JPH08243749A - Gas shield arc welding method - Google Patents

Gas shield arc welding method

Info

Publication number
JPH08243749A
JPH08243749A JP5082395A JP5082395A JPH08243749A JP H08243749 A JPH08243749 A JP H08243749A JP 5082395 A JP5082395 A JP 5082395A JP 5082395 A JP5082395 A JP 5082395A JP H08243749 A JPH08243749 A JP H08243749A
Authority
JP
Japan
Prior art keywords
welding
wire
weight
amount
molten pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5082395A
Other languages
Japanese (ja)
Other versions
JP2922814B2 (en
Inventor
Hitoshi Matsui
仁志 松井
Tetsuo Suga
哲男 菅
Masaharu Sato
正晴 佐藤
Toshihiko Nakano
利彦 中野
Susumu Imaoka
進 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Toyota Motor Corp
Original Assignee
Kobe Steel Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Toyota Motor Corp filed Critical Kobe Steel Ltd
Priority to JP5082395A priority Critical patent/JP2922814B2/en
Publication of JPH08243749A publication Critical patent/JPH08243749A/en
Application granted granted Critical
Publication of JP2922814B2 publication Critical patent/JP2922814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE: To obtain the welding method having good appearance and shape of bead by using the wire for welding of specified diameter, composition and welding under conditions of the specified shield gas, wire feed speed, peak current value, etc. CONSTITUTION: A diameter of wire for welding has nominal 1.2mm, a composition consists of, by weight, 0.03-0.10% C, 0.5-1.2% Si, 0.7-1.3% Mn, 0.005-0.03% S, 0.001-0.015% 0 and the balance Fe with inevitable impurities. Ti and Al in inevitable impurities are regulated, further, Si+Mn, Si×(Si+Mn) are regulated. By using this wire, a wire feed speed in the shield gas mixing 3-7% 0 to Ar is set to 4-7m/min, an output current of welding power source is set to 380-460A peak current value in pulse wave form of 0.8-2.5ms peak period, pulse MAG welding is executed with spray arc. By this method, spatter as well as burn through are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車製造工程等の薄
鋼板の溶接に好適であって、溶接電流及び溶接速度の低
減並びにワイヤの細径化等を行うことなく、いわゆる鋼
板の「溶落ち」を防止して健全な溶接部を得ることがで
きるガスシールドアーク溶接法に関する。
BACKGROUND OF THE INVENTION The present invention is suitable for welding thin steel plates in automobile manufacturing processes and the like, and is used for so-called "melting of steel plates" without reducing the welding current and welding speed and reducing the wire diameter. The present invention relates to a gas shield arc welding method capable of preventing "falling" and obtaining a sound weld.

【0002】[0002]

【従来の技術】薄鋼板のガスシールドアーク溶接におけ
る溶落ち防止策としては、従来、主として、通常の直
径1.2mmのワイヤを用いて低電流・低速度で溶接す
るか、又は細径(直径0.6〜1.0mm等)ワイヤ
を用いて低電流で溶接する等、溶接条件面からの対応が
一般的であり、シールドガスとしては通常のCO2又は
Ar−20%CO2を用いている。
2. Description of the Related Art As a burn-through preventive measure in gas shielded arc welding of thin steel sheets, conventionally, a wire having a normal diameter of 1.2 mm is mainly used for welding at a low current and a low speed, or a small diameter (diameter). (0.6-1.0 mm etc.) Welding with a low current using a wire, etc. is generally considered from the viewpoint of welding conditions, and ordinary CO 2 or Ar-20% CO 2 is used as the shielding gas. There is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来技術において、直径が1.2mmのワイヤを用い
る場合は、溶接速度が低下するため溶接作業の能率が低
下するという難点がある。また、細径(直径0.6〜
1.0mm等)のワイヤを用いる場合は、直径1.2m
mのワイヤに比してワイヤ狙い位置の許容範囲が狭くな
ると共に、ワイヤの送給性が劣化するため、溶接欠陥が
発生し易くなるという欠点がある。また、細径ワイヤ専
用のコンタクトチップ及びコンジットライナー等を使用
する必要があり、部品管理が必要となる等の点で、大き
な課題がある。
However, in the above-mentioned conventional technique, when a wire having a diameter of 1.2 mm is used, there is a drawback that the welding speed is lowered and the efficiency of the welding operation is lowered. In addition, small diameter (diameter 0.6 ~
When using a wire (1.0 mm, etc.), the diameter is 1.2 m
Since the allowable range of the wire aiming position is narrower than the wire of m and the wire feedability is deteriorated, welding defects are likely to occur. In addition, it is necessary to use a contact tip, a conduit liner, or the like exclusively for the small-diameter wire, and there is a big problem in that parts management is required.

