷却するための冷却水の流量および流路を調整する流量制御バルブ装置の搭載が進められている。この装置に使用される環状シールには、低リーク化のほか、消費電力を低減するための低摩擦化、耐久性向上、低コスト化などが要求されている。上記のような流量制御バルブ装置の環状シールとして、特許文献1では主リップと副リップとを有する環状シールが提案されており、主リップ、副リップ、球状弁に囲まれた空隙溜り部に冷却水が溜まることにより、球状弁を僅かな力で回動可能にしている。また、特許文献2では先端当接部が湾曲した環状シールが提案されており、この湾曲部がバネとして機能し、先端当接部がロータの外周面に押し付けられるとしている。 In recent years, as fuel efficiency regulations for automobiles have become stricter, in order to improve fuel efficiency by increasing thermal efficiency, the installation of a flow control valve device that adjusts the flow rate and flow path of cooling water for cooling the engine etc. is becoming popular. is underway. Annular seals used in these devices are required to have low leakage, low friction to reduce power consumption, improved durability, and low cost. As an annular seal for the flow control valve device as described above, Patent Document 1 proposes an annular seal having a main lip and an auxiliary lip. The accumulation of water allows the spherical valve to rotate with a slight force. Further, Patent Document 2 proposes an annular seal with a curved tip abutment portion, which is said to function as a spring and press the tip abutment portion against the outer peripheral surface of the rotor.
 特許文献1および特許文献2の環状シールには、低リーク化、低摩擦化の点で、リップまたは先端当接部の寸法について検討の余地があると考えられる。特許文献1では、主リップが短いと、冷却水の圧力が作用する受圧面の面積が狭くなるため、リーク量が増加するおそれがある。一方で、主リップが長いと受圧面の面積が広くなるため、主リップのロータへの押圧力が大きくなり、高摩擦になると考えられ、また、主リップの厚さが大きいとロータへの押圧力が増加し、高摩擦になると考えられる。  In the annular seals of Patent Documents 1 and 2, it is considered that the dimensions of the lip or tip contact portion need to be considered in terms of low leakage and low friction. In Patent Document 1, if the main lip is short, the area of the pressure-receiving surface on which the pressure of the cooling water acts is narrowed, so there is a risk that the amount of leakage will increase. On the other hand, if the main lip is long, the area of the pressure-receiving surface will be large, so the main lip's pressing force on the rotor will increase, leading to high friction. It is believed that the pressure increases, resulting in high friction.
 特許文献2では、先端当接部(特に内側当接部)が短いと、冷却水の圧力が作用する受圧面の面積が狭くなるため、リーク量が増加するおそれがある。一方で、先端当接部(特に内側当接部)が長いと、受圧面の面積が広くなるため、ロータへの押圧力が大きくなり、高摩擦になると考えられ、また、先端当接部の厚さが大きいとロータへの押圧力が増加し、高摩擦になると考えられる。 In Patent Document 2, if the tip contact portion (particularly the inner contact portion) is short, the area of the pressure-receiving surface on which the pressure of the cooling water acts is narrowed, so there is a risk that the amount of leakage will increase. On the other hand, if the tip abutment portion (especially the inner abutment portion) is long, the area of the pressure-receiving surface becomes large, so the pressing force on the rotor increases, resulting in high friction. If the thickness is large, the pressing force on the rotor increases, and it is thought that the friction becomes high.
 また、特許文献1および特許文献2の環状シールは構造が複雑であり、樹脂成形が比較的困難である。また、複雑な構造から高コストにもなりやすい。 In addition, the annular seals of Patent Documents 1 and 2 have a complicated structure and are relatively difficult to mold with resin. In addition, the complicated structure tends to result in high cost.
 本発明はこのような事情に鑑みてなされたものであり、容易かつ安価に作製できるとともに、低リーク性、低摩擦性に優れる流量制御バルブ用シール、およびそのシールを備える流量制御バルブ装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and provides a flow control valve seal that can be easily and inexpensively manufactured and has excellent low leakage and low friction properties, and a flow control valve device equipped with the seal. intended to
 本発明の流量制御バルブ用シール(以下、単に「シール」ともいう。)は、冷却水を受け入れる導入部、及び、冷却水を送り出す吐出部を有するハウジングと、上記ハウジングの内部に設けられ、球状または円筒状の外周面と、該外周面から内周面に連通する開口部とを有し、上記ハウジングに対して回転する樹脂製のロータとを備える流量制御バルブ装置に用いられ、上記ハウジング内にて上記ロータと上記導入部または上記吐出部との間に設けられ、上記ロータの外周面に摺接する環状の樹脂製の流量制御バルブ用シールであって、上記流量制御バルブ用シールの軸方向の断面形状が略L字であり、該略L字をなす二辺部のうち、一方の辺部は筒状部を形成し、他方の辺部は、上記筒状部のロータ側の端部から内径側に向かって延伸し上記ロータの外周面に摺接するシールリップ部を形成しており、上記流量制御バルブ用シールの内径寸法をd、上記開口部の内径寸法をd、上記シールリップ部の径方向の長さをLとしたとき、(d-d)/2<Lの関係式を満たすことを特徴とする。 A flow control valve seal (hereinafter also simply referred to as "seal") of the present invention includes a housing having an introduction portion for receiving cooling water and a discharge portion for sending out cooling water; Alternatively, it is used in a flow control valve device that has a cylindrical outer peripheral surface and an opening that communicates from the outer peripheral surface to the inner peripheral surface, and is provided with a resin rotor that rotates with respect to the housing. An annular resin-made flow control valve seal provided between the rotor and the introduction portion or the discharge portion and slidingly contacting the outer peripheral surface of the rotor, wherein the flow control valve seal has an axial direction has a substantially L-shaped cross-section, one of the two sides forming the substantially L-shape forms a tubular portion, and the other side forms a rotor-side end of the tubular portion d 1 is the inner diameter of the flow control valve seal, d 2 is the inner diameter of the opening, and d 2 is the inner diameter of the seal. It is characterized by satisfying a relational expression of (d 2 -d 1 )/2<L, where L is the radial length of the lip portion.
 上記シールリップ部は、上記ロータの外周面に摺接するシール面に凸状の突起を有することを特徴とする。 The seal lip portion is characterized in that it has a convex projection on the seal surface that is in sliding contact with the outer peripheral surface of the rotor.
 上記流量制御バルブ用シールは、筒状の上記導入部または上記吐出部のロータ側の端面に装着されることを特徴とする。 The flow control valve seal is characterized in that it is attached to the rotor-side end face of the cylindrical introduction portion or the discharge portion.
 上記流量制御バルブ用シールは、射出成形可能なフッ素樹脂をベース樹脂とする樹脂組成物の射出成形体であることを特徴とする。 The flow control valve seal is characterized by being an injection-molded body of a resin composition having a base resin of injection-moldable fluororesin.
 上記樹脂組成物は、該樹脂組成物全体に対して非繊維状充填材を3体積%~30体積%含み、残部が上記フッ素樹脂であり、繊維状充填材を含まないことを特徴する。 The resin composition is characterized by containing 3% to 30% by volume of a non-fibrous filler with respect to the entire resin composition, the balance being the fluororesin, and containing no fibrous filler.
