JPH08246200A - Electrolytic production of tin sulfate and bismuth sulfate for tin-bismuth alloy plating - Google Patents

Electrolytic production of tin sulfate and bismuth sulfate for tin-bismuth alloy plating

Info

Publication number
JPH08246200A
JPH08246200A JP7074665A JP7466595A JPH08246200A JP H08246200 A JPH08246200 A JP H08246200A JP 7074665 A JP7074665 A JP 7074665A JP 7466595 A JP7466595 A JP 7466595A JP H08246200 A JPH08246200 A JP H08246200A
Authority
JP
Japan
Prior art keywords
tin
bismuth
sulfate
exchange membrane
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7074665A
Other languages
Japanese (ja)
Other versions
JP3325150B2 (en
Inventor
Seiji Masaki
征史 正木
Takao Takeuchi
孝夫 武内
Yoshiharu Matsuda
好晴 松田
Yoshiaki Okuhama
良明 奥濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Kasei Kenkyusho KK
Original Assignee
Daiwa Kasei Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Kasei Kenkyusho KK filed Critical Daiwa Kasei Kenkyusho KK
Priority to JP07466595A priority Critical patent/JP3325150B2/en
Publication of JPH08246200A publication Critical patent/JPH08246200A/en
Application granted granted Critical
Publication of JP3325150B2 publication Critical patent/JP3325150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE: To provide an electrolytic producing method of tin sulfate and bismuth sulfate for tin-bismuth alloy plating. CONSTITUTION: Tin or bismuth is dissolved in a sulfuric acid electrolyte by using an electrolytic cell having an anode and cathode, which are separated by an anion exchange membrane or the anion exchange membrane and a cation exchange membrane, using a sulfuric acid solution as the electrolyte, using tin or bismuth as an anode and impressing DC voltage between the anode and a cathode. As a result, uranium or thorium of radioisotopes is removed and the count number of a radioactive α-particle in a film plated by using the tin or bismuth is suppressed to <=0.1CPH/cm<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は錫−ビスマス合金めっき
用の硫酸錫及び硫酸ビスマス塩の電解製造法に関する。
電子部品の表面処理として、錫−鉛合金めっきが多く用
いられているが、めっき浴及び得られるめっき皮膜に有
害な鉛が含まれるため、それに替わる合金めっきが強く
求められている。しかして、この発明は、このような錫
−鉛合金めっきに替わることができ、しかも放射性α粒
子のカウント数が0.1CPH/cm2未満であること
を特徴とする錫−ビスマス合金めっきを与えることがで
きる硫酸錫塩又は硫酸ビスマス塩の電解製造法に関する
ものである。
FIELD OF THE INVENTION The present invention relates to a method for electrolytically producing tin sulfate and bismuth sulfate for tin-bismuth alloy plating.
As a surface treatment of electronic parts, tin-lead alloy plating is often used, but since the plating bath and the plating film to be obtained contain harmful lead, there is a strong demand for an alternative alloy plating. Thus, the present invention provides a tin-bismuth alloy plating which can replace such a tin-lead alloy plating and is characterized by a radioactive α particle count of less than 0.1 CPH / cm 2. The present invention relates to a method for electrolytically producing tin sulfate or bismuth sulfate that can be used.

【0002】[0002]

【従来技術とその問題点】最近の電子工業のめざましい
発展に伴い、その電子部品にはんだ付け性が良好な錫及
びはんだめっきが施されている。従来、はんだめっきに
はホウフッ化浴が用いられていたが、ホウフッ酸の構成
元素の一つであるフッ素が非常に毒性の強い元素である
と同時に廃液処理が困難であり、公害防止の見地からホ
ウフッ酸塩に比べて毒性の低い有機スルホン酸塩が広く
使用されるようになり、これら周辺のめっき技術や添加
剤に関する報告がある。しかしながら、昨今、はんだめ
っきの使用に際して排水処理及び得られた皮膜中に有害
な鉛が含まれるため、これに替わる錫合金めっきが強く
要望されている。従来のはんだめっき(Sn/Pb)に
対応して、融点及びはんだ付け性などの熱的特性並びに
機械的特性が類似している錫−ビスマス合金めっきがは
んだめっきの代替合金として有望である。また、錫ウイ
スカーの防止として少量の鉛を混入させた錫−鉛合金め
っき(Sn/Pb=90/10)が実用化されている
が、この鉛に替えて少量のビスマスを混入させた錫−ビ
スマス合金めっき(Sn/Bi=90/10)も錫−鉛
合金と同様に錫のウイスカーが防止できる。
2. Description of the Related Art With the recent remarkable development of the electronic industry, tin and solder plating having good solderability have been applied to the electronic parts. Conventionally, a borofluoride bath has been used for solder plating, but fluorine, which is one of the constituent elements of borohydrofluoric acid, is a highly toxic element, and at the same time it is difficult to dispose of the waste liquid. Organic sulfonates, which are less toxic than borofluoric acid salts, have come into widespread use, and there have been reports on plating techniques and additives around these. However, in recent years, when the solder plating is used, since harmful lead is contained in the waste water treatment and the obtained coating, there is a strong demand for tin alloy plating to replace the lead. Corresponding to conventional solder plating (Sn / Pb), tin-bismuth alloy plating, which has similar thermal and mechanical properties such as melting point and solderability, is promising as an alternative alloy to solder plating. Further, tin-lead alloy plating (Sn / Pb = 90/10) mixed with a small amount of lead has been put to practical use as a tin whisker prevention, but tin-containing a small amount of bismuth instead of lead has been used. Bismuth alloy plating (Sn / Bi = 90/10) can prevent tin whiskers as well as the tin-lead alloy.

