JPS6293390A - Method for depositing and dissolving metal - Google Patents
Method for depositing and dissolving metalInfo
- Publication number
- JPS6293390A JPS6293390A JP23339885A JP23339885A JPS6293390A JP S6293390 A JPS6293390 A JP S6293390A JP 23339885 A JP23339885 A JP 23339885A JP 23339885 A JP23339885 A JP 23339885A JP S6293390 A JPS6293390 A JP S6293390A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- anion exchange
- exchange membrane
- formulas
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は特殊な7ツ索糸陰イオン交換膜を隔+1’Jと
して用いるイオン交換膜電解法により、水溶性金属化合
物を含有する廃液より、陰極上に金属を析出させ、その
金属を陽極として溶液中に溶解させ、清浄な金属+1!
溶液を回収する方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes an ion exchange membrane electrolysis method using a special 7-wire anion exchange membrane as a barrier +1'J to remove waste liquid containing water-soluble metal compounds. , a metal is deposited on the cathode, and the metal is dissolved in a solution as an anode, resulting in a clean metal +1!
The present invention relates to a method for recovering a solution.
鉄の酸洗浄液、銅の精針からのニッケル含有廃液、各種
メッキゴー場からの金属含有廃液等、各種金属工場から
排出される金属を含有する廃液は、種類9社とも莫大な
ものとなる。この廃液を無処理のまま、河川、海などに
廃棄することは有効資源の放棄という面ばかりでなく、
環境問題も引き起こすため、関連産業界では、これらの
廃液の取扱いについて苦心している。近年、半導体工場
におけるプリント基板のメッキ廃液中には金などの貴金
属を含む場合が有り、これらの資金用は貴重な天然資源
の有効利用の立場から、是非とも回収しなければならな
い。さらに、放射性金属、水銀。The amount of metal-containing waste liquid discharged from various metal factories, such as iron acid cleaning solution, nickel-containing waste liquid from copper fine needles, and metal-containing waste liquid from various plating go-places, is enormous for all nine types of companies. Disposing this waste liquid untreated into rivers, oceans, etc. is not only a waste of useful resources, but also
Related industries are struggling with how to handle these waste liquids, as they also pose environmental problems. In recent years, waste liquid from plating printed circuit boards in semiconductor factories sometimes contains precious metals such as gold, and these funds must be recovered in order to effectively utilize valuable natural resources. Additionally, radioactive metals, mercury.
カドミウム等の有害金属を含む場合には工場敷地内で完
全に処理しなければならない。従って、排出された金属
含有廃液を工場内のクローズド化システムにおいて金属
を回収し、清浄な金属塩水溶液を生成させる資源の有効
利用が可能な処理システムの開発が切に要望されている
。If it contains hazardous metals such as cadmium, it must be completely disposed of within the factory premises. Therefore, there is a strong demand for the development of a processing system that can effectively utilize resources by recovering metals from the discharged metal-containing waste liquid in a closed system within a factory and producing a clean aqueous metal salt solution.
水溶性金属化合物を含有する廃液からの金属の回収法と
しては電解採取性以外には化学回収法。In addition to electrowinning, chemical recovery methods are used to recover metals from waste fluids containing water-soluble metal compounds.
イオン交換法などがある。例えば、現像処理液からの銀
回収において化学回収法として、硫化物の添加により、
硫化銀として沈殿させる方法がある。Examples include ion exchange methods. For example, as a chemical recovery method for silver recovery from developing processing solutions, by adding sulfide,
There is a method of precipitating it as silver sulfide.
しかし、この方法では銀以外の有効成分の再利用ができ
ず、回収後の廃液処分に制約がある。イオン交換法では
、取り扱う廃液の銀濃度を低くしなければならず、装置
が大型化し、生産性が低い。However, with this method, active ingredients other than silver cannot be reused, and there are restrictions on disposal of waste liquid after recovery. In the ion exchange method, the silver concentration of the waste liquid to be handled must be kept low, resulting in large equipment and low productivity.
従って、現像処理液からの銀回収工場においては、次第
に電解採取法の採用が増えている。Therefore, the electrowinning method is increasingly being adopted in factories for recovering silver from developing processing solutions.
水溶性金属化合物を含有する廃液より電解により金属を
回収する方法と【7ては、該廃液に陰極および陽極を浸
漬し、jb流電解して該金属を陰極上に還元析出させ、
この金属を陰極より剥離するか、あるいは陰極に付着し
たままの析出金属なfk、酸。A method for recovering metals by electrolysis from a waste solution containing a water-soluble metal compound;
This metal can be peeled off from the cathode, or the precipitated metal may remain attached to the cathode.