【0004】本発明はかかる問題点に鑑みてなされたも
のであって、溶接電流及び溶接速度の低下、並びにワイ
ヤの細径化を行うことなく、即ち、ワイヤの送給性劣化
及び溶接欠陥の発生を防止しつつ、また、格別の部品管
理を要することなく、溶落ちを防止し、健全な溶接部を
得ることができるガスシールドアーク溶接法を提供する
ことを目的とする。
The present invention has been made in view of the above problems, and does not reduce the welding current and the welding speed and reduce the diameter of the wire, that is, the deterioration of the feedability of the wire and the welding defect. It is an object of the present invention to provide a gas shielded arc welding method capable of preventing burn-through and obtaining a sound welded portion while preventing the occurrence thereof and requiring no special part management.

【0005】[0005]

【課題を解決するための手段】本発明に係るガスシール
ドアーク溶接法は、厚さ1.2mm〜1.6mmの薄鋼
板を対象とするガスシールドアーク溶接法において、直
径が公称1.2mmであって、C:0.03〜0.10
重量%、Si:0.5〜1.2重量%、Mn:0.7〜
1.3重量%、S:0.005〜0.03重量%、O:
0.001〜0.015重量%、残部が鉄及び不可避的
不純物からなり、この不可避的不純物においてTi:
0.01重量%以下、Al:0.01重量%以下に規制
し、更にSi+Mn:1.3〜2.3重量%、Si×
(Si+Mn):0.75〜2.45に規制した化学組
成を有する溶接用ワイヤを使用し、Arに3〜7体積%
のO2を混合したシールドガス中でワイヤ送給速度を4
〜7m/minとし、溶接電源の出力電流を、ピーク電
流値が380〜460A、ピーク期間が0.8〜2.5
msのパルス波形として、スプレーアークにてパルスマ
グ溶接することを特徴とする。
The gas shielded arc welding method according to the present invention is a gas shielded arc welding method for a thin steel plate having a thickness of 1.2 mm to 1.6 mm. Yes, C: 0.03-0.10
% By weight, Si: 0.5 to 1.2% by weight, Mn: 0.7 to
1.3% by weight, S: 0.005-0.03% by weight, O:
0.001 to 0.015% by weight, the balance consisting of iron and unavoidable impurities, in which Ti:
0.01% by weight or less, Al: 0.01% by weight or less, and Si + Mn: 1.3 to 2.3% by weight, Si ×
(Si + Mn): using a welding wire having a chemical composition regulated to 0.75 to 2.45, and 3 to 7% by volume in Ar
Of O 2 4 the wire feed rate in mixed shielding gas to
The output current of the welding power source is 380 to 460 A and the peak period is 0.8 to 2.5.
It is characterized in that pulse-mag welding is performed by a spray arc as a pulse waveform of ms.

【0006】[0006]

【作用】本発明においては、ワイヤ組成とシールドガス
組成の組み合わせを最適化することにより、従来の溶接
方法と比較して溶込みを小さくすると共に溶融池の広が
りを拡大する。これにより、従来方法では鋼板の溶落ち
又は開先面への溶融池の架橋不良等が発生する継ぎ手に
対しても、溶接電流及び溶接速度の低減並びにワイヤの
細径化を行うことなく溶接することが可能となる。ま
た、溶接電源の出力電流波形を特許請求の範囲に規定す
るように調整し、スプレーアークにて溶接することによ
り、溶滴移行が1溶滴/1パルスとなるパルス波形とす
ることができ、溶融池の安定性が向上して溶落ち及び架
橋不良等を更に一層抑制することができる。
In the present invention, by optimizing the combination of the wire composition and the shield gas composition, the penetration is reduced and the spread of the molten pool is expanded as compared with the conventional welding method. As a result, in the conventional method, welding is performed without reducing welding current and welding speed and reducing the diameter of the wire even for joints in which burn-through of steel sheet or bridging failure of the weld pool to the groove surface occurs. It becomes possible. Also, by adjusting the output current waveform of the welding power source as specified in the claims and welding with a spray arc, it is possible to obtain a pulse waveform in which droplet transfer is 1 droplet / 1 pulse, The stability of the molten pool is improved, and burn-through and cross-linking failure can be further suppressed.

【0007】従って、溶接(アーク発生)時間の短縮及
び溶接欠陥に対する手直し工数の低減などの効果によ
り、溶接全体の能率が向上すると共に、継ぎ手品質も改
善される。
Therefore, the efficiency of the entire welding is improved and the quality of the joint is also improved by the effects of shortening the welding (arc generation) time and reducing the number of man-hours for repairing the welding defects.