【0003】一方、錫−ビスマス合金めっき液に使用さ
れる硫酸錫塩及び硫酸ビスマス塩の製造工程としては、
これら金属の酸化物、塩化物及び水酸化物を硫酸に溶解
して調製する方法がとられている。しかしながら、これ
ら酸化物、塩化物及び水酸化物中にはα線発生源である
ウランやトリウムが多量に含まれ、この様な化学的溶解
法ではこれら不純物が硫酸錫塩及び硫酸ビスマス塩に混
入し、めっき後に錫−ビスマス合金電析物からα線を多
量に発生するため、いわゆるメモリーデバイスのソフト
エラーを引き起こすという最大の欠点がある。また、数
ppmオーダーの塩化物を嫌う電子部品へのめっきに対
しては、通常市販されている硫酸錫や硫酸ビスマスでは
塩化物の混入は避けられない。
On the other hand, the steps for producing tin sulfate and bismuth sulfate used in the tin-bismuth alloy plating solution are as follows:
A method of dissolving these metal oxides, chlorides, and hydroxides in sulfuric acid to prepare them has been adopted. However, these oxides, chlorides, and hydroxides contain a large amount of uranium and thorium, which are sources of α-rays, and in such a chemical dissolution method, these impurities are mixed in tin sulfate and bismuth sulfate. However, since a large amount of α-rays are generated from the tin-bismuth alloy electrodeposit after plating, there is the greatest drawback of causing a so-called memory device soft error. In addition, for plating on electronic parts that do not like chloride on the order of several ppm, tin chloride and bismuth sulfate that are usually commercially available inevitably contain chloride.

【0004】[0004]

【発明の目的】本発明は上記した実情に鑑み、半導体の
メモリーエラーの発生を抑制し、塩化物の混入しないは
んだに替わる錫−ビスマス合金めっき液を提供すべく研
究を重ねた結果、創案されたもので、公害対策上問題の
ない硫酸を用い、めっきによって形成された皮膜の主成
分であるSn、Bi中に不可避な不純物として含まれて
いる放射性同位元素のウラン及びトリウムを除去し、放
射性α粒子のカウント数を0.1CPH/cm2 以下に
抑制できる錫−ビスマス合金めっきを与えることができ
る硫酸錫塩又は硫酸ビスマス塩の製造法を見い出し、本
発明に至った。従って、本発明の目的は、このような放
射性α粒子のカウント数が低減された錫−ビスマス合金
メッキ皮膜を与えることができる硫酸錫塩又は硫酸ビス
マス塩の電解製造法を提供することである。さらに、本
発明の他の目的は、塩化物の混入のない硫酸錫塩又は硫
酸ビスマス塩の電解製造法を提供することである。
SUMMARY OF THE INVENTION The present invention was devised as a result of repeated studies to provide a tin-bismuth alloy plating solution which suppresses the occurrence of memory errors in semiconductors and replaces chloride-free solder in view of the above circumstances. The radioactive isotopes uranium and thorium contained as unavoidable impurities in Sn and Bi, which are the main components of the film formed by plating, are removed using sulfuric acid, which has no problem in terms of pollution control. The inventors have found a method for producing a tin sulfate or a bismuth sulfate which can provide a tin-bismuth alloy plating capable of suppressing the count number of α particles to 0.1 CPH / cm 2 or less, and arrived at the present invention. Therefore, an object of the present invention is to provide an electrolytic production method of tin sulfate or bismuth sulfate, which can provide a tin-bismuth alloy plating film in which the count number of radioactive α particles is reduced. Still another object of the present invention is to provide an electrolytic production method of tin sulfate or bismuth sulfate without chloride contamination.

【0005】[0005]

【発明の概要】即ち、本発明の主題は、陽極と陰極をア
ニオン交換膜か又はアニオン交換膜及びカチオン交換膜
で分離した電解槽を使用し、電解液として硫酸溶液を使
用し、陽極として錫又はビスマスを使用し、しかして直
流電圧を陽極と陰極に印加して硫酸電解液中に錫又はビ
スマスを溶解させることからなり、かつ得られた錫及び
ビスマス塩を用いてめっきした皮膜の放射性α粒子のカ
ウント数が0.1CPH/cm2 未満であることを特徴
とする錫−ビスマス合金めっき用の硫酸錫塩又は硫酸ビ
スマス塩の電解製造法にある。さらに、本発明の主題
は、前記の製造法により得られた硫酸錫塩及び硫酸ビス
マス塩、このような硫酸錫塩及び硫酸ビスマス塩を含有
するすず−ビスマス合金めっき浴、並びにこのめっき浴
から得られた皮膜の放射性α粒子のカウント数が0.1
CPH/cm2 未満である錫−ビスマス合金めっき電着
物にある。
SUMMARY OF THE INVENTION That is, the subject of the present invention is to use an electrolytic cell in which an anode and a cathode are separated by an anion exchange membrane or an anion exchange membrane and a cation exchange membrane, a sulfuric acid solution is used as an electrolytic solution, and a tin is used as an anode. Alternatively, bismuth is used, and a direct current voltage is applied to the anode and the cathode to dissolve tin or bismuth in sulfuric acid electrolyte, and the radioactive α of the film plated with the obtained tin and bismuth salt is used. A method for electrolytic production of tin sulfate or bismuth sulfate for tin-bismuth alloy plating is characterized in that the count number of particles is less than 0.1 CPH / cm 2 . Furthermore, the subject of the invention is the tin sulphate and bismuth sulphate salts obtained by the process described above, the tin-bismuth alloy plating baths containing such tin sulphate and bismuth sulphate salts, and the The counted number of radioactive α particles in the formed film is 0.1
In a tin-bismuth alloy-plated electrodeposit having a CPH / cm < 2 >.