 本発明の流量制御バルブ装置(以下、単に「バルブ装置」ともいう。)は、冷却水を受け入れる導入部、及び、冷却水を送り出す吐出部を有するハウジングと、上記ハウジングの内部に設けられ、球状または円筒状の外周面と、該外周面から内周面に連通する開口部とを有し、上記ハウジングに対して回転する樹脂製のロータと、上記ハウジング内にて上記ロータと上記導入部または上記吐出部との間に設けられ、上記ロータの外周面に摺接する環状の流量制御バルブ用シールとを備える流量制御バルブ装置であって、上記流量制御バルブ用シールが、フッ素樹脂をベース樹脂とする樹脂組成物の成形体であり、上記ロータが上記流量制御バルブ用シールとはベース樹脂が異なる樹脂組成物からなる成形体であり、上記流量制御バルブ用シールの軸方向の断面形状が略L字であり、該略L字をなす二辺部のうち、一方の辺部は筒状部を形成し、他方の辺部は、上記筒状部のロータ側の端部から内径側に向かって延伸し上記ロータの外周面に摺接するシールリップ部を形成しており、上記流量制御バルブ用シールの内径寸法をd、上記開口部の内径寸法をd、上記シールリップ部の径方向の長さをLとしたとき、(d-d)/2<Lの関係式を満たすことを特徴とする。 A flow control valve device (hereinafter also simply referred to as a "valve device") of the present invention includes a housing having an introduction portion for receiving cooling water and a discharge portion for sending out cooling water; Alternatively, a rotor made of resin having a cylindrical outer peripheral surface and an opening communicating from the outer peripheral surface to the inner peripheral surface and rotating with respect to the housing; A flow control valve device provided between the discharge part and an annular flow control valve seal that slides on the outer peripheral surface of the rotor, wherein the flow control valve seal is made of fluororesin as a base resin. The rotor is a molded body made of a resin composition whose base resin is different from that of the flow control valve seal, and the flow control valve seal has an axial cross-sectional shape of approximately L. One of the two sides forming the substantially L shape forms a tubular portion, and the other side extends from the rotor-side end of the tubular portion toward the inner diameter side. A seal lip portion that extends and is in sliding contact with the outer peripheral surface of the rotor is formed. It is characterized by satisfying the relational expression of (d 2 -d 1 )/2<L, where L is the length.
 本発明の流量制御バルブ用シールは、軸方向の断面形状が略L字で比較的単純な構造であるので、射出成形などによって容易かつ安価に作製することができる。また、上記シールの略L字の二辺部は筒状部とシールリップ部をそれぞれ形成しており、シールの内径寸法をd、開口部の内径をd、シールリップ部の径方向の長さをLとしたとき、(d-d)/2<Lの関係式を満たす。この設計により、冷却水の圧力によって生じる荷重が、シールリップ部のロータ側の面に比べて、反ロータ側の面で大きくなる。その結果、シールリップ部がロータに押し付けられることでシール性が向上し、低リーク性に優れる。 Since the flow control valve seal of the present invention has a substantially L-shaped axial cross section and a relatively simple structure, it can be manufactured easily and inexpensively by injection molding or the like. In addition, the two sides of the substantially L-shaped seal form a cylindrical portion and a seal lip portion, respectively. When the length is L, the relational expression (d 2 -d 1 )/2<L is satisfied. With this design, the load caused by the pressure of the cooling water is greater on the anti-rotor side of the seal lip than on the rotor side. As a result, the seal lip portion is pressed against the rotor, thereby improving the sealing performance and providing excellent low leak performance.
 また、シールリップ部は、ロータの外周面に摺接するシール面に凸状の突起を有するので、シールリップ部が摩耗してもロータの外周面との接触面積が増加しにくく、回転トルクの上昇を好適に抑制できる。 In addition, since the seal lip portion has a convex projection on the seal surface that is in sliding contact with the outer peripheral surface of the rotor, even if the seal lip portion is worn, the contact area with the outer peripheral surface of the rotor does not increase easily, and the rotational torque increases. can be suitably suppressed.
 上記流量制御バルブ用シールは射出成形可能なフッ素樹脂をベース樹脂とする樹脂組成物の射出成形体であり、さらに、該樹脂組成物は非繊維状充填材を3体積%~30体積%含み、残部がフッ素樹脂であり、繊維状充填材を含まないので、シールが接触する相手材が樹脂製のロータであっても、ロータを摩耗損傷させにくく、低摩擦性や低摩耗性に一層優れる。 The flow control valve seal is an injection-molded body of a resin composition having an injection-moldable fluororesin as a base resin, and the resin composition further contains 3% to 30% by volume of a non-fibrous filler, Since the remainder is fluororesin and does not contain a fibrous filler, even if the mating material with which the seal contacts is a rotor made of resin, the rotor is less likely to be worn and damaged, resulting in further excellent low friction and low wear properties.
 本発明の流量制御バルブ装置は、本発明の流量制御バルブ用シールを備えるので、低リーク性に優れる。さらに、流量制御バルブ用シールが、フッ素樹脂組成物からなる成形体であり、相手材であるロータが流量制御バルブ用シールとはベース樹脂の異なる樹脂組成物からなる成形体であるので、シールとロータとは異なる樹脂材同士の摺動になる。そのため、同じ樹脂材同士の摺動において懸念される高摩擦係数による摩耗増大を防止でき、低摩擦性や低摩耗性が得られる。 Since the flow control valve device of the present invention includes the flow control valve seal of the present invention, it is excellent in low leakage. Furthermore, since the flow control valve seal is a molded body made of a fluororesin composition, and the rotor, which is the mating material, is a molded body made of a resin composition having a different base resin from the flow control valve seal, The sliding occurs between resin materials different from the rotor. Therefore, it is possible to prevent an increase in wear due to a high friction coefficient, which is a concern when the same resin materials slide against each other, and obtain low friction and low wear properties.
本発明の流量制御バルブ装置の開弁時における要部断面図である。FIG. 4 is a cross-sectional view of the essential parts of the flow control valve device of the present invention when the valve is opened; 本発明の流量制御バルブ用シールの一例を示す断面図である。1 is a cross-sectional view showing an example of a flow control valve seal of the present invention; FIG. 冷却水による受圧面を示した図である。It is the figure which showed the pressure-receiving surface by cooling water. 本発明の流量制御バルブ用シールの別の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the flow control valve seal of the present invention;
 本発明の流量制御バルブ用シールを適用したバルブ装置の一例を図1に基づいて説明する。図1に示すように、バルブ装置1は、ハウジング2と、ハウジング2に対して回転可能に支持される回転軸3と、ハウジング2内に収納され、回転軸3と一体に回転するロータ4と、ロータ4の外周面4aに摺接するシール6とを備える。ハウジング2には、エンジンからの冷却水を受け入れる筒状の導入部5と、ラジエータなどの各装置へ冷却水を送り出す筒状の吐出部(図示省略)が設けられている。導入部5とハウジング2の間にはOリングなどの固定シールが設けられている。図1は、バルブ装置1の導入部側の要部断面図である。回転軸3はモータ(図示省略)に接続されている。 An example of a valve device to which the flow control valve seal of the present invention is applied will be described based on FIG. As shown in FIG. 1, the valve device 1 includes a housing 2, a rotating shaft 3 rotatably supported with respect to the housing 2, and a rotor 4 housed in the housing 2 and rotating integrally with the rotating shaft 3. , and a seal 6 slidably contacting the outer peripheral surface 4 a of the rotor 4 . The housing 2 is provided with a tubular introduction portion 5 for receiving cooling water from the engine and a tubular discharge portion (not shown) for sending the cooling water to each device such as a radiator. A fixed seal such as an O-ring is provided between the introduction portion 5 and the housing 2 . FIG. 1 is a cross-sectional view of the main part of the valve device 1 on the inlet side. The rotating shaft 3 is connected to a motor (not shown).