【0008】以下、本発明におけるワイヤ組成及び溶接
条件の限定理由について説明する。ワイヤの直径:公称1.2mm ワイヤ直径が公称1.2mm未満では、直径が適正範囲
より小さいためにアーク及び溶融池が小さくなり、ワイ
ヤ狙い位置の許容範囲が減少する。また、ワイヤ断面積
の減少によってワイヤの剛性が低下し、湾曲した送給系
ではワイヤの曲がり及び座屈の発生頻度が増大する。そ
のため、ワイヤの狙いずれ及び送給不良によって溶落ち
及び架橋不良等が発生し易くなる。
The reasons for limiting the wire composition and welding conditions in the present invention will be described below. Wire diameter: Nominal 1.2 mm When the wire diameter is less than 1.2 mm, the arc and molten pool are smaller because the diameter is smaller than the proper range, and the allowable range of the wire aiming position is reduced. In addition, the rigidity of the wire decreases due to the decrease in the wire cross-sectional area, and the frequency of occurrence of bending and buckling of the wire increases in a curved feeding system. Therefore, burn-through, cross-linking failure, and the like are likely to occur due to the aim of the wire and poor feeding.

【0009】ワイヤ直径が公称1.2mmを超えると、
ワイヤ断面積の増加によって電流密度が低下し、溶滴移
行及び溶融池が不安定となるため、開先面への溶融池の
架橋不良等が発生し易くなる。一方、溶滴移行及び溶融
池が安定するように溶接電流を増加させると、溶込みが
深くなり、溶落ちが発生し易くなる。また、断面積の増
加によって剛性が増大し、送給抵抗が増加する。このた
め、湾曲した送給系ではワイヤの送給不良により、溶落
ち及び架橋不良等の発生頻度が増大する。
If the wire diameter exceeds 1.2 mm nominally,
The current density decreases due to the increase in the wire cross-sectional area, and the droplet transfer and the molten pool become unstable, so that bridging failure of the molten pool to the groove surface is likely to occur. On the other hand, if the welding current is increased so that the droplet transfer and the molten pool are stable, the penetration becomes deeper and the burn-through easily occurs. In addition, the increase in cross-sectional area increases the rigidity and the feed resistance. For this reason, in a curved feeding system, due to poor feeding of the wire, the frequency of occurrence of burn-through and defective bridging increases.

【0010】図1は横軸にワイヤの直径をとり、縦軸に
ルート間隔をとって、ワイヤ径と溶接可能なルート間隔
との関係を示すグラフ図である。ワイヤ径が1.2mm
の場合に、最大のルート間隔が得られることがわかる。
FIG. 1 is a graph showing the relationship between the wire diameter and the weldable root interval, with the horizontal axis representing the wire diameter and the vertical axis representing the root interval. Wire diameter is 1.2mm
In the case of, it can be seen that the maximum route interval is obtained.

【0011】従って、アーク及び溶融池の広がりが比較
的大きく、溶滴移行及び溶融池が安定し、且つワイヤの
狙いずれ及び送給不良が発生し難いという観点から、適
用ワイヤの直径は公称1.2mmとする。シールドガス組成:Arに3〜7体積%O2を加えた混
合ガス Ar−O2系の雰囲気はAr−CO2系に比して著しく酸
化性が強く、極少量のO2を添加することによって溶融
金属の酸素量は増加する。そのため、溶融金属の表面張
力及び粘度の低下が顕著となり、開先面への溶融池の架
橋が容易になる。また、溶融金属の表面張力及び粘度に
及ぼすO2の影響はCO2に比して大きいため、Ar−O
2系では、Ar−CO2系に比してシールドガス中のAr
量を増加できる。Arの電位傾度はO2及びCO2に比し
て小さいため、ワイヤ送給速度とアーク長を一定にした
溶接では、Ar含有量が増加するにつれてアーク電圧は
低下し、溶込み深さが小さくなる。
Therefore, from the viewpoint that the arc and the molten pool are relatively large, the droplet transfer and the molten pool are stable, and the aim of the wire and the defective feeding are less likely to occur, the diameter of the applicable wire is nominally 1 mm. 0.2 mm. Shielding gas composition: a mixture of Ar and 3 to 7 volume% O 2
The atmosphere of the combined gas Ar-O 2 system has a remarkably strong oxidizing property as compared with the Ar-CO 2 system, and the oxygen content of the molten metal increases by adding a very small amount of O 2 . Therefore, the surface tension and the viscosity of the molten metal are significantly reduced, and the molten pool is easily bridged to the groove surface. Further, since the influence of O 2 on the surface tension and viscosity of the molten metal is larger than that of CO 2 , Ar—O
In the 2 system, compared to the Ar-CO 2 system, Ar in the shield gas
You can increase the quantity. Since the potential gradient of Ar is smaller than that of O 2 and CO 2 , in welding with a constant wire feed rate and arc length, the arc voltage decreases as the Ar content increases, and the penetration depth decreases. Become.