塩酸、硝酸等の鉱酸に浸漬、溶解して、金に4地水溶液
として回収するか、または陰極に析出した該金属を陽極
として直流電解し、電解質溶液中に溶出させ金属塩溶液
として回収する方法がある。これら従来の方法のうち、
回収金属な鉱酸に溶解させる場合には、溶解に長時間を
要し、酸濃度が高いため使用の用途が狭く、酸を多黴に
必要とするため不経済である。また、析出金属を陽極と
して電解しても溶出金属は直ちに陰極上に析出し、濃厚
な全属地溶液を得ることができない等の欠点を有する。The metal is immersed and dissolved in a mineral acid such as hydrochloric acid or nitric acid and recovered as an aqueous solution, or the metal deposited on the cathode is subjected to direct current electrolysis using the anode as an anode, eluted into an electrolyte solution, and recovered as a metal salt solution. There is a way. Among these conventional methods,
When dissolving the recovered metal in mineral acid, it takes a long time to dissolve, the acid concentration is high, so it is of limited use, and it is uneconomical because a large amount of acid is required. Furthermore, even if electrolysis is carried out using the precipitated metal as an anode, the eluted metal will immediately precipitate on the cathode, resulting in disadvantages such as the inability to obtain a concentrated all-metal solution.
近年、陰イオン交換膜を使用する新しい方法が提案され
た。(特開52−74501)この方法は最初に水溶性
金属化合物を含有する廃液に陰極。Recently, new methods using anion exchange membranes have been proposed. (JP 52-74501) In this method, a cathode is first applied to a waste liquid containing a water-soluble metal compound.
陽極な浸漬させ、電解し、陰極上に析出させた金属を陽
イオン交換膜と陰イオン交換膜とを隔膜とする電解槽の
陽極として使用t2、金属イオンを電解溶出させる方法
で前述の従来の方法と違って陰イオン交換膜が金属イオ
ンの陰極室への移動な抑制することにより、濃厚な金属
塩溶液な得ることが可能となる。The metal immersed in the anode, electrolyzed, and deposited on the cathode is used as the anode of an electrolytic cell with a cation exchange membrane and an anion exchange membrane as a diaphragm.T2, the metal ions are electrolytically eluted using the conventional method described above. Unlike conventional methods, the anion exchange membrane inhibits the movement of metal ions into the cathode chamber, making it possible to obtain a concentrated metal salt solution.
しか12ながら、この陰極への金属の析出段階において
、陽極として不溶性陽極を使用すると、陽極反応による
金属イオンの酸化により金属析出の電流効率が低下する
などの問題が生じる。一方、陽極として可溶性陽極を使
用すると、陽極が徐々に消耗し、新(−い陰極に1その
都度取り換える必要があり、また、電極間の距離が随時
変什するために煩雑な極間調整が必要となる。さらに陽
イオン交換膜と陰イオン交換膜とを隔膜とする3室電解
槽における金属溶出段階においては、廃液が酸溶液の場
合が多く、従来市販されている炭化水素糸陰イオン交換
膜では耐久性が問題となる。特に廃液中に塩素イオンを
含む場合、陽極」二で発生する塩素ガスにより陰イオン
交換膜が劣化(7、電解を長時間行うことができず、こ
のプロセスを実施しようとすれば、陰イオン交換膜の取
り換えを幾度も行わなければならず、経済面で不利とな
る。However, when an insoluble anode is used as an anode in the step of depositing metal onto the cathode, problems arise such as a decrease in current efficiency for metal deposition due to oxidation of metal ions due to anodic reaction. On the other hand, when a soluble anode is used as an anode, the anode gradually wears out and must be replaced with a new (new) cathode each time.Also, the distance between the electrodes changes from time to time, making it difficult to adjust the distance between the electrodes. Furthermore, in the metal elution stage of a three-chamber electrolytic cell with a cation exchange membrane and an anion exchange membrane as the diaphragms, the waste liquid is often an acid solution, and conventionally commercially available hydrocarbon thread anion exchange Durability is an issue with membranes.Especially when the waste liquid contains chlorine ions, the anion exchange membrane deteriorates due to the chlorine gas generated at the anode (7). If this method were to be implemented, the anion exchange membrane would have to be replaced many times, which would be economically disadvantageous.
このように水溶性金属化合物な含有する廃液より電解に
よって金属を清浄な金属増水溶液として回収する方法に
おいて末だ満足な工業プロセスは確立されていない現状
にある。As described above, no satisfactory industrial process has yet been established for recovering metals as a clean water-enriched metal solution by electrolysis from waste liquid containing water-soluble metal compounds.