 シール6は、導入部5のロータ4側の端面に装着されている。より具体的には、シール6は、上記端面の内径側縁に設けられた円周溝5aに筒状部6aが固定されて装着されている。この場合、シール6は導入部5によって外径側から支持されている。なお、シール6は、この円周溝5aに対して圧入されていてもよい。シール6を圧入することで、シール6と導入部5を強固に結合させることができる。 The seal 6 is attached to the end face of the introduction portion 5 on the rotor 4 side. More specifically, the seal 6 has a cylindrical portion 6a fixed to a circumferential groove 5a provided in the inner diameter side edge of the end face. In this case, the seal 6 is supported by the introduction portion 5 from the outer diameter side. The seal 6 may be press-fitted into the circumferential groove 5a. By press-fitting the seal 6, the seal 6 and the introduction portion 5 can be firmly coupled.
 シール6のシールリップ部6bがロータの外周面4aに接触している。図1において、シール6の内径寸法をd、ロータ4のロータ開口部4bの内径寸法をd、シールリップ部6bの径方向の長さをLとしたとき、(d-d)/2<Lの関係式を満たしている。この関係式およびシール6の構成の詳細については後述する。 A seal lip portion 6b of the seal 6 is in contact with the outer peripheral surface 4a of the rotor. In FIG. 1, when the inner diameter dimension of the seal 6 is d 1 , the inner diameter dimension of the rotor opening 4b of the rotor 4 is d 2 , and the radial length of the seal lip portion 6b is L, then (d 2 -d 1 ) /2<L is satisfied. Details of this relational expression and the configuration of the seal 6 will be described later.
 ロータ4は、内部に中空部を有する球状の回転ロータであり、シール6と摺接する外周面4aは、凸形球面状に形成されている。ロータ4は内外を貫通するロータ開口部4bを有し、シール6は中央部に貫通したシール開口部を有する。図1のバルブ装置1において、ロータ開口部4bの中心軸とシール6の中心軸は一致しており、ロータ開口部4bの形状はその中心軸に対して左右対称に形成されている。回転軸3が矢印の向きに回転し、それに伴ってロータ4も回転する。その回転によって、ロータ開口部4bとシール開口部が連通することで開弁状態となり、ロータ開口部4bとシール開口部が非連通になることで閉弁状態となる。図1の開弁状態では、黒矢印の向きに流れる冷却水が、ロータ4内へ供給される。このように、ロータ4を回動操作することで、バルブ装置1の開弁および閉弁が制御でき、それによって冷却水の流量調整や分配調整が行われる。 The rotor 4 is a spherical rotating rotor having a hollow inside, and the outer peripheral surface 4a that comes into sliding contact with the seal 6 is formed in a convex spherical shape. The rotor 4 has a rotor opening 4b penetrating inside and outside, and the seal 6 has a seal opening penetrating in the center. In the valve device 1 of FIG. 1, the central axis of the rotor opening 4b and the central axis of the seal 6 are aligned, and the shape of the rotor opening 4b is symmetrical with respect to the central axis. The rotating shaft 3 rotates in the direction of the arrow, and the rotor 4 also rotates accordingly. Due to this rotation, the rotor opening 4b and the seal opening are communicated with each other to open the valve, and the rotor opening 4b and the seal opening are not communicated with each other to close the valve. In the valve open state of FIG. 1, cooling water flowing in the direction of the black arrow is supplied into the rotor 4 . By rotating the rotor 4 in this way, the opening and closing of the valve device 1 can be controlled, thereby adjusting the flow rate and distribution of the cooling water.
 ロータ4は樹脂製であり、例えば、熱可塑性樹脂をベース樹脂とした樹脂組成物の射出成形体である。熱可塑性樹脂としては、特に限定されないが、フッ素樹脂以外の熱可塑性樹脂を用いることが好ましく、例えば、ポリフェニレンサルファイド(PPS)樹脂、ポリアミド66(PA66)樹脂、半芳香族PA樹脂、ポリエーテルエーテルケトン(PEEK)樹脂などを用いることができる。半芳香族PA樹脂としては、吸水率の小さいポリアミド9T樹脂、ポリアミド10T樹脂が好ましい。これら樹脂の中でも、低吸水性で、耐熱性、耐アルカリ性に優れ、安価であるPPS樹脂がより好ましい。 The rotor 4 is made of resin, and is, for example, an injection-molded body of a resin composition with a thermoplastic resin as a base resin. The thermoplastic resin is not particularly limited, but it is preferable to use a thermoplastic resin other than fluororesin. For example, polyphenylene sulfide (PPS) resin, polyamide 66 (PA66) resin, semi-aromatic PA resin, polyether ether ketone (PEEK) resin or the like can be used. As the semi-aromatic PA resin, polyamide 9T resin and polyamide 10T resin having low water absorption are preferred. Among these resins, PPS resin is more preferable because it has low water absorbency, excellent heat resistance and alkali resistance, and is inexpensive.
 また、ロータ4に用いる樹脂組成物には、高強度、高弾性、高寸法精度を得るために、ガラス繊維を配合することが好ましい。ガラス繊維を配合したPPS樹脂は、高強度、高弾性に優れるため、より好ましい。ガラス繊維を配合する場合、その配合量は、樹脂組成物全体に対して10質量%~50質量%であり、好ましくは20質量%~40質量%である。ガラス繊維が所定量より多いとシールを摩耗損傷させやすくなり、少ないと充分な強度が得られにくくなる。また、この樹脂組成物には、成形収縮率の異方性をなくし、寸法精度を向上するために、ガラス繊維と、非繊維状充填材を併用してもよい。 Further, the resin composition used for the rotor 4 preferably contains glass fibers in order to obtain high strength, high elasticity, and high dimensional accuracy. A PPS resin compounded with glass fibers is more preferable because it is excellent in high strength and high elasticity. When glass fiber is blended, the blending amount is 10% by mass to 50% by mass, preferably 20% by mass to 40% by mass, based on the total resin composition. If the amount of glass fiber is more than the predetermined amount, the seal is likely to be worn and damaged, and if it is less, it becomes difficult to obtain sufficient strength. Further, in order to eliminate the anisotropy of the molding shrinkage rate and improve the dimensional accuracy, the resin composition may contain a glass fiber and a non-fibrous filler in combination.
 導入部5は樹脂製であり、例えば、熱可塑性樹脂をベース樹脂とした樹脂組成物の円筒状などの射出成形体である。熱可塑性樹脂としては、特に限定されないが、例えば、PPS樹脂、PA66樹脂、半芳香族PA樹脂、PEEK樹脂などを用いることができる。半芳香族PA樹脂としては、吸水率の小さいポリアミド9T樹脂、ポリアミド10T樹脂が好ましい。これら樹脂の中でも、低吸水性で、耐熱性、耐アルカリ性に優れ、安価であるPPS樹脂がより好ましい。 The introduction part 5 is made of resin, and is, for example, a cylindrical injection-molded body of a resin composition using a thermoplastic resin as a base resin. Although the thermoplastic resin is not particularly limited, for example, PPS resin, PA66 resin, semi-aromatic PA resin, PEEK resin, etc. can be used. As the semi-aromatic PA resin, polyamide 9T resin and polyamide 10T resin having low water absorption are preferred. Among these resins, PPS resin is more preferable because it has low water absorbency, excellent heat resistance and alkali resistance, and is inexpensive.