【0012】従って、開先面への溶融池の架橋性及び溶
込み深さの観点より、シールドガスはAr−O2系とす
る。このAr−O2系のシールドガスにおいて、O2含有
量が3体積%未満の場合は、溶融金属の表面張力及び粘
度の減少量が小さいため、開先面への溶融池の架橋性が
不十分となり、ビード外観及び形状不良等が発生し易く
なる。
Therefore, from the viewpoint of the cross-linkability of the molten pool to the groove surface and the penetration depth, the shield gas is an Ar--O 2 system. In this Ar—O 2 type shield gas, when the O 2 content is less than 3% by volume, the surface tension and viscosity decrease amount of the molten metal are small, so that the cross-linking property of the molten pool to the groove surface is unsatisfactory. This is sufficient, and the bead appearance and shape defect are likely to occur.

【0013】一方、Ar−O2シールドガス系でO2含有
量が7体積%を超えると、溶融金属の表面張力及び粘度
の減少量が過剰となり、開先の隙間(即ち、ルートギャ
ップ)に溶融金属が入り込む等してビード外観・形状が
劣化し易くなる。また、Ar含有量の減少により、ワイ
ヤ送給速度とアーク長を一定にした溶接ではアーク電圧
が増大し、溶込み深さが大きくなる。このため、溶落ち
が発生し易くなる。
On the other hand, in the Ar-O 2 shield gas system, when the O 2 content exceeds 7% by volume, the surface tension and viscosity of the molten metal decrease excessively, resulting in a gap (ie, a root gap) in the groove. The appearance and shape of the bead are likely to deteriorate due to molten metal entering. Further, due to the decrease in the Ar content, the arc voltage increases and the penetration depth increases in welding in which the wire feeding speed and the arc length are constant. Therefore, burn-through easily occurs.

【0014】図2は横軸にO2ガスの添加率をとり、縦
軸にルート間隔をとってO2添加率と溶接可能なルート
間隔との関係を示すグラフ図である。O2添加率が3〜
7%O2の場合に、最大のルート間隔が得られる。
FIG. 2 is a graph showing the relationship between the O 2 addition rate and the weldable root interval, with the horizontal axis representing the O 2 gas addition rate and the vertical axis representing the root interval. O 2 addition rate is 3 ~
The maximum root spacing is obtained with 7% O 2 .

【0015】従って、開先面への溶融池の架橋性及び溶
込み深さの点より、シールドガス組成はArに3〜7体
積%のO2を添加した混合ガスとする。ワイヤ送給速度:4〜7m/min 前記ワイヤ系とシールドガス組成の組み合わせにおい
て、ワイヤ送給速度が4m/min未満の場合は溶接電
源の出力電流波形(パルス波形)を所定のものに調整し
てもスプレーアークとすることは困難であり、ショート
アークによるスパッタの発生が増加する。
Therefore, in view of the crosslinkability of the molten pool to the groove surface and the penetration depth, the shield gas composition is a mixed gas in which 3 to 7% by volume of O 2 is added to Ar. Wire feeding speed: 4 to 7 m / min In the combination of the wire system and the shield gas composition, if the wire feeding speed is less than 4 m / min, adjust the output current waveform (pulse waveform) of the welding power source to a predetermined one. However, it is difficult to use a spray arc, and the occurrence of spatter due to a short arc increases.

【0016】スプレーアークとは、溶滴径がワイヤ径
よりも小さく、溶滴が溶融池に短絡することなく移行
することが特徴である。これを達成するために必要な力
としては、電磁ピンチ力が重要である。この力はワイヤ
送給速度の増加、即ち溶接電流の増加に伴って増大す
る。
The spray arc is characterized in that the droplet diameter is smaller than the wire diameter and the droplets migrate to the molten pool without short circuit. Electromagnetic pinch force is important as the force required to achieve this. This force increases with increasing wire feed rate, ie welding current.