本発明の[1的は、塩素ガスおよび酸に対する耐久性の
優れたフッ素系陰イオン交換膜な使用(7で、水溶性金
属化合物を含有する廃液から電解により清浄な金に4I
4A水溶液を回収するプロセスを実現化する方法な提供
することにある。The first aspect of the present invention is the use of a fluorine-based anion exchange membrane that has excellent resistance to chlorine gas and acids (7).
An object of the present invention is to provide a method for realizing a process for recovering a 4A aqueous solution.
本発明者等は、イオン交換膜法による水溶性金属化合物
を含有する廃液からの全属地水溶液の生成方法に関し、
特圧陰イオン交換膜の塩素ガスおよび酸による劣化に関
し、鋭意検討した結果、特殊な構造を有【−1塩素ガス
および酸により劣化」。The present inventors have related to a method for producing a total aqueous solution from a waste liquid containing a water-soluble metal compound using an ion exchange membrane method.
As a result of intensive studies regarding the deterioration of special pressure anion exchange membranes due to chlorine gas and acids, we found that the membrane has a special structure [-1 Degraded by chlorine gas and acids].
ないフッ素系陰イオン交換膜を使用すると、濃厚な全属
地水溶液を長時間安定に生成することが可能なことを見
い出し、本発明を完成するに至ったものである。The present inventors have discovered that by using a fluorine-based anion exchange membrane, it is possible to stably produce a concentrated aqueous solution of all metals over a long period of time, leading to the completion of the present invention.
本発明に用いる特殊な構造を有すフッ素系陰イオン交換
膜とは下記一般式
〔ただしX=FまたはOF、、t=0または1〜5の整
数、m=oまたは1、n = 1〜5の整数、p。The fluorine-based anion exchange membrane having a special structure used in the present invention has the following general formula [where X = F or OF, t = 0 or an integer of 1 to 5, m = o or 1, n = 1 to An integer of 5, p.
qは正の数であってその比は2〜16である。Yは第四
級アンモニウム基〕
で表わされる繰り返し単位の共重合体よりなるフッ素系
陰イオン交換膜を意味している。q is a positive number and the ratio thereof is 2-16. Y is a quaternary ammonium group] It means a fluorine-based anion exchange membrane made of a copolymer of repeating units represented by:
更に本発明に用いるフッ素系陰イオン交換膜は第四級ア
ンモニウム基な含む基として下記一般式〔ただしR11
n、、 n、は低級アルキル基(ただしP。Furthermore, the fluorine-based anion exchange membrane used in the present invention has the following general formula as a group containing a quaternary ammonium group [However, R11
n,, n, is a lower alkyl group (however, P.
とR1が一体となってテトラメチレン鎮、ペンタメθ
チレン鎮を形成してもよい。2−ハロゲン陰イオン〕
或いは、下記一般式
〔ただしR4は水素原子または低級アルキル基、R1゜
θ
R,、R,、Zは上記と同じ〕
或いは、下記一般式
〔ただしR4,R,=水素原子または低級アルキル基、
θ
Rj+ R*+ ”l+ zは上記と同じ、a = 3
〜7の整数〕の第四級アンモニウム基を含む基を有すフ
ッ素系陰イオン交換膜を用いることが望ましい。さらに
交換基か均一に存在する陰イオン交換膜を使用すること
が望ましい。and R1 may be combined to form tetramethylene or pentamethylene. 2-Halogen anion] Or the following general formula [where R4 is a hydrogen atom or a lower alkyl group, R1゜θ R,, R,, Z are the same as above] Or the following general formula [where R4, R, = hydrogen atoms or lower alkyl groups,
θ Rj+ R*+ ”l+ z is the same as above, a = 3
It is desirable to use a fluorine-based anion exchange membrane having a group containing a quaternary ammonium group [an integer of ~7]. Furthermore, it is desirable to use an anion exchange membrane in which the exchange groups are uniformly present.
これらのフッ素系陰イオン交換膜としては具体的には以
下のような構造の重合体膜を例示することができる。Specific examples of these fluorine-based anion exchange membranes include polymer membranes having the following structure.