 また、シール6は、ばねを介してロータ4に押し付けて装着してもよい。バネの付勢力を利用することで、さらに低リーク性を維持しやすくなる。具体的には、導入部5において、シール6が装着されていない側(図下側)の端面をコイルバネで押圧してもよい。もしくは、導入部5より内側に、シール6を装着するための平坦部を有する金属環を設置し、該金属環に装着されたシール6を、コイルバネを介してロータ4に押し付けてもよい。 Also, the seal 6 may be attached by being pressed against the rotor 4 via a spring. By using the biasing force of the spring, it becomes easier to maintain the low leak property. Specifically, in the introduction portion 5, the end face on the side (lower side in the drawing) where the seal 6 is not attached may be pressed by a coil spring. Alternatively, a metal ring having a flat portion for mounting the seal 6 may be installed inside the introduction portion 5, and the seal 6 mounted on the metal ring may be pressed against the rotor 4 via a coil spring.
 なお、図1は、導入部側の構成を示しているが、吐出部側も、基本的な構成は同様である。具体的には、ハウジング2内にロータ4と円筒状の吐出部(図示省略)が設けられており、該吐出部にシール6と同様の形状、材質からなるシールが装着されている。このシールのシールリップ部は、例えば凸状の突起を有し、該突起がロータ4の外周面4aに接触している。吐出部は、ハウジング2において、導入部5から、ロータ4の回転する周方向に所定間隔離れた位置(例えば図1の導入部5と反対側の位置)に設けられる。 Although FIG. 1 shows the configuration on the side of the introduction part, the basic configuration on the side of the discharge part is the same. Specifically, a rotor 4 and a cylindrical discharge portion (not shown) are provided in the housing 2, and a seal made of the same shape and material as the seal 6 is attached to the discharge portion. The seal lip portion of this seal has, for example, a convex projection, which contacts the outer peripheral surface 4a of the rotor 4. As shown in FIG. The discharge portion is provided in the housing 2 at a position (for example, the position opposite to the introduction portion 5 in FIG. 1) spaced apart from the introduction portion 5 in the circumferential direction of the rotor 4 by a predetermined distance.
 次に、本発明の流量制御バルブ用シールについて、図2に基づいて説明する。図2は、該シールの軸方向断面図である。図2に示すように、シール6は環状部材であり、断面形状が略L字である。略L字をなす二辺部のうち、一方の辺部は筒状部6aを形成し、他方の辺部は、筒状部6aの一方側端部から内径側に向かって延伸するシールリップ部6bを形成している。シール6において、筒状部6aは外径側の縁部となっている。シールリップ部6bは、ロータ側に配置されロータの外周面に摺接する(図1参照)。 Next, the flow control valve seal of the present invention will be described with reference to FIG. FIG. 2 is an axial cross-sectional view of the seal. As shown in FIG. 2, the seal 6 is an annular member and has a substantially L-shaped cross section. Of the two substantially L-shaped side portions, one side portion forms the cylindrical portion 6a, and the other side portion is a seal lip portion extending from one side end of the cylindrical portion 6a toward the inner diameter side. 6b. In the seal 6, the tubular portion 6a is an edge on the outer diameter side. The seal lip portion 6b is arranged on the rotor side and comes into sliding contact with the outer peripheral surface of the rotor (see FIG. 1).
 図2において、シールリップ部6bは、シール軸方向に直交した面に対して軸方向内側に傾斜して延伸している。言い換えると、シールリップ部6bは、L字の内角(二辺部がなす角度)が鋭角となるように延伸している。この角度は、例えば50°~80°である。シールリップ部6bがこのように傾斜して延伸することで、ロータの外周面に沿いやすく密着しやすくなる。シールリップ部6bのロータ側の面、つまりシール面は、図2に示すように傾斜平面(断面において直線状)であってもよく、ロータの外周面の曲面に倣った傾斜曲面(断面において円弧状)であってもよい。 In FIG. 2, the seal lip portion 6b extends while being inclined inward in the axial direction with respect to a plane perpendicular to the axial direction of the seal. In other words, the seal lip portion 6b extends so that the internal angle of the L shape (the angle formed by the two sides) is an acute angle. This angle is, for example, between 50° and 80°. Since the seal lip portion 6b is inclined and extended in this manner, it can easily follow the outer peripheral surface of the rotor and can be easily brought into close contact with the rotor. The surface of the seal lip portion 6b on the rotor side, that is, the seal surface may be an inclined plane (linear in cross section) as shown in FIG. arc).
 また、シールリップ部6bのシール面の先端側には凸状の突起6cが設けられている。突起6cは、シール全周にわたり連続して形成されている。 A convex projection 6c is provided on the tip side of the sealing surface of the seal lip portion 6b. The projection 6c is formed continuously over the entire circumference of the seal.
 図1において、シール6の内径寸法dは、シール開口部の寸法であり、具体的には、対向するシールリップ部6bの先端部間の距離である。また、シールリップ部6bの径方向の長さLは、筒状部6aの内周面からシールリップ部6bの先端部までのシール径方向における距離である。 In FIG. 1 , the inner diameter dimension d1 of the seal 6 is the dimension of the seal opening, specifically the distance between the tips of the opposing seal lip portions 6b. Further, the radial length L of the seal lip portion 6b is the distance in the seal radial direction from the inner peripheral surface of the cylindrical portion 6a to the tip portion of the seal lip portion 6b.
 シール6は、流量制御バルブ装置に取り付けられた際、(d-d)/2<Lの関係式を満たしている。この関係式を満たすことについて、図3を用いて説明する。図3は、図1に示すシールとロータの摺接部付近の拡大図である。流量制御バルブ装置において冷却水が流れる際には、シールリップ部6bに流体圧が作用する。上記関係式を満たす場合、シール6に冷却水による流体圧が作用した際には、シールリップ部6bの反ロータ側の受圧面Sの面積が、ロータ4側の受圧面Sの面積よりも大きくなる。そのため、シールリップ部6bはロータ4に容易に押し付けられるのでシール性を向上させることができる。 The seal 6 satisfies the relationship (d 2 -d 1 )/2<L when attached to the flow control valve device. Satisfaction of this relational expression will be described with reference to FIG. FIG. 3 is an enlarged view of the vicinity of the sliding contact portion between the seal and the rotor shown in FIG. When cooling water flows in the flow control valve device, fluid pressure acts on the seal lip portion 6b. When the above relational expression is satisfied, when the fluid pressure of the cooling water acts on the seal 6, the area of the pressure receiving surface S1 of the seal lip portion 6b on the side opposite to the rotor is larger than the area of the pressure receiving surface S2 on the rotor 4 side. will also grow. Therefore, since the seal lip portion 6b can be easily pressed against the rotor 4, the sealing performance can be improved.
 また、(d-d)/2の値がLの値に近づくほど、受圧面Sの面積と受圧面Sの面積が同程度になるため、ロータ4側への押圧力は小さくなる。この場合、ロータ4が回転する際の回転トルクは小さくなる一方、シール性はやや低下する。そのため、シール性の観点では、(d-d)/2<L/2であることがより好ましい。 Further, as the value of (d 2 −d 1 )/2 approaches the value of L, the area of the pressure receiving surface S 1 and the area of the pressure receiving surface S 2 become approximately the same. Become. In this case, while the rotational torque when the rotor 4 rotates is reduced, the sealing performance is slightly reduced. Therefore, it is more preferable that (d 2 -d 1 )/2<L/2 from the viewpoint of sealability.