【0017】本発明においては、ワイヤ送給速度が4m
/min未満になると、溶接電流が小さいため、スプレ
ーアークを達成するのに十分な電磁ピンチ力が得られな
い。これにより、溶滴は溶融池と短絡して移行し、いわ
ゆるショートアークとなる。
In the present invention, the wire feeding speed is 4 m.
If it is less than / min, the welding current is so small that sufficient electromagnetic pinch force to achieve the spray arc cannot be obtained. As a result, the droplets are short-circuited with the molten pool and migrate to form a so-called short arc.

【0018】ショートアークでは、溶滴が溶融池に短絡
してアークが消失し、溶融池への移行が終了する際にア
ークが再発生する。このとき、特に本発明のようなパル
スマグ溶接では、ピーク電流である400A程度の高い
電流によって強いアーク力が発生するため、溶滴又は溶
融池内の溶融金属が吹き飛ばされて大粒のスパッタが多
量に発生する。
In the short arc, the droplet is short-circuited to the molten pool, the arc disappears, and the arc is regenerated when the transfer to the molten pool is completed. At this time, particularly in pulsed mag welding as in the present invention, a strong arc force is generated by a high current of about 400 A which is a peak current, so that the droplets or the molten metal in the molten pool are blown off and a large amount of spatter is generated. To do.

【0019】このショートアークではアーク及び溶融池
の広がりがスプレーアークよりも小さいため、開先へ溶
融池を架橋させるには溶接速度を低下させる必要があ
り、好ましくない。
Since the spread of the arc and the molten pool in this short arc is smaller than that of the spray arc, it is necessary to reduce the welding speed in order to bridge the molten pool to the groove, which is not preferable.

【0020】ワイヤ送給速度が7m/minを超える
と、スプレーアークは容易に得られるが、溶接電流が増
加するため、溶込み深さ等が増大して溶落ちが発生し易
くなる。
When the wire feeding speed exceeds 7 m / min, a spray arc can be easily obtained, but since the welding current increases, the penetration depth and the like increase, and burn-through easily occurs.

【0021】従って、スパッタ発生量、溶接速度及び溶
込み深さの点より、ワイヤ送給速度は4〜7m/min
とする。図3に示すように、ワイヤ送給速度が4〜7m
/minの場合にスパッタが少なく、溶接可能なルート
間隔が大きいことがわかる。溶接電源の出力電流:ピーク電流が380〜460A、
ピーク期間が0.8〜2.5msのパルス波形 前記ワイヤ径、シールドガス組成及びワイヤ送給速度の
組み合わせにおいて、ピーク電流が380A未満の場合
には、ピーク期間等のパルス条件を調整しても溶滴移行
を1溶滴/1パルスとすることは困難であり、溶滴移行
が乱れるためにスパッタ発生量が増加する。
Therefore, the wire feeding speed is 4 to 7 m / min in view of the amount of spatter generation, the welding speed and the penetration depth.
And As shown in FIG. 3, the wire feeding speed is 4 to 7 m.
In the case of / min, it is found that there is little spatter and the weldable route interval is large. Output current of welding power source: peak current of 380-460A,
Pulse waveform with a peak period of 0.8 to 2.5 ms In the combination of the wire diameter, the shield gas composition and the wire feeding speed, if the peak current is less than 380 A , the pulse conditions such as the peak period may be adjusted. It is difficult to make the droplet transfer one droplet / one pulse, and since the droplet transfer is disturbed, the spatter generation amount increases.

【0022】ピーク電流が460Aを超えると、ピーク
期間等のパルス条件を調整しても、溶接入熱量の増加に
よって溶込み深さが増大し、溶落ちが発生し易くなる。
If the peak current exceeds 460 A, even if the pulse conditions such as the peak period are adjusted, the penetration depth increases due to an increase in the welding heat input amount, and the burn-through easily occurs.

【0023】ピーク電流が380〜460Aの範囲で溶
滴移行を1溶滴/パルスとするには、ピーク期間を0.
8〜2.5msの範囲に設定する必要がある。その範囲
外では1溶滴/1パルスが得られないため、溶滴移行が
乱れてスパッタ発生量が増加する。
In order to set the droplet transfer to 1 droplet / pulse in the peak current range of 380 to 460 A, the peak period is set to 0.
It is necessary to set it in the range of 8 to 2.5 ms. Outside the range, one droplet / one pulse cannot be obtained, so the droplet transfer is disturbed and the spatter generation amount increases.

【0024】図4は横軸にピーク期間をとり、縦軸にピ
ーク電流をとって、これらのパルス波形と溶落ちスパッ
タとの関係を示すグラフ図である。この図4に示すよう
に、本発明の範囲を外れると、溶落ちが発生し、又はス
パッタが多発して溶滴移行が不安定になる。
FIG. 4 is a graph showing the relationship between these pulse waveforms and burn-through sputtering, with the horizontal axis representing the peak period and the vertical axis representing the peak current. As shown in FIG. 4, outside the range of the present invention, burn-through occurs or spatter frequently occurs, and the droplet transfer becomes unstable.