(−OF’、−嶋+−+嶋−OFへ
tia
十〇馬−晴すOF!−?F−騙
+OFt 0FtvCF2−一
+or、−悄一甲・嶋ゴF当
本発明に用いる特殊な構造を有するフッ素系陰イオン交
換膜の交換容置は0.16 mθq/9・乾燥樹脂〜5
. Omeq / !7・乾燥樹脂の範囲のものな用い
ることができるが、好ましくは0.5 mθq/9・乾
燥樹脂〜2.8 meq / 9・乾燥樹脂の範囲であ
る。(-OF', -Shima+-+Shima-OF tia 10 horses-clear OF!-?F-deception+OFt 0FtvCF2-1+or, -Yu Ikko/Shimago FSpecial structure used in the present invention The exchange chamber of the fluorine-based anion exchange membrane has 0.16 mθq/9・dry resin ~5
.. Omeq/! 7. Dry resin can be used, but preferably the range is from 0.5 meq/9.dry resin to 2.8 meq/9.dry resin.
なぜならば0.5mθq/Gj・乾燥樹脂以下では膜の
電気抵抗が高く、電解電圧が上昇し、箪カコストの上昇
をまねき、2.8mθq/9φ乾燥樹脂以−りでは膜の
膨潤、崩壊等の問題が生じ、安定した電解運転を妨げる
原因となる。This is because if the dry resin is less than 0.5 mθq/Gj, the electrical resistance of the membrane will be high and the electrolytic voltage will increase, leading to an increase in the cost of the tank. This may cause problems and interfere with stable electrolysis operation.
本発明に用いるフッ素系陰イオン交換膜の膜厚は通常4
0〜500μの範囲で使用できるが、好ま(、<は10
0〜300μの範Uf(のものが用いら上する。本発明
に用いるフッ素糸陰イオン交換膜は膜の強度を上昇させ
るために補強剤を導入することができる。The thickness of the fluorine-based anion exchange membrane used in the present invention is usually 4
It can be used in the range of 0 to 500 μ, but preferably (, < is 10
The fluorine thread anion exchange membrane used in the present invention may contain a reinforcing agent to increase the strength of the membrane.
以上の様な特殊な構造を有する7ツ累系陰イオン交換膜
は、優れた耐熱性、耐酸性、耐酸化性を示し、特に塩素
ガスの酸化作用による劣化が見らJlない。さらに、こ
の特殊な構造な有するフッ素系陰イオン交換膜な隔膜と
して使用する2室電解槽において水溶性金属化合物を含
有する廃液からの金属析出およびこの析出金属の電解溶
出の両方を行う新しい方法により、効率よく長時間安定
に濃厚な金属塩水溶液な生成することが可能となる。The heptad system anion exchange membrane having the above-mentioned special structure exhibits excellent heat resistance, acid resistance, and oxidation resistance, and in particular shows no deterioration due to the oxidizing action of chlorine gas. Furthermore, a new method has been developed to perform both metal precipitation from waste liquid containing water-soluble metal compounds and electrolytic elution of the precipitated metal in a two-chamber electrolytic cell using this fluorine-based anion exchange membrane with a special structure as a diaphragm. This makes it possible to efficiently and stably generate a concentrated metal salt aqueous solution for a long period of time.
本発明における電解システムを金属析出工程と金属溶解
工程の二つに分けてそれぞれ図1および図2に示す。The electrolytic system according to the present invention is divided into two parts, a metal deposition process and a metal melting process, and is shown in FIGS. 1 and 2, respectively.
水溶性金属化合物を含む廃液ケ隔膜電解槽(1)の陰極
室(4)K供給し、陽極室(5)圧鉱酸水溶液を供給し
て直流電源装置(7)より通電し、陰極(2)十に金属
を析出させ、一方、陽極(3)からは塩素ガスおよび/
あるいは酸素ガスが発生する。金属析出が軒rした時点
で、陰極室(4)から廃液を抜き出し、かわりに鉱酸水
溶液を供給【、て、電極の極性を反対にして図2に示す
。金属溶解過程に移行する。鉱酸による金属の溶解反応
および電解溶解により陽極Q■から大量の金属イオンが
陽極室0◆において生成し、この金属イオンは陰イオン
交換膜0Qにより陰極室(ロ)への移動が妨げられ、陽
極室64にて濃厚なな金属塩溶液が得られる。陰極室0
時においては水素ガスが発生する。The waste liquid containing water-soluble metal compounds is supplied to the cathode chamber (4) K of the diaphragm electrolytic cell (1), the anode chamber (5) is supplied with a pressure mineral acid aqueous solution, and energized from the DC power supply (7). ), metal is deposited on the anode (3), while chlorine gas and/or
Or oxygen gas is generated. When the metal deposition has reached its peak, the waste liquid is extracted from the cathode chamber (4), and an aqueous mineral acid solution is supplied instead (as shown in FIG. 2), with the polarity of the electrodes being reversed. Transition to metal melting process. A large amount of metal ions are generated in the anode chamber 0◆ from the anode Q■ by the dissolution reaction and electrolytic dissolution of the metal by mineral acid, and the movement of these metal ions to the cathode chamber (B) is prevented by the anion exchange membrane 0Q. A concentrated metal salt solution is obtained in the anode chamber 64. Cathode chamber 0
Sometimes hydrogen gas is evolved.