 シール6の内径寸法dとロータ開口部の内径寸法dの大小関係は特に限定されず、d>d(図3参照)であってもよく、d<dであってもよい。例えばd<dの場合、ロータ開口部の内周面がシールリップ部6bの先端部よりも径方向内側に位置することになり、ロータ4側の受圧面Sの面積がゼロになる。この場合、シール性には優れるものの、ロータ4が回転する際の回転トルクはd>dの場合よりも大きくなる。そのため、回転トルクとシール性の両立の観点から、0<(d-d)/2<L/2であることがさらに好ましい。 The size relationship between the inner diameter dimension d1 of the seal 6 and the inner diameter dimension d2 of the rotor opening is not particularly limited, and may be d2>d1 ( see FIG . 3 ) or d2< d1 . good. For example, when d 2 <d 1 , the inner peripheral surface of the rotor opening is located radially inward of the tip of the seal lip portion 6 b, and the area of the pressure receiving surface S 2 on the rotor 4 side becomes zero. . In this case, although the sealing performance is excellent, the rotational torque when the rotor 4 rotates is greater than in the case of d 2 >d 1 . Therefore, it is more preferable that 0<(d 2 −d 1 )/2<L/2 from the viewpoint of compatibility between rotational torque and sealing performance.
 図3に示すように、シールリップ部6bはシール面に凸状の突起6cを有している。突起6cを設けることで、シール6がロータ4との摺動により摩耗した際にも接触面積が増加しにくくなる。これにより、ロータ4が回転した際の回転トルクを低減することができる。突起6cの形状は限定されるものではないが、突起高さhは0.1mm~2mmが好ましく、0.5mm~2mmがより好ましい。突起高さhが0.1mmより低いと、突起6cの摩耗により早期に接触面積が増加しやすく、ロータ4が回転する際の回転トルクが大きくなりやすい。また、突起6cの径方向の幅は、図3に示すように、リップ長さLを超えないことが好ましい。 As shown in FIG. 3, the seal lip portion 6b has a convex protrusion 6c on the sealing surface. By providing the projection 6c, even when the seal 6 wears due to sliding with the rotor 4, the contact area is less likely to increase. Thereby, the rotational torque when the rotor 4 rotates can be reduced. The shape of the protrusion 6c is not limited, but the protrusion height h is preferably 0.1 mm to 2 mm, more preferably 0.5 mm to 2 mm. If the projection height h is less than 0.1 mm, the contact area tends to increase early due to wear of the projections 6c, and the rotational torque tends to increase when the rotor 4 rotates. Moreover, it is preferable that the radial width of the protrusion 6c does not exceed the lip length L, as shown in FIG.
 シールリップ部6bの厚さは、突起6cが形成された部分を除いて0.3mm~2mmであることが好ましい。0.3mm未満であると、シール6を射出成形する際にショートショットが発生しやすくなる。2mmを超えるとシールリップ部6bの剛性が高くなり、冷却水による流体圧が作用した際に、シールリップ部6bがロータ4に押圧されにくくなる。なお、図3に示すように、シールリップ部6bにおいて、突起6cが形成された部分の厚さは、突起6cが形成されていない部分の厚さよりも大きくなっている。また、ロータ4が回転する際にシール6のシールリップ部6bがロータ開口部に引っ掛からないようにするため、シール開口部のエッジに面取りまたはR部を設けてもよい。 The thickness of the seal lip portion 6b is preferably 0.3 mm to 2 mm excluding the portion where the protrusion 6c is formed. If it is less than 0.3 mm, short shots are likely to occur when the seal 6 is injection molded. If it exceeds 2 mm, the rigidity of the seal lip portion 6b increases, and the seal lip portion 6b is less likely to be pressed by the rotor 4 when the fluid pressure of the cooling water acts. In addition, as shown in FIG. 3, in the seal lip portion 6b, the thickness of the portion where the projection 6c is formed is larger than the thickness of the portion where the projection 6c is not formed. In order to prevent the seal lip portion 6b of the seal 6 from being caught in the rotor opening when the rotor 4 rotates, the edge of the seal opening may be chamfered or rounded.
 また、シール6において、筒状部6aの厚さは、シールリップ部6bの厚さ(突起6cが形成された部分を除く)よりも大きくなっていてもよい。筒状部6aの厚さを厚くすることで、導入部または吐出部に装着された場合においてシール6を安定して固定しやすくなる。 Also, in the seal 6, the thickness of the tubular portion 6a may be larger than the thickness of the seal lip portion 6b (excluding the portion where the projection 6c is formed). By increasing the thickness of the cylindrical portion 6a, it becomes easier to stably fix the seal 6 when it is attached to the introduction portion or the discharge portion.
 なお、本発明のシールは、上記図1~図3の例に限定されない。図4には本発明のシールの他の例を示す。図4のシール7は断面形状が略L字であり、略L字をなす二辺部のうち、一方の辺部は筒状部7aを形成し、他方の辺部は、筒状部7aから縮径するように内径側に向かって延伸するシールリップ部7bを形成している。図2のシール6とは異なり、図4のシール7のシールリップ部7bには、突起が形成されていない。図4において、シールリップ部7bは、略一定の厚さ(例えば0.3mm~2mm)で内径側に向かって延びている。なお、シールリップ部7bの厚さを、外径側から内径側にかけて連続的にまたは段階的に小さくなるように変化させてもよい。 The seal of the present invention is not limited to the examples shown in FIGS. 1 to 3 above. FIG. 4 shows another example of the seal of the present invention. The seal 7 in FIG. 4 has a substantially L-shaped cross-section, and one side of the two substantially L-shaped sides forms a tubular portion 7a, and the other side extends from the tubular portion 7a. A seal lip portion 7b extending toward the inner diameter side is formed so as to reduce the diameter. Unlike the seal 6 of FIG. 2, the seal lip portion 7b of the seal 7 of FIG. 4 is not formed with a projection. In FIG. 4, the seal lip portion 7b extends toward the inner diameter side with a substantially constant thickness (for example, 0.3 mm to 2 mm). The thickness of the seal lip portion 7b may be changed so as to decrease continuously or stepwise from the outer diameter side to the inner diameter side.
 バルブ装置の開閉操作の際には、シールが押し付けられた状態で、ロータが回転する。シールは固定されており、シール面はロータの外周面と常に摺接することになるので、ロータの外周面に比べて摩耗が進行しやすい。また、シールは、ロータの曲面形状に密着させる必要があるため、適度な変形性が求められる。さらに、冷却水には一般的にエチレングリコールなどを主成分としたPH7~11の水溶液(不凍液)が用いられていることから、冷却水と接触するシール6には耐アルカリ性や、低吸水性も求められる。 When opening and closing the valve device, the rotor rotates while the seal is pressed. Since the seal is fixed and the seal surface is always in sliding contact with the outer peripheral surface of the rotor, wear progresses more easily than the outer peripheral surface of the rotor. In addition, since the seal needs to be in close contact with the curved surface of the rotor, it is required to have appropriate deformability. Furthermore, since the cooling water generally uses an aqueous solution (antifreeze) with a pH of 7 to 11, the main component of which is ethylene glycol, etc., the seal 6 that comes into contact with the cooling water has alkali resistance and low water absorption. Desired.