【0025】従って、溶接電源の出力電流は、ピーク電
流が380〜460A、ピーク期間が0.8〜2.5m
sのパルス波形とする。溶接用ワイヤの化学組成 C:0.03〜0.10重量% Cは溶滴の細粒化作用を有しており、スパッタ発生量の
低減を目的として添加する。C含有量が0.03重量%
未満では、溶滴の細粒化が不十分であるため、スパッタ
の発生量及び大きさの低減に関して良好な効果が得られ
ない。一方、C含有量が0.10重量%を超えると小粒
のスパッタの発生量が増加する。また、薄板の高速溶接
では溶接金属の強度及び硬さが母材に対して過大とな
る。そして、Cは高温割れ誘起元素であるため、割れが
発生する危険性が増大する。従って、Cの添加量は0.
03〜0.10重量%とする。Si:0.5〜1.2重量% Siは通常の脱酸作用に加えてワイヤの電気抵抗率を高
める作用を有しており、同一ワイヤ送給速度では、添加
量の増加に伴って溶接電流を低減することが可能であ
る。これにより、溶込み深さが減少して溶落ちの発生が
抑制される。このため、Siは溶融池の粘度及び表面張
力の適正化、溶込み深さの低減及び脱酸不足による気孔
の発生防止を目的として添加する。
Therefore, the output current of the welding power source has a peak current of 380 to 460 A and a peak period of 0.8 to 2.5 m.
Let s be a pulse waveform. Chemical composition C of welding wire : 0.03 to 0.10% by weight C has the effect of atomizing droplets, and is added for the purpose of reducing the amount of spatter generated. C content is 0.03% by weight
If the amount is less than 1, the atomization of the droplets is insufficient, so that a good effect cannot be obtained with respect to the reduction of the amount and size of spatter. On the other hand, when the C content exceeds 0.10% by weight, the amount of spatters of small particles increases. Further, in high-speed welding of thin plates, the strength and hardness of the weld metal become excessive with respect to the base metal. Since C is a high temperature crack inducing element, the risk of cracking increases. Therefore, the addition amount of C is 0.
It is set to 03 to 0.10% by weight. Si: 0.5 to 1.2 wt% Si has a function of increasing the electrical resistivity of the wire in addition to the normal deoxidizing function, and at the same wire feeding speed, welding increases with the addition amount. It is possible to reduce the current. This reduces the penetration depth and suppresses the occurrence of burn-through. Therefore, Si is added for the purpose of optimizing the viscosity and surface tension of the molten pool, reducing the penetration depth, and preventing the generation of pores due to insufficient deoxidation.

【0026】Si添加量が0.5重量%未満では溶接電
流の減少量が小さく、溶込み深さの低減は顕著ではな
い。このため、溶落ちの発生防止に十分な効果が得られ
ない。また、脱酸作用が小さいため、溶融池の粘度及び
表面張力が過度に減少してルートギャップに溶融金属が
入り込み、ビード外観及び形状が劣化する。更に、脱酸
不足による気孔も発生し易くなる。
If the amount of Si added is less than 0.5% by weight, the amount of decrease in welding current is small and the decrease in penetration depth is not remarkable. For this reason, a sufficient effect for preventing the occurrence of burn-through cannot be obtained. Further, since the deoxidizing action is small, the viscosity and surface tension of the molten pool are excessively reduced, the molten metal enters the root gap, and the bead appearance and shape are deteriorated. Further, pores are more likely to occur due to insufficient deoxidation.