また、このような陰イオン交換膜を隔膜とする二基電解
においてはフッ素系陰イオン交換膜の易加工性、即ち円
筒状膜を使用することが可能となり、電解槽のコンパク
ト化を行うことができ、さらに流動床電極と組み合わせ
て、高収率で金属の析出溶解を行うことが可能となる。In addition, in dual electrolysis using such an anion exchange membrane as a diaphragm, the ease of processing of the fluorine-based anion exchange membrane, that is, the use of a cylindrical membrane, makes it possible to make the electrolytic cell more compact. Furthermore, in combination with a fluidized bed electrode, it becomes possible to perform metal precipitation and dissolution with high yield.
廃液中の金属地濃度は10−g〜3モル/lの広い範囲
K及び、好ましくは10−2〜104モル/lの範囲で
あることが望ましい。その廃液のpHは1〜7の範囲で
、好ましくは2〜4の範囲であることが望ましい。廃液
の供給方法は回分式かあるいは流通式のどちらも可能で
あるが、流通式の場合、供給速度は0.01〜10t/
dnlIIhrの広い範囲とし、廃液の温度、濃度およ
び電流により最適の流速を決定する。他の極室に使用す
る鉱酸水溶液の濃度には制限をもうけない。It is desirable that the metal concentration in the waste liquid ranges widely from 10-g to 3 mol/l, preferably from 10-2 to 104 mol/l. It is desirable that the pH of the waste liquid is in the range of 1 to 7, preferably in the range of 2 to 4. The waste liquid can be supplied by either a batch method or a flow method, but in the case of a flow method, the supply rate is 0.01 to 10 t/
dnlIIhr in a wide range, and determine the optimal flow rate depending on the temperature, concentration, and current of the waste liquid. There are no restrictions on the concentration of the mineral acid aqueous solution used in the other polar chambers.
本発明に用いる隔膜電解槽の陽極及び陰極としては、従
来公知の電極材料を用いることができるが目的とする電
解プロセスの電極反応に対【7、安価で低過電圧を示し
、かつ耐食性の優れた電極材料が適宜選択される。この
ような電極材料と17ては、Ti、 Ta、 Zr、
Nb等の耐食性基材の表面に1pt、工r、Rh等の白
金族金属及び/又は白金属金属の酸化物な被覆した電極
およびFe、 Oo、 Nj等の金属、又は、これらの
合金や、これらの表面に低温電圧を示す物質(例えばラ
ネーニッケル等)を被覆した陰極な用いることができる
。Conventionally known electrode materials can be used as the anode and cathode of the diaphragm electrolytic cell used in the present invention, but it is difficult to meet the electrode reaction of the intended electrolytic process. The electrode material is selected appropriately. Such electrode materials17 include Ti, Ta, Zr,
On the surface of a corrosion-resistant base material such as Nb, an electrode coated with a platinum group metal such as 1pt, Rh, and/or an oxide of platinum metal, and a metal such as Fe, Oo, Nj, or an alloy thereof, A cathode whose surface is coated with a substance exhibiting low-temperature voltage (for example, Raney nickel) can be used.
本発明における隔v8電解槽の電解温度は室温から10
0℃迄可能であり、電流密度は1A/dffllから5
0A/a?F/の範囲で実施することができる。The electrolysis temperature of the V8 electrolytic cell in the present invention ranges from room temperature to 10
It is possible down to 0℃, and the current density is 1A/dffll to 5
0A/a? It can be implemented within the range of F/.
以上述べた様に、特殊な構造を有するフッ素系陰イオン
交換膜を用いる全く新しい電解システムを完成し、水溶
性金属化合物な含む廃液から長時間安定に効率良く金#
jl!塩水溶液を生成することが可能となる。As mentioned above, we have completed a completely new electrolytic system that uses a fluorine-based anion exchange membrane with a special structure, and we have developed a completely new electrolytic system that uses a fluorine-based anion exchange membrane with a special structure.
jl! It becomes possible to generate an aqueous salt solution.