 本発明の流量制御バルブ用シールは、樹脂組成物の成形体である。該樹脂組成物のベース樹脂は特に限定されないが、フッ素樹脂を用いることが好ましい。フッ素樹脂をベース樹脂としたフッ素樹脂組成物は、低弾性、低硬度であるため、樹脂製のロータの曲面状(球状または円筒状)の外周面に沿って変形しやすく、シールしやすい。さらに、フッ素樹脂は耐アルカリ性や、低吸水性に優れており、冷却水と接触する環境下でも樹脂の劣化を抑制できる。これにより、安価に作製できるとともに、摺接するロータの摩耗損傷が少なく、低リーク性、低摩擦性に優れる。 The flow control valve seal of the present invention is a molded body of a resin composition. Although the base resin of the resin composition is not particularly limited, it is preferable to use a fluororesin. A fluororesin composition having a fluororesin as a base resin has low elasticity and low hardness, so that it is easily deformed along the curved (spherical or cylindrical) outer peripheral surface of a rotor made of resin, making it easy to seal. Furthermore, fluororesin is excellent in alkali resistance and low water absorbency, and deterioration of the resin can be suppressed even in an environment in which it comes into contact with cooling water. As a result, it can be manufactured at a low cost, and the rotor with which it is in sliding contact is less likely to be worn and damaged, and is excellent in low leakage and low friction properties.
 フッ素樹脂は単体では摩耗しやすいが、適切な充填材を配合することで耐摩耗性を向上させることができる。上記フッ素樹脂組成物は、非繊維状充填材を含み、繊維状充填材を含まないことが好ましい。これにより、相手材である樹脂製のロータを摩耗損傷させにくく、低摩擦低摩耗特性が得られる。  Although fluororesin is easily worn by itself, its wear resistance can be improved by adding an appropriate filler. The fluororesin composition preferably contains a non-fibrous filler and does not contain a fibrous filler. As a result, the resin rotor, which is the mating material, is less likely to be worn and damaged, and low friction and low wear characteristics can be obtained.
 フッ素樹脂としては、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)樹脂、テトラフルオロエチレン-エチレン共重合体(ETFE)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂などを用いることができる。これらの中でも、射出成形可能な溶融フッ素樹脂であるPFA樹脂、FEP樹脂、ETFE樹脂を用いることが好ましい。これにより、シールを射出成形体として得ることができる。 Examples of fluorine resins include tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) resin, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, tetrafluoroethylene-ethylene copolymer (ETFE) resin, poly Tetrafluoroethylene (PTFE) resin or the like can be used. Among these, it is preferable to use PFA resin, FEP resin, and ETFE resin, which are injection-moldable molten fluororesins. Thereby, the seal can be obtained as an injection molded body.
 PFA樹脂や、FEP樹脂、ETFE樹脂をベースとしたフッ素樹脂組成物を成形する場合は、例えば、原材料をヘンシェルミキサー、ボールミキサー、リボンブレンダー、レディゲミキサーなどにて乾式混合し、さらに二軸押出し機などの溶融押出し機にて溶融混練し、成形用ペレットを得た後、射出成形により成形することができる。 When molding a fluororesin composition based on PFA resin, FEP resin, or ETFE resin, for example, the raw materials are dry-mixed with a Henschel mixer, ball mixer, ribbon blender, Loedige mixer, etc., and then biaxially extruded. After melt kneading with a melt extruder such as a machine to obtain molding pellets, they can be molded by injection molding.
 フッ素樹脂組成物には、冷却水中での摩擦摩耗特性を向上するために、PH7~11のアルカリ性水溶液に耐性のある充填材を配合することが好ましい。充填材としては、炭素繊維、黒鉛、PTFE樹脂、無機物(マイカ、タルク、炭酸カルシウムなど)、ウィスカ(炭酸カルシウム、チタン酸カリウムなど)などが挙げられる。これら充填材の中では非繊維状充填材を用いることが好ましく、この場合、相手材となるロータへの攻撃性の点から繊維状充填材を含まないことがより好ましい。 In order to improve friction and wear properties in cooling water, it is preferable to add a filler that is resistant to an alkaline aqueous solution of pH 7 to 11 to the fluororesin composition. Fillers include carbon fiber, graphite, PTFE resin, inorganic substances (mica, talc, calcium carbonate, etc.), whiskers (calcium carbonate, potassium titanate, etc.). Among these fillers, it is preferable to use a non-fibrous filler, and in this case, it is more preferable not to use a fibrous filler from the viewpoint of attacking the rotor, which is a mating material.
 非繊維状充填材は、炭素繊維、ガラス繊維、ウィスカなどのアスペクト比を有する繊維状充填材以外であればよく、不定形の粒状、球状、鱗片状、板状の充填材などが挙げられる。これらの中でも異方性がない、粒状、球状の充填材が好ましい。 The non-fibrous filler may be carbon fiber, glass fiber, whisker, or any other fibrous filler having an aspect ratio, and examples thereof include amorphous granular, spherical, scale-like, and plate-like fillers. Among these, granular and spherical fillers having no anisotropy are preferred.
 非繊維状充填材としては、黒鉛を用いることが好ましい。黒鉛は冷却水中での低摩擦低摩耗特性を付与する効果がある。鱗片状、粒状、球状の黒鉛を用いることができるが、フッ素樹脂組成物の弾性率を高めない、粒状黒鉛または球状黒鉛を用いることがより好ましい。黒鉛の平均粒子径は限定されないが、3μm~50μmが好ましく、10μm~30μmがより好ましい。50μmを超えると、フッ素樹脂組成物の引張伸び特性が低下する。平均粒子径は、例えば、レーザー光散乱法を利用した粒子径分布測定装置などを用いて測定することができる。上述したベース樹脂に黒鉛を配合したフッ素樹脂組成物からなるシールは、樹脂製のロータを摩耗損傷しにくく、長期で安定したシール性が得られる。また、耐アルカリ性に優れるので、劣化することなく、長期使用が可能である。 Graphite is preferably used as the non-fibrous filler. Graphite has the effect of imparting low friction and low wear properties in cooling water. Although scaly, granular, and spherical graphite can be used, it is more preferable to use granular graphite or spherical graphite, which does not increase the elastic modulus of the fluororesin composition. Although the average particle size of graphite is not limited, it is preferably 3 μm to 50 μm, more preferably 10 μm to 30 μm. If it exceeds 50 µm, the tensile elongation properties of the fluororesin composition are lowered. The average particle size can be measured, for example, using a particle size distribution measuring device using a laser light scattering method. A seal made of the above-described fluororesin composition in which graphite is blended with the base resin is less likely to wear and damage the resin-made rotor, and a stable sealing performance can be obtained over a long period of time. In addition, since it has excellent alkali resistance, it can be used for a long period of time without deterioration.
 また、フッ素樹脂組成物のベース樹脂として、溶融フッ素樹脂であるPFA樹脂や、FEP樹脂、ETFE樹脂を用いる場合、充填材としてPTFE樹脂を配合してもよい。PTFE樹脂の平均粒子径は、特に限定されるものではないが10μm~50μmとすることが好ましい。 In addition, when PFA resin, FEP resin, or ETFE resin, which is a molten fluororesin, is used as the base resin of the fluororesin composition, PTFE resin may be blended as a filler. Although the average particle size of the PTFE resin is not particularly limited, it is preferably 10 μm to 50 μm.
 なお、本発明の効果を阻害しない程度に、フッ素樹脂組成物に対して周知の樹脂用添加剤を配合してもよい。この添加剤としては、例えば、窒化ホウ素、二硫化モリブデン、二硫化タングステンなどの摩擦特性向上剤、炭素粉末、酸化鉄、酸化チタンなどの着色剤が挙げられる。 It should be noted that well-known additives for resin may be added to the fluororesin composition to the extent that the effects of the present invention are not impaired. Examples of the additive include friction property improvers such as boron nitride, molybdenum disulfide and tungsten disulfide, and coloring agents such as carbon powder, iron oxide and titanium oxide.