【0006】本発明の電解製造法は、陽極と陰極をアニ
オン交換膜か又はアニオン交換膜及びカチオン交換膜で
分離した電解槽を使用し、電解液として硫酸溶液を使用
し、陽極として錫又はビスマスを使用し、しかして直流
電圧を陽極と陰極に印加して硫酸電解液中に錫又はビス
マスを電解し溶解させることからなる。ここで、本発明
の電解製造法を実施するのに使用することができる電解
装置の一例を添付の図1に記載する。図1において、硫
酸錫塩及び硫酸ビスマス塩を生成させるための電解槽1
には2枚の陰極4、例えば白金板が設けられ、その間に
陽極2、例えば錫又はビスマス棒が設けられ、陽極の周
囲には溶解されるべき粒状の錫又はビスマス3が配置さ
れる。さらに、陽極2と陰極4との間にアニオン交換膜
5が配置された電解槽が使用される。陽極2と陰極4と
の間には遮蔽膜6が設けられ、陽極室と陰極室がそれぞ
れ画成される。陽極室と陰極室には硫酸溶液からなる電
解液7が導入されており、循環ポンプ、例えばケミカル
ポンプ9及び熱交換器10により撹拌と冷却が行われ
る。陽極と陰極には、直流電源8が接続される。電解に
より得られた硫酸錫塩又は硫酸ビスマス塩の溶液は製品
取出し口11から取出される。
In the electrolytic production method of the present invention, an electrolytic cell in which an anode and a cathode are separated by an anion exchange membrane or an anion exchange membrane and a cation exchange membrane is used, a sulfuric acid solution is used as an electrolytic solution, and tin or bismuth is used as an anode. And applying a DC voltage to the anode and cathode to electrolyze and dissolve tin or bismuth in the sulfuric acid electrolyte. An example of an electrolysis apparatus that can be used to carry out the electrolytic production method of the present invention is now described in the attached FIG. In FIG. 1, an electrolytic cell 1 for producing tin sulfate and bismuth sulfate.
Is provided with two cathodes 4, for example platinum plates, between which is provided an anode 2, for example tin or bismuth rods, around the anode of which is placed granular tin or bismuth 3 to be melted. Furthermore, an electrolytic cell in which an anion exchange membrane 5 is arranged between the anode 2 and the cathode 4 is used. A shielding film 6 is provided between the anode 2 and the cathode 4 to define an anode chamber and a cathode chamber, respectively. An electrolytic solution 7 made of a sulfuric acid solution is introduced into the anode chamber and the cathode chamber, and stirring and cooling are performed by a circulation pump such as a chemical pump 9 and a heat exchanger 10. A DC power supply 8 is connected to the anode and the cathode. The solution of tin sulfate or bismuth sulfate obtained by electrolysis is taken out from the product take-out port 11.

【0007】通常数ppm以下の塩化物を含む硫酸錫塩
及び硫酸ビスマス塩の製造にはアニオン交換膜のみを陽
極室と陰極室との間にセットした図1に示すような電解
槽を使用することで十分であるが、放射性α粒子のカウ
ント数を0.1CPH/cm2 以下に抑制するために
は、陽極と陰極との間にアニオン交換膜及びカチオン交
換膜をセットした多層式電解槽が必要である。
For the production of tin sulfate and bismuth sulfate containing chlorides of several ppm or less, an electrolytic cell as shown in FIG. 1 in which only an anion exchange membrane is set between an anode chamber and a cathode chamber is used. However, in order to suppress the count of radioactive α particles to 0.1 CPH / cm 2 or less, a multilayer electrolytic cell having an anion exchange membrane and a cation exchange membrane set between the anode and the cathode is used. is necessary.

【0008】このような電解槽の一例を添付の図2に示
す。この場合に、遮蔽板6は任意の径の穴を有するもの
であるから、陽極室で溶解された硫酸錫又はビスマス塩
を含有する電解液は有孔遮蔽板6を通過して陰極室に移
行することができる。陽極室の有孔遮蔽板6の側にカチ
オン交換膜12がセットされており、錫又はビスマスカ
チオンはこのカチオン交換膜を通過することができる。
一方、陰極4の側にはアニオン交換膜5がセットされて
おり、錫又はビスマスカチオンはこのアニオン交換膜を
通過することができない。しかして、生成した硫酸錫又
はビスマス塩含有溶液は製品取り出し口11から取り出
される。
An example of such an electrolytic cell is shown in the attached FIG. In this case, since the shielding plate 6 has a hole with an arbitrary diameter, the electrolytic solution containing tin sulfate or bismuth salt dissolved in the anode chamber passes through the perforated shielding plate 6 and moves to the cathode chamber. can do. A cation exchange membrane 12 is set on the side of the perforated shielding plate 6 in the anode chamber, and tin or bismuth cations can pass through this cation exchange membrane.
On the other hand, an anion exchange membrane 5 is set on the cathode 4 side, and tin or bismuth cations cannot pass through this anion exchange membrane. Then, the produced tin sulfate or bismuth salt-containing solution is taken out from the product take-out port 11.