本発明の方法は、多くの利用分野が考えられるが、特に
金属イオンな多艦に排出する金属加]二王業や金属精錬
工業などの金属関連分野に広い用途を有しており、極め
て工業的価値の高いものである。The method of the present invention can be used in many fields, but it has a wide range of applications in metal-related fields such as metal processing and metal refining industries, where a large number of metal ions are discharged. It is of high value.
以下実施例を述べるが、本発明はこれに限定されるもの
ではない。Examples will be described below, but the present invention is not limited thereto.
実施例1
以下に示した組成の廃液を図1および図2に示す隔膜電
解槽において処理し、清浄な塩化ニッケル溶液を生成し
た。Example 1 A waste liquid having the composition shown below was treated in a diaphragm electrolytic cell shown in FIGS. 1 and 2 to produce a clean nickel chloride solution.
鉱酸水溶液の組成はα02モル/lの塩酸水溶液とした
・ 陰極のうち、隔膜電解槽に使用する
金属を析出させる電極にはチタン等の耐食性基材の表面
に、白金等の貴金属なメッキした不溶性電極か、あるい
は析出させる金属そのものを使用する。図2の(夏→に
示す電解溶解過程の陰極としては、酸に溶けない不溶性
電極を使用した。陽極は図19図2に示す両電極とも不
溶性電極を用いた。The composition of the mineral acid aqueous solution was a hydrochloric acid aqueous solution with α02 mol/l. Among the cathodes, the electrode for depositing metals used in the diaphragm electrolytic cell was plated with a noble metal such as platinum on the surface of a corrosion-resistant base material such as titanium. Either an insoluble electrode or the metal itself to be deposited is used. An insoluble electrode that does not dissolve in acid was used as the cathode in the electrolytic dissolution process shown in (Summer →) in FIG. 2. Insoluble electrodes were used as the anode for both electrodes shown in FIGS.
陰イオン交換膜の使用面積は2 dff/と[7、下記
の構造式
%式%)
で表わされ、さらに交換基が均一なフッ素系陰イオン交
換膜と、以前から市販されている炭化水素系陰イオン交
換膜(旭硝子製、セレミオン膜)を使用した。両極室液
の容積をそわぞれ1tとし、電解温度、電流密度な60
℃、 10 A / dtr/として、金属析出および
金属溶解の通電時間を両方とも2時間とした。ニッケル
析出の電流効率および塩化ニッケルの生成電流効率を表
1に示す。The area used for the anion exchange membrane is expressed as 2 dff/[7, the structural formula below (% formula %)].Furthermore, fluorine-based anion exchange membranes with uniform exchange groups and hydrocarbons, which have been commercially available for a long time, are used. A system anion exchange membrane (manufactured by Asahi Glass Co., Ltd., Selemion Membrane) was used. The volume of the liquid in both electrode chambers is 1 t, and the electrolysis temperature and current density are 60
℃, 10 A/dtr/, and the current application time for both metal deposition and metal dissolution was 2 hours. Table 1 shows the current efficiency for nickel deposition and the current efficiency for nickel chloride production.
表1
上記の電解を1日に2回の回数で繰り返し行い、両陰イ
オン交換膜の耐久性試験を行った。炭化水素系陰イオン
交換膜は陽極で発生する塩素ガス圧より劣化し、1t月
以内に浴電圧が急激に上昇し、電流効率が低下し、最終
的には膜が破壊され、隔膜として用をなさず、酸が陽極
室から陰極室に入り込み、析出した金属が溶解してしま
う。一方、フッ素系陰イオン交換膜においては、そのよ
うな劣化現象は見られず、3t月以上、安定に金属塩水
溶液を生成することができた。Table 1 The above electrolysis was repeated twice a day to test the durability of both anion exchange membranes. The hydrocarbon-based anion exchange membrane deteriorates due to the chlorine gas pressure generated at the anode, and within 1 ton of months, the bath voltage increases rapidly, the current efficiency decreases, and the membrane is eventually destroyed, rendering it useless as a diaphragm. Instead, acid enters the cathode chamber from the anode chamber and dissolves the precipitated metal. On the other hand, such a deterioration phenomenon was not observed in the fluorine-based anion exchange membrane, and an aqueous metal salt solution could be stably produced for more than 3 tons of months.
実施例2
以下に示した組成の廃液を図1および図2に示す隔膜電
解槽において処理し、清浄な塩化白金酸水溶液を生成1
7た。Example 2 Waste liquid with the composition shown below was treated in the diaphragm electrolytic cell shown in Figures 1 and 2 to produce a clean chloroplatinic acid aqueous solution.