【0027】一方、Si含有量が1.2重量%を超える
と、脱酸作用によって溶融池の粘度及び表面張力の増加
が過剰となり、開先面への溶融池の架橋性が低下するた
め、ビード外観及び形状が劣化する。また、薄板の高速
溶接では溶接金属の強度及び硬さが母材に対して過大と
なる。従って、Siの添加量は0.5〜1.2重量%と
する。Mn:0.7〜1.3重量% Mnは溶融池の粘度及び表面張力の適正化と脱酸不足に
よる気孔の発生防止を目的として添加する。Mn含有量
が0.7重量%未満では脱酸作用が小さいため、Siと
同様に溶融池の粘度及び表面張力が過度に減少してルー
トギャップに溶融金属が入り込み、ビード外観及び形状
が劣化する。また、脱酸不足による気孔も発生し易くな
る。一方、Mn含有量が1.3重量%を超えると脱酸作
用によって溶融池の粘度及び表面張力の増加が過剰とな
り、開先面への溶融池の架橋性が低下するため、ビード
外観及び形状が劣化する。また、薄板の高速溶接では溶
接金属の強度及び硬さが母材に対して過大となる。従っ
て、Mnの添加量は0.7〜1.3重量%とする。S:0.005〜0.03重量% Sはそれ単体で溶融金属の表面張力を低下させる作用が
あるため、添加量の増加によって溶融池の表面張力が減
少し、開先面への架橋性が向上する。また、溶滴の細粒
化によってスパッタ発生量が減少する。これらの効果を
目的としてSを添加する。
On the other hand, when the Si content exceeds 1.2% by weight, the viscosity and surface tension of the molten pool increase excessively due to the deoxidizing action, and the crosslinkability of the molten pool to the groove surface decreases, The bead appearance and shape are deteriorated. Further, in high-speed welding of thin plates, the strength and hardness of the weld metal become excessive with respect to the base metal. Therefore, the amount of Si added is 0.5 to 1.2% by weight. Mn: 0.7 to 1.3 wt% Mn is added for the purpose of optimizing the viscosity and surface tension of the molten pool and preventing the generation of pores due to insufficient deoxidation. If the Mn content is less than 0.7% by weight, the deoxidizing effect is small, so that the viscosity and surface tension of the molten pool are excessively reduced as in the case of Si, the molten metal enters the root gap, and the bead appearance and shape are deteriorated. . In addition, pores are more likely to occur due to insufficient deoxidation. On the other hand, if the Mn content exceeds 1.3% by weight, the viscosity and surface tension of the molten pool increase excessively due to the deoxidizing action, and the crosslinkability of the molten pool to the groove surface decreases, so the bead appearance and shape Deteriorates. Further, in high-speed welding of thin plates, the strength and hardness of the weld metal become excessive with respect to the base metal. Therefore, the amount of Mn added is 0.7 to 1.3% by weight. S: 0.005 to 0.03% by weight Since S alone has the effect of lowering the surface tension of the molten metal, the surface tension of the molten pool decreases with an increase in the addition amount, and the crosslinkability to the groove surface Is improved. In addition, the amount of spatter generated is reduced by making the droplets finer. S is added for the purpose of these effects.

【0028】S添加量が0.005重量%未満では溶融
池の表面張力を低減する効果が小さいため、開先面への
架橋性の向上は顕著でない。また、溶滴の細粒化効果が
小さく、スパッタ発生量の低減も十分でない。一方、S
添加量が0.03重量%を超えると溶融池の表面張力の
減少が過剰となり、ルートギャップに溶融金属が入り込
むためビード外観及び形状が劣化する。また、溶滴の表
面張力も過度に減少してワイヤからの離脱が不安定とな
るため、スパッタ発生量が増加する。更に、Sは高温割
れ誘起元素であるため、割れが発生する危険性が増大す
る。従って、Sの添加量は0.005〜0.03重量%
とする。O:0.001〜0.015重量% Oはワイヤ中にSi及びMn等の酸化物として、また、
ワイヤ表面には塗布油の成分として含まれており、溶滴
及び溶融池の粘度及び表面張力等に影響を及ぼす。その
ため、架橋不良及びスパッタ発生量の増加等を防止する
観点より、それらの物性を適正化するために、O添加量
を所定範囲に規定する。
If the amount of S added is less than 0.005% by weight, the effect of reducing the surface tension of the molten pool is small, so the crosslinkability to the groove surface is not significantly improved. Further, the effect of atomizing the droplets is small, and the amount of spatter generated is not sufficiently reduced. On the other hand, S
If the addition amount exceeds 0.03% by weight, the surface tension of the molten pool is excessively reduced, and molten metal enters the root gap, so that the bead appearance and shape are deteriorated. Further, the surface tension of the droplets is excessively reduced and the detachment from the wire becomes unstable, so that the spatter generation amount increases. Furthermore, since S is a hot crack inducing element, the risk of cracking increases. Therefore, the amount of S added is 0.005 to 0.03% by weight.
And O: 0.001 to 0.015% by weight O is an oxide such as Si and Mn in the wire,
It is contained on the wire surface as a component of the applied oil and affects the viscosity and surface tension of the droplets and molten pool. Therefore, from the viewpoint of preventing cross-linking failure and increase in spatter generation amount, the O addition amount is specified within a predetermined range in order to optimize the physical properties thereof.