【0009】本発明に従う電解の条件としては、膜に対
する電流密度は0.2〜50A/dm2 、好ましくは5
〜30A/dm2 、液温は10〜50℃、好ましくは2
0〜35℃、電圧は0.5〜15Vである。電解液は市
販の濃硫酸を純水で希釈し、5〜50%、好ましくは1
0〜20%である。また、錫の酸化防止剤としてハイド
ロキノン、レゾルシノール、ピロカテコール、p−フェ
ノールスルホン酸及びクレゾールスルホン酸を添加して
も良く、Snに対して0.05〜2.0%、好ましくは
0.1〜0.5%である。陽極として用いる錫及びビス
マスは3ナイン以上の品位を有するものであり、形状は
任意であるが、粒状又は球状が好ましい。陰極材料とし
ては、電解液に不活性なものがよく、白金、ニッケル、
チタン、ステンレス、カーボン又はチタン上に白金めっ
きしたものなどが好ましい。
As conditions for electrolysis according to the present invention, the current density for the membrane is 0.2 to 50 A / dm 2 , preferably 5
~ 30 A / dm 2 , liquid temperature is 10 ~ 50 ° C, preferably 2
The voltage is 0 to 35 ° C and the voltage is 0.5 to 15V. The electrolytic solution is prepared by diluting commercially available concentrated sulfuric acid with pure water to 5 to 50%, preferably 1
It is 0 to 20%. Further, hydroquinone, resorcinol, pyrocatechol, p-phenolsulfonic acid and cresolsulfonic acid may be added as an antioxidant of tin, and 0.05 to 2.0%, preferably 0.1 to Sn is added. It is 0.5%. The tin and bismuth used as the anode have a quality of 3 nines or more, and the shape is arbitrary, but granular or spherical is preferable. The cathode material is preferably one that is inert to the electrolyte, such as platinum, nickel,
Preference is given to titanium, stainless steel, carbon, or platinum-plated titanium.

【0010】カチオン交換膜及びアニオン交換膜は基本
的には電気抵抗が小さく、耐酸性、耐久性及び耐熱性が
良好なものでなければならない。さらに、カチオン交換
膜は陽極から溶解した錫又はビスマスカチオンを通過さ
せ、またアニオン交換膜は錫又はビスマスカチオンが陰
極に移行するのを阻止するように作用するものでなけれ
ばならない。今日、多くのカチオン及びアニオン交換膜
が知られているが、好ましいカチオン交換膜はスルホン
酸基のような強酸性基を持つポリスチレン型又はスチレ
ン共重合体型樹脂から製造されたものであり、また好ま
しいアニオン交換膜はアミノ基や第四アンモニウム基の
ような強塩基性基を持つポリスチレン型又はスチレン共
重合体型樹脂から製造されたものである。ここで、特に
使用するのに好ましい交換膜としては、例えば、徳山ソ
ーダ製のCMS、C66−10F(カチオン交換膜)、
ACLE−5P、AM−2(アニオン交換膜)などが挙
げられる。
The cation exchange membrane and the anion exchange membrane must basically have low electric resistance and good acid resistance, durability and heat resistance. Further, the cation exchange membrane must allow the dissolved tin or bismuth cations to pass from the anode, and the anion exchange membrane must act to prevent the tin or bismuth cations from migrating to the cathode. Although many cation and anion exchange membranes are known today, the preferred cation exchange membranes are those made from polystyrene type or styrene copolymer type resins having strongly acidic groups such as sulfonic acid groups, and are also preferred. The anion exchange membrane is manufactured from a polystyrene type or styrene copolymer type resin having a strongly basic group such as an amino group or a quaternary ammonium group. Here, as a particularly preferable exchange membrane to be used, for example, CMS, C66-10F (cation exchange membrane) manufactured by Tokuyama Soda,
Examples include ACLE-5P and AM-2 (anion exchange membrane).

【0011】本発明において放射性α粒子が低減される
理由については、陽極から溶解した錫又はビスマスカチ
オンは電解液中にそのまま存在するが、ウラン、トリウ
ムは電解液中に溶解して陰イオン錯塩を形成し、そのた
めにカチオン交換膜を通過せず、錫又はビスマスイオン
のみがこれを通過することになり、一方、アニオン交換
膜により錫又はビスマスイオンは陰極に移行するのを防
止され、その結果として、ウラン及びトリウムが除去さ
れた硫酸錫又はビスマス塩の溶液がカチオン交換膜とア
ニオン交換膜との間から連続的に取り出されることによ
るものと思われる。
The reason why the radioactive α particles are reduced in the present invention is that tin or bismuth cations dissolved from the anode remain in the electrolytic solution as they are, but uranium and thorium are dissolved in the electrolytic solution to form an anion complex salt. Formed, so that it does not pass through the cation exchange membrane, only tin or bismuth ions pass through it, while the anion exchange membrane prevents tin or bismuth ions from migrating to the cathode, and as a result It is considered that the solution of tin sulfate or bismuth salt from which uranium and thorium are removed is continuously taken out between the cation exchange membrane and the anion exchange membrane.