7.
電流密度をI A /dn?にする以外、その他の実験
条件は実施例1と同じにした。Is the current density I A /dn? Other experimental conditions were the same as in Example 1.
白金析出および塩化白金酸の生成の電流効率を表2に示
す。The current efficiencies for platinum deposition and chloroplatinic acid production are shown in Table 2.
実施例1と同様の繰り返し電解による両陰イオン交換膜
の耐久試験の結果は、実施例1と同じで炭化水素系陰イ
オン交換膜は陽極で発生する塩素ガスにより劣化するの
に対し、フッ素系陰イオン交換膜ではそのような現象は
見られなかった。The results of the durability test of both anion exchange membranes by repeated electrolysis in the same manner as in Example 1 were the same as in Example 1. Hydrocarbon-based anion exchange membranes deteriorated due to chlorine gas generated at the anode, while fluorine-based anion exchange membranes deteriorated due to chlorine gas generated at the anode. No such phenomenon was observed with the anion exchange membrane.
図1は本発明における金属析出工程の電解システムの一
例を示すものであり、図2は本発明における金属溶解工
程の電解システムの一例を示すものである。
1、隔膜電解槽 11.隔膜電解槽2、陰極
12.陽極
到易極 1五陰極
4、陰極室 14.陽極室5賜極室
15.陰極室
6陰イオン交換膜 1&陰イオン交換膜l直流電源
装置 1Z直流電源装置特許出願人 東洋曹達工
業株式会社
図1
図2FIG. 1 shows an example of an electrolytic system for a metal deposition process in the present invention, and FIG. 2 shows an example of an electrolytic system for a metal melting process in the present invention. 1. Diaphragm electrolytic cell 11. Diaphragm electrolytic cell 2, cathode
12. Anode accessible pole 15 cathode 4, cathode chamber 14. Anode chamber 5 anode chamber
15. Cathode chamber 6 Anion exchange membrane 1 & Anion exchange membrane 1 DC power supply 1Z DC power supply Patent applicant Toyo Soda Kogyo Co., Ltd. Figure 1 Figure 2
Claims (5)
の陰極室に水溶性金属化合物を含む廃液を電解還元して
含有金属を陰極に析出させ、次いで該金属を陽極とし、
該金属塩溶液を生成させる金属の析出溶解法において、
下記一般式 ▲数式、化学式、表等があります▼ 〔ただし、X=FまたはCF_3、l=0または1〜5
の整数、m=0または1、n=1〜5の整数、p、qは
正の数であって、その比は2〜16である。Yは第四級
アンモニウム基〕で表わされる反復単位からなる共重合
体よりなる陰イオン交換膜を使用することを特徴とする
金属の析出溶解法。(1) A waste solution containing a water-soluble metal compound is electrolytically reduced in the cathode chamber of an electrolytic cell consisting of two chambers using an anion exchange membrane as a diaphragm to deposit the contained metal on the cathode, and then the metal is used as the anode,
In the metal precipitation dissolution method for producing the metal salt solution,
General formula below ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [However, X = F or CF_3, l = 0 or 1 to 5
m is an integer of 0 or 1, n is an integer of 1 to 5, p and q are positive numbers, and the ratio thereof is 2 to 16. A method for precipitation and dissolution of metals, characterized in that an anion exchange membrane made of a copolymer consisting of repeating units represented by Y is a quaternary ammonium group is used.
ただしR_1とR_2が一体となってテトラメチレン鎖
、ペンタメチレン鎖を形成してもよい。)Z^■=ハロ
ゲン陰イオン〕 で表わされる陰イオン交換膜を用いる特許請求の範囲第
1項記載の方法。(2) As a group containing a quaternary ammonium group, there are the following general formulas ▲ mathematical formulas, chemical formulas, tables, etc. ▼ [However, R_1, R_2, R_3 are lower alkyl groups (
However, R_1 and R_2 may be combined to form a tetramethylene chain or a pentamethylene chain. )Z^■=halogen anion] The method according to claim 1, using an anion exchange membrane represented by the following formula.
ただしR_1とR_2が一体となってテトラメチレン鎖
、ペンタメチレン鎖を形成してもよい。)R_4は水素
原子または低級アルキル基、Z^■=ハロゲン陰イオン
〕 で表わされる特許請求の範囲第1項記載の方法。(3) As a group containing a quaternary ammonium group, there are the following general formulas ▲ mathematical formulas, chemical formulas, tables, etc. ▼ [However, R_1, R_2, R_3 are lower alkyl groups (
However, R_1 and R_2 may be combined to form a tetramethylene chain or a pentamethylene chain. ) R_4 is a hydrogen atom or a lower alkyl group, Z^■=halogen anion] The method according to claim 1.