 本発明のシールに用いる樹脂組成物は、樹脂組成物全体に対して、上述したベース樹脂を70体積%~97体積%含む。樹脂組成物に充填材を配合する場合、充填材が3体積~30体積%で残部がベース樹脂である組成物が好ましく、充填材が5体積%~20体積%で残部がフッ素樹脂である組成物がより好ましい。充填材としては、非繊維状充填材を用いることが好ましい。充填材が30体積%を超えると、フッ素樹脂組成物の引張伸び特性が低下するおそれがある。 The resin composition used for the seal of the present invention contains 70% to 97% by volume of the base resin described above with respect to the entire resin composition. When a filler is added to the resin composition, it is preferable to use a composition in which the filler is 3% to 30% by volume and the balance is a base resin, and the filler is 5% to 20% by volume and the balance is a fluororesin. things are more preferred. As the filler, it is preferable to use a non-fibrous filler. If the filler content exceeds 30% by volume, the tensile elongation properties of the fluororesin composition may deteriorate.
 本発明の流量制御バルブ装置において、流量制御バルブ用シールは、フッ素樹脂組成物の成形体であり、ロータは、シールとは異なるベース樹脂からなる樹脂組成物の成形体であるので、シールとロータとは異なる樹脂材同士の摺動となる。そのため、同じ樹脂材同士の摺動において想定される高摩擦係数による摩耗増大を防止でき、良好な低摩擦性や低摩耗性が得られる。 In the flow control valve device of the present invention, the seal for the flow control valve is a molding of a fluororesin composition, and the rotor is a molding of a resin composition made of a base resin different from that of the seal. It becomes sliding between different resin materials. Therefore, it is possible to prevent an increase in wear due to a high coefficient of friction that is assumed when the same resin materials slide against each other, and good low friction and low wear properties can be obtained.
 以下、実施例を挙げて本発明をさらに具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
実施例1~実施例4、比較例1
 表2の配合割合(体積%)で配合したETFE樹脂組成物を用い、射出成形によって流量制御バルブ用シールを作製した。なお、シールの形状は、図2に示すシール6の形状(突起あり)と図4に示すシール7の形状(突起なし)の2種類とした。
Examples 1 to 4, Comparative Example 1
Using the ETFE resin composition blended at the blending ratio (% by volume) in Table 2, a flow control valve seal was produced by injection molding. The shape of the seal was two types, the shape of the seal 6 shown in FIG. 2 (with projection) and the shape of the seal 7 shown in FIG. 4 (without projection).
 ETFE樹脂組成物に用いた原料を以下に示す。
(1)ETFE樹脂
 AGC株式会社:C-88AXMP
(2)黒鉛
 日本黒鉛工業株式会社:ACP(平均粒子径:24μm)
Raw materials used for the ETFE resin composition are shown below.
(1) ETFE resin AGC Co., Ltd.: C-88AXMP
(2) Graphite Japan Graphite Industry Co., Ltd.: ACP (average particle size: 24 μm)
 球状のロータ(ガラス繊維40質量%入りPPS樹脂組成物)に、上記で得た各種シールを押し付けた状態を模した試験治具を作製した。この試験治具に対し冷却水を流して、シールのリーク試験を行った。試験に用いた冷却水は、自動車のエンジン冷却水であり、その主成分はエチレングリコールである。リーク試験の条件を表1に示す。また、試験結果を表2に一括して示す。
 ロータ:φ60(外径寸法)、表面粗さRa1μm
 シール:φ23(外径寸法)×φ15(内径寸法d)×2.5mm(高さ)
     シールリップ部の厚さ0.8mm(突起が形成された部分を除く)
     突起高さ0.2mm(図2のシール形状の場合)
A test jig simulating a state in which the various seals obtained above were pressed against a spherical rotor (PPS resin composition containing 40% by mass of glass fiber) was prepared. Cooling water was passed through this test jig to conduct a seal leak test. The cooling water used in the test is automobile engine cooling water, the main component of which is ethylene glycol. Table 1 shows the conditions of the leak test. Moreover, the test results are collectively shown in Table 2.
Rotor: φ60 (outer diameter), surface roughness Ra1 μm
Seal: φ23 (outer diameter) x φ15 (inner diameter d 1 ) x 2.5 mm (height)
Thickness of seal lip part 0.8mm (excluding the part where protrusions are formed)
Protrusion height 0.2 mm (in the case of seal shape in Fig. 2)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、(d-d)/2<Lの関係式を満たす実施例1~実施例4は、冷却水のリーク量が1ml/min~8ml/minであり、低リーク性に優れる結果であった。一方、(d-d)/2>Lとなる比較例1は、冷却水のリーク量が33ml/minであり、実施例に比べて劣る結果であった。 As shown in Table 2, in Examples 1 to 4, which satisfy the relational expression of (d 2 −d 1 )/2<L, the leakage amount of cooling water is 1 ml/min to 8 ml/min, and the leakage is low. The results were excellent. On the other hand, in Comparative Example 1 where (d 2 −d 1 )/2>L, the leakage amount of cooling water was 33 ml/min, which was inferior to the Examples.
 本発明の流量制御バルブ用シールは、射出成形などによって容易かつ安価に作製できるとともに、低リーク性、低摩擦性に優れる流量制御バルブ用シール、およびそのシールを備える流量制御バルブ装置に広く利用できる。 INDUSTRIAL APPLICABILITY The flow control valve seal of the present invention can be easily and inexpensively produced by injection molding or the like, and can be widely used for flow control valve seals excellent in low leakage and low friction properties, and flow control valve devices equipped with such seals. .
 1  バルブ装置
 2  ハウジング
 3  回転軸
 4  ロータ
 5  導入部
 6  シール
 7  シール
REFERENCE SIGNS LIST 1 valve device 2 housing 3 rotating shaft 4 rotor 5 introduction portion 6 seal 7 seal

Claims (6)

  1.  冷却水を受け入れる導入部、及び、冷却水を送り出す吐出部を有するハウジングと、前記ハウジングの内部に設けられ、球状または円筒状の外周面と、該外周面から内周面に連通する開口部とを有し、前記ハウジングに対して回転する樹脂製のロータとを備える流量制御バルブ装置に用いられ、
     前記ハウジング内にて前記ロータと前記導入部または前記吐出部との間に設けられ、前記ロータの外周面に摺接する環状の樹脂製の流量制御バルブ用シールであって、
     前記流量制御バルブ用シールの軸方向の断面形状が略L字であり、該略L字をなす二辺部のうち、一方の辺部は筒状部を形成し、他方の辺部は、前記筒状部のロータ側の端部から内径側に向かって延伸し前記ロータの外周面に摺接するシールリップ部を形成しており、
     前記流量制御バルブ用シールの内径寸法をd、前記開口部の内径寸法をd、前記シールリップ部の径方向の長さをLとしたとき、(d-d)/2<Lの関係式を満たすことを特徴とする流量制御バルブ用シール。
    A housing having an introduction portion for receiving cooling water and a discharge portion for sending out cooling water, a spherical or cylindrical outer peripheral surface provided inside the housing, and an opening communicating from the outer peripheral surface to the inner peripheral surface. and used in a flow control valve device comprising a resin rotor that rotates with respect to the housing,
    An annular resin flow control valve seal provided between the rotor and the introduction portion or the discharge portion in the housing and in sliding contact with the outer peripheral surface of the rotor,
    The axial cross-sectional shape of the flow control valve seal is approximately L-shaped, and one side of the two sides forming the approximately L-shape forms a tubular portion, and the other side forms a cylindrical portion. A seal lip portion extending from the rotor-side end of the cylindrical portion toward the inner diameter side and in sliding contact with the outer peripheral surface of the rotor is formed,
    When the inner diameter dimension of the flow control valve seal is d 1 , the inner diameter dimension of the opening is d 2 , and the radial length of the seal lip portion is L, then (d 2 −d 1 )/2<L A seal for a flow control valve, characterized in that it satisfies the following relational expression:
  2.  前記シールリップ部は、前記ロータの外周面に摺接するシール面に凸状の突起を有することを特徴とする請求項1記載の流量制御バルブ用シール。 The seal for a flow rate control valve according to claim 1, wherein the seal lip portion has a convex projection on the seal surface that is in sliding contact with the outer peripheral surface of the rotor.