【0012】本発明の電解製造法により得られる硫酸錫
又はビスマス塩は、電解液中に溶解された錫又はビスマ
ス塩の溶液として得られ、従って遊離の硫酸をも含有す
るものである。一般に、得られる溶液は、錫塩の場合は
Sn2+として表わして5〜25重量%、好ましくは10
〜15重量%の硫酸錫塩、5〜50重量%、好ましくは
10〜20重量%の遊離の硫酸を含有する水溶液であ
る。また、ビスマス塩の場合はBi3+として表わして5
〜25重量%、好ましくは10〜15重量%の硫酸ビス
マス塩、5〜50重量%、好ましくは10〜20重量%
の遊離の硫酸を含有する水溶液である。このようにして
得られた水溶液は、直接に合金メッキに使用することが
できるが、通常は所望の合金メッキを得るように錫及び
ビスマス濃度並びに遊離硫酸濃度が調節される。このよ
うなめっき浴の組成は当業者により容易に決定すること
ができる。また、このように調製されためっき浴には、
錫−ビスマス合金めっき浴に使用される種々の添加剤、
例えば界面活性剤、光沢剤などを添加することができ
る。本発明の電解製造法により得られた硫酸錫及びビス
マス塩を含有するめっき浴から得られるめっき皮膜は、
その放射性α粒子のカウント数が0.1CPH/cm 2
未満である。
Tin sulfate obtained by the electrolytic production method of the present invention
Or bismuth salt is tin or bismuth dissolved in the electrolyte.
It is obtained as a solution of sodium chloride and therefore also contains free sulfuric acid.
Things. In general, the resulting solution will be
Sn2+Expressed as 5 to 25% by weight, preferably 10
~ 15 wt% tin sulfate, 5-50 wt%, preferably
An aqueous solution containing 10 to 20% by weight of free sulfuric acid
It In the case of bismuth salt, Bi3+Expressed as 5
-25 wt%, preferably 10-15 wt% bisulfate
Mass salt, 5 to 50% by weight, preferably 10 to 20% by weight
It is an aqueous solution containing free sulfuric acid. In this way
The obtained aqueous solution can be directly used for alloy plating.
However, tin and tin are usually used to obtain the desired alloy plating.
The bismuth concentration as well as the free sulfuric acid concentration is regulated. This
The composition of the plating bath can be easily determined by those skilled in the art.
Can be. In addition, the plating bath thus prepared,
Various additives used in tin-bismuth alloy plating baths,
For example, surfactants, brighteners, etc. can be added
It Tin sulfate and bis obtained by the electrolytic production method of the present invention
The plating film obtained from the plating bath containing the mass salt is
The count of radioactive α particles is 0.1 CPH / cm 2 
Is less than.

【0013】[0013]

【実施例】次に本発明の実施例を示すが、本発明はこれ
ら数例に限定されるものではなく、前述した放射性α粒
子のカウント数が0.1CPH/cm2 以下の硫酸錫塩
及び硫酸ビスマス塩を得るという主旨に添って電解条件
や操作条件は任意に変更することができる。
EXAMPLES Next, examples of the present invention will be shown, but the present invention is not limited to these examples, and the above-mentioned tin sulfate having a count of radioactive α particles of 0.1 CPH / cm 2 or less and Electrolysis conditions and operating conditions can be arbitrarily changed in accordance with the purpose of obtaining a bismuth sulfate salt.

【0014】例1:硫酸錫の製造 この例は硫酸錫の電解製造法に関するものである。電解
槽は厚み6mmのアクリル板で作製し、陽極室容量20
0ml、製品室80ml×2室、5×16=80cm2
のカチオン交換膜(C66−10F)2枚、アニオン交
換膜(ACLE−5P)2枚、2.5mm間隔で¢2.
5mmの穴を開けた遮蔽板2枚をそれぞれセットしたも
のを使用した。それから陽極中央に純度99.9%の接
点用錫棒とその周囲に同じく99.9%の粒状錫を入
れ、陰極は0.8dm2 のチタン上白金めっき板2枚を
用い、陽極と陰極に硫酸を入れ、陽極液流速3.0 L/
min、陰極液流速1.8 L/minで循環と冷却を行
い、陽極と陰極に直流電圧を印加して電解を行った。電
解条件と共に、電解後に得られた製品室及び陰極室の各
溶液の硫酸及び硫酸錫塩の濃度並びにSnの溶解効率を
表1に示す。
Example 1 Production of Tin Sulfate This example relates to an electrolytic production process of tin sulfate. The electrolytic cell is made of an acrylic plate with a thickness of 6 mm, and the capacity of the anode chamber is 20.
0 ml, product room 80 ml x 2 rooms, 5 x 16 = 80 cm 2
2 cation exchange membranes (C66-10F), 2 anion exchange membranes (ACLE-5P) at 2.5 mm intervals.
A set of two shielding plates each having a hole of 5 mm was used. Then, a tin rod for contact having a purity of 99.9% and granular tin of 99.9% were also put around the center of the anode, and two platinum plating plates on titanium of 0.8 dm 2 were used for the cathode. Sulfuric acid was added, and the anolyte flow rate was 3.0 L /
Circulation and cooling were carried out at a flow rate of 1.8 L / min for the cathode at a flow rate of min, and a DC voltage was applied to the anode and the cathode for electrolysis. Table 1 shows the electrolysis conditions and the concentrations of sulfuric acid and tin sulfate in the solutions in the product compartment and the cathode compartment obtained after electrolysis and the dissolution efficiency of Sn.