ただしR_1とR_2が一体となってテトラメチレン鎖
、ペンタメチレン鎖を形成してもよい。)R_4、R_
5は水素原子または低級アルキル基、Z^■=ハロゲン
陰イオン〕 で表わされる特許請求の範囲第1項記載の方法。(4) As a group containing a quaternary ammonium group, there are the following general formulas ▲ mathematical formulas, chemical formulas, tables, etc. ▼ [However, R_1, R_2, R_3 are lower alkyl groups (
However, R_1 and R_2 may be combined to form a tetramethylene chain or a pentamethylene chain. )R_4, R_
5 is a hydrogen atom or a lower alkyl group, Z^■=halogen anion] The method according to claim 1.
ことを特徴とする特許請求の範囲第1項、2項、3項又
は4項記載の方法。(5) The method according to claim 1, 2, 3 or 4, characterized in that an anion exchange membrane in which exchange groups are uniformly present is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23339885A JPS6293390A (en) | 1985-10-21 | 1985-10-21 | Method for depositing and dissolving metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23339885A JPS6293390A (en) | 1985-10-21 | 1985-10-21 | Method for depositing and dissolving metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6293390A true JPS6293390A (en) | 1987-04-28 |
Family
ID=16954454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23339885A Pending JPS6293390A (en) | 1985-10-21 | 1985-10-21 | Method for depositing and dissolving metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6293390A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02305987A (en) * | 1989-05-22 | 1990-12-19 | Kamioka Kogyo Kk | Single-electrode electrolytic cell and electrolytic method using the cell |
JPH02310387A (en) * | 1989-05-22 | 1990-12-26 | Kamioka Kogyo Kk | Single-electrode electrolytic cell and method for electrolysis using the cell |
-
1985
- 1985-10-21 JP JP23339885A patent/JPS6293390A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02305987A (en) * | 1989-05-22 | 1990-12-19 | Kamioka Kogyo Kk | Single-electrode electrolytic cell and electrolytic method using the cell |
JPH02310387A (en) * | 1989-05-22 | 1990-12-26 | Kamioka Kogyo Kk | Single-electrode electrolytic cell and method for electrolysis using the cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2717887C (en) | Electrochemical process for the recovery of metallic iron and sulfuric acid values from iron-rich sulfate wastes, mining residues and pickling liquors | |
US3480523A (en) | Deposition of platinum-group metals | |
CN105821436A (en) | Two-step process chlorine-alkali electrolytic method and device adopting double electrolytic cells based on three-electrode system | |
JPS634920B2 (en) | ||
Yan et al. | An efficient Two-Chamber Electrodeposition-Electrodialysis combination craft for nickel recovery and phosphorus removal from spent electroless nickel plating bath | |
JPH02197590A (en) | Redox reaction method and electrolytic bath for it | |
CN102839389B (en) | Novel production method of electro-depositing and refining metal chloride by membrane process | |
Walsh | Electrode reactions in metal finishing | |
Cortés-Contreras et al. | Simultaneous cathodic and anodic electrodeposition of metal ions from e-waste | |
US4221643A (en) | Process for the preparation of low hydrogen overvoltage cathodes | |
CN109735710B (en) | Method for electrolyzing silver from silver-plated connector waste | |
JPS6293390A (en) | Method for depositing and dissolving metal | |
JPS63190187A (en) | Point of sodium permanent anode | |
Scott et al. | An analysis of metal recovery by electrodeposition from mixed metal ion solutions—Part II. Electrodeposition of cadmium from process solutions | |
JPS62105922A (en) | Recovery of metal and acid | |
Walsh | Electrochemical cell reactions in metal finishing | |
US4436599A (en) | Method for making a cathode, and method for lowering hydrogen overvoltage in a chloralkali cell | |
US4276134A (en) | Method for removing chlorate from caustic solutions with electrolytic iron | |
JPS62297492A (en) | Method for plating aluminum by electrolytic activation | |
US4310395A (en) | Process for electrolytic recovery of nickel from solution | |
JPS5985879A (en) | Electric refinement | |
JPH032959B2 (en) | ||
JPS62290891A (en) | Method for recovering metal from waste cyanogen liquid | |
Bapu et al. | Electrolytic recovery of silver from low concentrated silver cyanide spent plating solutions | |
JPS6056082A (en) | Method for electrolyzing aqueous alkali chloride solution |