  3.  前記流量制御バルブ用シールは、筒状の前記導入部または前記吐出部のロータ側の端面に装着されることを特徴とする請求項1記載の流量制御バルブ用シール。 The flow control valve seal according to claim 1, wherein the flow control valve seal is attached to the rotor-side end surface of the cylindrical introduction portion or the discharge portion.
  4.  前記流量制御バルブ用シールは、射出成形可能なフッ素樹脂をベース樹脂とする樹脂組成物の射出成形体であることを特徴とする請求項1記載の流量制御バルブ用シール。 The flow control valve seal according to claim 1, characterized in that the flow control valve seal is an injection-molded product of a resin composition having an injection-moldable fluororesin as a base resin.
  5.  前記樹脂組成物は、該樹脂組成物全体に対して非繊維状充填材を3体積%~30体積%含み、残部が前記フッ素樹脂であり、繊維状充填材を含まないことを特徴する請求項4記載の流量制御バルブ用シール。 3. The resin composition is characterized in that it contains 3% to 30% by volume of a non-fibrous filler with respect to the entire resin composition, the remainder being the fluororesin and containing no fibrous filler. 5. The seal for a flow control valve according to 4.
  6.  冷却水を受け入れる導入部、及び、冷却水を送り出す吐出部を有するハウジングと、前記ハウジングの内部に設けられ、球状または円筒状の外周面と、該外周面から内周面に連通する開口部とを有し、前記ハウジングに対して回転する樹脂製のロータと、前記ハウジング内にて前記ロータと前記導入部または前記吐出部との間に設けられ、前記ロータの外周面に摺接する環状の流量制御バルブ用シールとを備える流量制御バルブ装置であって、
     前記流量制御バルブ用シールが、フッ素樹脂をベース樹脂とする樹脂組成物の成形体であり、前記ロータが前記流量制御バルブ用シールとはベース樹脂が異なる樹脂組成物からなる成形体であり、
     前記流量制御バルブ用シールの軸方向の断面形状が略L字であり、該略L字をなす二辺部のうち、一方の辺部は筒状部を形成し、他方の辺部は、前記筒状部のロータ側の端部から内径側に向かって延伸し前記ロータの外周面に摺接するシールリップ部を形成しており、前記流量制御バルブ用シールの内径寸法をd、前記開口部の内径寸法をd、前記シールリップ部の径方向の長さをLとしたとき、(d-d)/2<Lの関係式を満たすことを特徴とする流量制御バルブ装置。
    A housing having an introduction portion for receiving cooling water and a discharge portion for sending out cooling water, a spherical or cylindrical outer peripheral surface provided inside the housing, and an opening communicating from the outer peripheral surface to the inner peripheral surface. A resin rotor that rotates with respect to the housing, and an annular flow rate that is provided between the rotor and the introduction portion or the discharge portion in the housing and is in sliding contact with the outer peripheral surface of the rotor A flow control valve device comprising a control valve seal,
    The flow control valve seal is a molded body made of a resin composition having a fluororesin as a base resin, and the rotor is a molded body made of a resin composition whose base resin is different from that of the flow control valve seal,
    The axial cross-sectional shape of the flow control valve seal is approximately L-shaped, and one side of the two sides forming the approximately L-shape forms a tubular portion, and the other side forms a cylindrical portion. A seal lip portion extending from the rotor-side end of the cylindrical portion toward the inner diameter side and slidingly contacting the outer peripheral surface of the rotor is formed. wherein d 2 is the inner diameter of the seal lip portion, and L is the radial length of the seal lip portion, satisfying the relational expression (d 2 −d 1 )/2<L.
PCT/JP2022/018624 2021-04-27 2022-04-22 Seal for flow control valve and flow control valve device WO2022230782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-075071 2021-04-27
JP2021075071A JP2022169199A (en) 2021-04-27 2021-04-27 Flow rate control valve seal and flow rate control valve device

Publications (1)

Publication Number Publication Date
WO2022230782A1 true WO2022230782A1 (en) 2022-11-03

Family

ID=83847215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018624 WO2022230782A1 (en) 2021-04-27 2022-04-22 Seal for flow control valve and flow control valve device

Country Status (2)

Country Link
JP (1) JP2022169199A (en)
WO (1) WO2022230782A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247306A (en) * 1995-03-15 1996-09-27 Iwamura Kk Valve seat
JP2015218775A (en) * 2014-05-15 2015-12-07 株式会社山田製作所 Electrically-driven water valve
JP2017133616A (en) * 2016-01-28 2017-08-03 株式会社デンソー Valve device
JP2020106149A (en) * 2018-12-25 2020-07-09 Ntn株式会社 Seal for flow rate control valve and flow rate control valve device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247306A (en) * 1995-03-15 1996-09-27 Iwamura Kk Valve seat
JP2015218775A (en) * 2014-05-15 2015-12-07 株式会社山田製作所 Electrically-driven water valve
JP2017133616A (en) * 2016-01-28 2017-08-03 株式会社デンソー Valve device
JP2020106149A (en) * 2018-12-25 2020-07-09 Ntn株式会社 Seal for flow rate control valve and flow rate control valve device

Also Published As

Publication number Publication date
JP2022169199A (en) 2022-11-09

Similar Documents

Publication Publication Date Title
JP7405599B2 (en) Seals for flow control valves and flow control valve devices
JP5782551B2 (en) Seal ring for continuously variable transmission
WO2015002143A1 (en) Seal ring
WO2016052595A1 (en) Sealing ring
KR20130135379A (en) Seal ring
JPH0996363A (en) Seal ring
JP2024028254A (en) Manufacturing method for seals for flow control valves
JP5444420B2 (en) Seal member
WO2022230782A1 (en) Seal for flow control valve and flow control valve device
JP2006342970A (en) Method of manufacturing composite step cut type sealing ring made of synthetic resin
JPH0875007A (en) Seal ring of synthetic resin
JP6109537B2 (en) Electric oil pump seal structure
WO2022071196A1 (en) Seal for flow control valve and flow control valve device
JPH0989111A (en) Synthetic resin made seal ring
JP7117404B2 (en) valve device
JP2005307090A (en) Resin composition for oil-submerged sliding member, oil-submerged sliding member and seal ring
JP7405722B2 (en) shaft seal
WO2023106140A1 (en) Shaft seal
JP2020051555A (en) Seal ring
CN216278964U (en) Sliding bearing device for water pump
US20230086277A1 (en) Rotor for electric water pumps and sliding bearing device for water pumps
JP2003049966A (en) Tubular elastic sleeve for wax enclosed thermovalve and wax enclosed thermovalve
JP2023147120A (en) shaft seal
JP2023084053A (en) shaft seal
JP2023147122A (en) shaft seal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795695

Country of ref document: EP

Kind code of ref document: A1