【表1】 [Table 1]

【0015】例2:硫酸ビスマスの製造 この例で使用した電解槽及び操作条件は上記の例2で使
用したものと同一で、陽極に99.9%の接点用ビスマ
ス棒とその周囲に同じ99.9%の粒状ビスマスを入
れ、電解した。電解条件と共に、電解後に得られた製品
室及び陰極室の各溶液の硫酸及び硫酸ビスマス塩の濃度
並びにBiの溶解効率を表2に示す。
Example 2 : Preparation of bismuth sulphate The electrolyzer and operating conditions used in this example are the same as those used in Example 2 above, with 99.9% contact bismuth rod in the anode and the same 99 around it. Granular bismuth (0.9%) was added and electrolysis was performed. Table 2 shows the electrolysis conditions, the concentrations of sulfuric acid and bismuth sulfate in the solutions in the product compartment and the cathode compartment obtained after electrolysis, and the dissolution efficiency of Bi.

【表2】 [Table 2]

【0016】例3:錫−ビスマス合金めっきの実施 前記の例で使用した電解槽の製品室から取り出したこれ
ら硫酸錫及び硫酸ビスマス塩をそれぞれ硫酸水溶液に溶
解して適当な界面活性剤(例えばポリプロピレングリコ
ールポリエチレングリコールノニルフェニルエーテル)
を加えて錫−ビスマス合金めっき浴を調製し、Ti上に
Ptめっきした不溶性陽極を用い、Cu板を陰極として
直流電源を接続してめっきを施した。以下の表3に、め
っき液の組成(めっき液の組成において、硫酸錫及び硫
酸ビスマスの濃度はそれぞれSn2+及びBi3+として表
わしたものである)、めっき条件、電着物の組成及び放
射性α粒子のカウント数を示す。
Example 3 Implementation of Tin-Bismuth Alloy Plating Each of these tin sulfate and bismuth sulfate salts taken out from the product chamber of the electrolytic cell used in the above example was dissolved in an aqueous sulfuric acid solution to prepare a suitable surfactant (eg polypropylene). Glycol polyethylene glycol nonyl phenyl ether)
Was added to prepare a tin-bismuth alloy plating bath, and an insoluble anode in which Pt was plated on Ti was used, and a Cu plate was used as a cathode and a DC power source was connected to perform plating. Table 3 below shows the composition of the plating solution (in the composition of the plating solution, the concentrations of tin sulfate and bismuth sulfate are expressed as Sn 2+ and Bi 3+, respectively), the plating conditions, the composition of the electrodeposit and the radioactivity. The count number of α particles is shown.

【表3】 上記の表3において示した比較浴1は、市販の従来法に
より製造された硫酸錫と硫酸ビスマスを使用して調製さ
れためっき浴である。このめっき液から得られためっき
皮膜の放射性α粒子のカウント数は非常に高いことがわ
かる。これに対して、本発明に従うめっき浴1〜3はい
ずれもめっき皮膜の放射性α粒子のカウント数が0.1
CPH/cm2 未満という低い値が得られたことがわか
る。
[Table 3] Comparative bath 1 shown in Table 3 above is a plating bath prepared using commercially available conventional tin sulfate and bismuth sulfate. It can be seen that the number of radioactive α particles in the plating film obtained from this plating solution is very high. On the other hand, in all of the plating baths 1 to 3 according to the present invention, the count of radioactive α particles in the plating film is 0.1.
It can be seen that a low value of less than CPH / cm 2 was obtained.

【0017】例4:錫−ビスマス合金めっきの実施 上記の例1で使用した電解槽と類似するが、ただし陽極
室と陰極室の間にアニオン交換膜のみを使用して電解
し、それぞれ硫酸錫及び硫酸ビスマス塩を製造した。こ
のようにして得られた硫酸錫及び硫酸ビスマス塩を使用
して、錫−ビスマスめっき浴を調製し、めっきを実施し
た。めっき液の組成(めっき液の組成において、硫酸錫
及び硫酸ビスマスの濃度はそれぞれSn2+及びBi3+
して表わしたものである)、めっき条件、電着物の組成
及びめっき液中の塩化物イオンの濃度を表4に示す。
Example 4 Implementation of Tin-Bismuth Alloy Plating Similar to the electrolytic cell used in Example 1 above, except that electrolysis was performed using only an anion exchange membrane between the anode and cathode chambers, each with tin sulfate. And bismuth sulfate salt were produced. Using the tin sulfate and the bismuth sulfate salt thus obtained, a tin-bismuth plating bath was prepared and plated. Composition of plating solution (in the composition of plating solution, the concentrations of tin sulfate and bismuth sulfate are expressed as Sn 2+ and Bi 3+, respectively), plating conditions, composition of electrodeposit and chloride ion in the plating solution The concentrations are shown in Table 4.

【表4】 上記の表4において示した比較浴2は、市販の従来法に
より製造された硫酸錫と硫酸ビスマスを使用して調製し
ためっき浴である。このめっき液中の塩化物イオンは非
常に高く、これに対して本発明に従うめっき浴4は低い
塩化物イオン値が得られた。
[Table 4] Comparative bath 2 shown in Table 4 above is a plating bath prepared using commercially available conventional tin sulfate and bismuth sulfate. The chloride ion in this plating solution was very high, whereas the plating bath 4 according to the present invention had a low chloride ion value.

【0018】[0018]

【発明の効果】本発明は、陽極と陰極をアニオン交換膜
か又はアニオン交換膜及びカチオン交換膜で分離した電
解槽を使用し、3ナイン以上の品位を有する錫及びビス
マス金属を電解し溶解することによって錫−ビスマス合
金めっき浴に使用するのに好適な硫酸錫塩及び硫酸ビス
マス塩の製造法を提供するものである。このように製造
された硫酸錫塩及び硫酸ビスマス塩を使用するめっき浴
では塩化物イオンが存在せず、またそれから形成された
めっき皮膜の放射性α粒子のカウント数は0.1CPH
/cm2 未満となる。従って、塩化物イオンの悪影響も
なく、メモリーエラーの発生を著しく抑制する錫−ビス
マス合金めっき膜を形成することができるので、大容量
のメモリー素子である256K以上のメモリーや超LS
I等の半導体装置の部品にめっきすることが可能であ
り、鉛公害からも開放される。
INDUSTRIAL APPLICABILITY The present invention uses an electrolytic cell in which an anode and a cathode are separated by an anion exchange membrane or an anion exchange membrane and a cation exchange membrane, and electrolyzes and dissolves tin and bismuth metal having a quality of 3 nines or more. This provides a method for producing tin sulfate and bismuth sulfate suitable for use in a tin-bismuth alloy plating bath. In the plating bath using the tin sulfate and the bismuth sulfate thus produced, chloride ions were not present, and the number of radioactive α particles counted in the plating film formed from the chloride ion was 0.1 CPH.
/ Cm 2 or less. Therefore, it is possible to form a tin-bismuth alloy plating film that significantly suppresses the occurrence of memory errors without the adverse effect of chloride ions.
It is possible to plate semiconductor device parts such as I, and is also free from lead pollution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するのに使用できる電解装
置の一具体例を示す。
FIG. 1 shows one embodiment of an electrolysis device that can be used to carry out the method of the present invention.

【図2】本発明の方法を実施するのに使用できる電解装
置の他の具体例である。
FIG. 2 is another embodiment of an electrolysis device that can be used to carry out the method of the present invention.

【符号の説明】 1 電解槽 2 陽極接点用錫又はビスマス 3 粒状錫又はビスマス 5 アニオン交換膜 7 電解液 12 カチオン交換膜[Explanation of Codes] 1 Electrolytic cell 2 Tin or bismuth for anode contact 3 Granular tin or bismuth 5 Anion exchange membrane 7 Electrolyte solution 12 Cation exchange membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥濱 良明 兵庫県明石市二見町南二見21−8株式会社 大和化成研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshiaki Okama 21-8 Minami Futami, Futami-cho, Akashi-shi, Hyogo Daiwa Chemical Research Institute Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽極と陰極をアニオン交換膜か又はアニ
オン交換膜及びカチオン交換膜で分離した電解槽を使用
し、電解液として硫酸溶液を使用し、陽極として錫又は
ビスマスを使用し、しかして直流電圧を陽極と陰極に印
加して硫酸電解液中に錫又はビスマスを溶解させること
からなり、かつ得られた錫及びビスマス塩を用いてめっ
きした皮膜の放射性α粒子のカウント数が0.1CPH
/cm2 未満であることを特徴とする錫−ビスマス合金
めっき用の硫酸錫塩又は硫酸ビスマス塩の電解製造法。
1. An electrolytic cell in which an anode and a cathode are separated by an anion exchange membrane or an anion exchange membrane and a cation exchange membrane is used, a sulfuric acid solution is used as an electrolytic solution, and tin or bismuth is used as an anode. A direct current voltage is applied to the anode and the cathode to dissolve tin or bismuth in a sulfuric acid electrolytic solution, and the count number of radioactive α particles of a film plated with the obtained tin and bismuth salt is 0.1 CPH.
/ Cm 2 It is less than / cm 2 , The electrolytic production method of tin sulfate or bismuth sulfate for tin-bismuth alloy plating.
【請求項2】 電解液に酸化防止剤を添加することを特
徴とする請求項1記載の硫酸錫塩又は硫酸ビスマス塩の
電解製造法。
2. The method for electrolytically producing tin sulfate or bismuth sulfate according to claim 1, wherein an antioxidant is added to the electrolytic solution.
【請求項3】 請求項1記載の製造法により得れた硫酸
錫塩及び硫酸ビスマス塩と遊離の硫酸を含有し、かつ得
られるめっき皮膜の放射性α粒子のカウント数が0.1
CPH/cm2 未満であることを特徴とする錫−ビスマ
ス合金めっき浴。
3. The count number of radioactive α particles of the plating film obtained, which contains tin sulfate and bismuth sulfate obtained by the production method according to claim 1 and free sulfuric acid, and is 0.1.
A tin-bismuth alloy plating bath, which is less than CPH / cm 2 .
【請求項4】 請求項3のめっき浴から得られためっき
皮膜の放射性α粒子のカウント数が0.1CPH/cm
2 未満である錫−ビスマス合金めっき電着物。
4. The number of radioactive α particles counted in the plating film obtained from the plating bath according to claim 3 is 0.1 CPH / cm.
A tin-bismuth alloy-plated electrodeposit that is less than 2 .
【請求項5】 一つの陽極室と二つの陰極室とからな
り、陽極室の両側に任意の径の穴を有する遮蔽板とカチ
オン交換膜をセットし、陰極室の陰極側にアニオン交換
膜をセットし、さらに陽極室及び陰極室にそれぞれ導入
された硫酸溶液からなる電解液をそれぞれ循環させるた
めの系と、陽極及び陰極に接続される直流電源と、カチ
オン交換膜とアニオン交換膜との間にセットされた製品
取り出し口とを有することを特徴とする、請求項1記載
の電解製造法を実施するための電解装置。
5. A shield plate comprising one anode chamber and two cathode chambers and having holes of arbitrary diameter on both sides of the anode chamber and a cation exchange membrane are set, and an anion exchange membrane is provided on the cathode side of the cathode chamber. Between the system for circulating the electrolytic solution consisting of the sulfuric acid solution respectively set and further introduced into the anode chamber and the cathode chamber, the DC power source connected to the anode and the cathode, and the cation exchange membrane and the anion exchange membrane. An electrolytic apparatus for carrying out the electrolytic production method according to claim 1, characterized in that it has a product take-out port set to.
JP07466595A 1995-03-08 1995-03-08 Electrolytic production of tin sulfate and bismuth sulfate for tin-bismuth alloy plating Expired - Lifetime JP3325150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07466595A JP3325150B2 (en) 1995-03-08 1995-03-08 Electrolytic production of tin sulfate and bismuth sulfate for tin-bismuth alloy plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07466595A JP3325150B2 (en) 1995-03-08 1995-03-08 Electrolytic production of tin sulfate and bismuth sulfate for tin-bismuth alloy plating

Publications (2)

Publication Number Publication Date
JPH08246200A true JPH08246200A (en) 1996-09-24
JP3325150B2 JP3325150B2 (en) 2002-09-17

Family

ID=13553765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07466595A Expired - Lifetime JP3325150B2 (en) 1995-03-08 1995-03-08 Electrolytic production of tin sulfate and bismuth sulfate for tin-bismuth alloy plating

Country Status (1)

Country Link
JP (1) JP3325150B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911428A1 (en) * 1997-10-22 1999-04-28 Th. Goldschmidt AG Process for producing bismuth compounds
JP2010196140A (en) * 2009-02-27 2010-09-09 Mitsubishi Materials Corp Method for recovering bismuth
CN104357876A (en) * 2014-10-31 2015-02-18 上海应用技术学院 Method for preparing nickel tungstate by using cationic membrane electrolysis process
US9666547B2 (en) 2002-10-08 2017-05-30 Honeywell International Inc. Method of refining solder materials
JP2020037738A (en) * 2018-07-25 2020-03-12 ザ・ボーイング・カンパニーThe Boeing Company Composition and method for electrodepositing tin-bismuth alloy on metal substrate
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911428A1 (en) * 1997-10-22 1999-04-28 Th. Goldschmidt AG Process for producing bismuth compounds
US6103088A (en) * 1997-10-22 2000-08-15 Goldschmidt Ag. Process for preparing bismuth compounds
US9666547B2 (en) 2002-10-08 2017-05-30 Honeywell International Inc. Method of refining solder materials
JP2010196140A (en) * 2009-02-27 2010-09-09 Mitsubishi Materials Corp Method for recovering bismuth
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth
CN104357876A (en) * 2014-10-31 2015-02-18 上海应用技术学院 Method for preparing nickel tungstate by using cationic membrane electrolysis process
JP2020037738A (en) * 2018-07-25 2020-03-12 ザ・ボーイング・カンパニーThe Boeing Company Composition and method for electrodepositing tin-bismuth alloy on metal substrate

Also Published As

Publication number Publication date
JP3325150B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
EP0770708B1 (en) Electrolytic process for producing lead sulfonate and tin sulfonate for solder plating use
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
US5785833A (en) Process for removing iron from tin-plating electrolytes
TW557332B (en) Method and device for regulating the metal ion concentration in an electrolyte fluid
US2541721A (en) Process for replenishing nickel plating electrolyte
US4615784A (en) Narrow gap reticulate electrode electrolysis cell
JP3325150B2 (en) Electrolytic production of tin sulfate and bismuth sulfate for tin-bismuth alloy plating
DE10101494A1 (en) Tetramethylammonium hydroxide synthesis
US5135622A (en) Electrochemical synthesis of palladium hydroxide compounds
JP3340590B2 (en) Electrolytic production of lead sulfonate and tin salts for solder plating
JPH10121297A (en) Electrolytic copper plating device using insoluble anode and copper plating method employing the device
JP7275629B2 (en) Method for producing sulfuric acid solution
JP7211143B2 (en) Method for producing sulfuric acid solution
US5423960A (en) Method and apparatus for manufacturing iodine-free iodides
JPH11229172A (en) Method and apparatus for producing high-purity copper
DE102009004155A1 (en) Process and apparatus for regenerating peroxodisulfate pickling solutions
JPS62146289A (en) Method for electrolytically refining lead having small count number of radioactive alpha-particles
JP7207024B2 (en) Method for producing sulfuric acid solution
US2796394A (en) Separating and recovering nonferrous alloys from ferrous materials coated therewith
JPS62105922A (en) Recovery of metal and acid
JP4615159B2 (en) Alloy plating method
JP2003147566A (en) Method and device for recovering valuable metal from scrap
JPH034624B2 (en)
WO2020049657A1 (en) Electroplating bath, method for manufacturing electroplated product, and electroplating device
JPS6293390A (en) Method for depositing and dissolving metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020611

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term