【0029】O含有量が0.001重量%未満では溶滴
の表面張力が過度に増加するため、溶滴径が増大して大
粒のスパッタが発生する。一方、O含有量が0.015
重量%を超えると、溶滴及び溶融池の粘度並びに表面張
力の減少が過剰となるため、溶滴移行が不安定となって
スパッタ発生量が増加したり、ビード外観及び形状が劣
化する。従って、Oの含有量は0.001〜0.015
重量%とする。不可避的不純物中のTi、Al:0.01重量%以下 Ti及びAlは強脱酸元素であるため、Ti及びAl含
有量が夫々0.01重量%を超えると溶融池の酸素量が
減少して粘度及び表面張力が増加する。これによって、
開先面への溶融池の架橋性が低下し、ビード外観及び形
状が劣化する。また、溶滴の表面張力も増加して溶滴が
大きくなるため、大粒スパッタの発生量が増加する。従
って、Ti及びAlの含有量は夫々0.01重量%以下
とする。Si+Mn:1.3〜2.3重量% Si及びMnの添加量が前述範囲内であっても、それら
の合計量によっては、開先面への架橋不良並びにビード
外観及び形状不良が発生する場合がある。
When the O content is less than 0.001% by weight, the surface tension of the droplets excessively increases, so that the droplet diameter increases and large spatters are generated. On the other hand, O content is 0.015
When the content is more than the weight%, the viscosity of the droplets and molten pool and the surface tension are excessively reduced, so that the droplet transfer becomes unstable, the amount of spatter is increased, and the bead appearance and shape are deteriorated. Therefore, the content of O is 0.001 to 0.015.
Weight% Ti and Al in unavoidable impurities: 0.01 wt% or less Since Ti and Al are strong deoxidizing elements, if the Ti and Al contents exceed 0.01 wt%, respectively, the oxygen content of the molten pool decreases. Viscosity and surface tension increase. by this,
The cross-linking property of the molten pool to the groove surface decreases, and the bead appearance and shape deteriorate. Further, since the surface tension of the droplet also increases and the droplet becomes large, the generation amount of large-sized spatter increases. Therefore, the Ti and Al contents are each set to 0.01% by weight or less. Si + Mn: 1.3 to 2.3 wt% Even if the added amount of Si and Mn is within the above range, depending on the total amount of Si and Mn, defective crosslinking or bead appearance and shape may occur depending on the total amount. There is.

【0030】即ち、Si+Mnの総量が1.3重量%未
満では脱酸作用が小さいため、溶融池の粘度及び表面張
力が過度に減少してルートギャップに溶融金属が入り込
み、ビード外観及び形状が劣化する。一方、Si+Mn
の総量が2.3重量%を超えると、溶融池の粘度及び表
面張力の増加が過剰となり、開先面への溶融池の架橋不
良が発生し易くなる。従って、Si及びMnの添加量の
総和は1.3〜2.3重量%とする。Si×(Si+Mn):0.75〜2.45 Si添加量及びSiとMnの添加量の総和が前記範囲内
であっても、それらの積によっては溶落ち、架橋不良又
はビード外観及び形状不良が発生する場合がある。
That is, when the total amount of Si + Mn is less than 1.3% by weight, the deoxidizing action is small, so that the viscosity and surface tension of the molten pool are excessively reduced and the molten metal enters the root gap to deteriorate the bead appearance and shape. To do. On the other hand, Si + Mn
When the total amount of the above is more than 2.3% by weight, the increase in the viscosity and surface tension of the molten pool becomes excessive, and the defective crosslinking of the molten pool to the groove surface is likely to occur. Therefore, the total amount of Si and Mn added is 1.3 to 2.3% by weight. Si × (Si + Mn): 0.75 to 2.45 Even if the total amount of Si added and the amount of Si and Mn added is within the above range, burn- through, cross-linking failure or bead appearance and shape failure depending on their product. May occur.

【0031】Si×(Si+Mn)が0.75未満では
Si量が比較的少ないため、ワイヤ電気抵抗率の増加に
よる溶接電流の低減作用が小さく、溶込み深さは減少し
難い。また、Mn量も少ないため、溶融池の粘度及び表
面張力の減少量が大きい。これらより、溶落ち又はビー
ド外観及び形状不良の発生頻度が増大する。
When Si × (Si + Mn) is less than 0.75, since the amount of Si is relatively small, the effect of reducing the welding current due to the increase in the wire electrical resistivity is small, and the penetration depth is difficult to decrease. Further, since the amount of Mn is small, the amount of decrease in viscosity and surface tension of the molten pool is large. As a result, the frequency of occurrence of burn-through or bead appearance and defective shape increases.

【0032】Si×(Si+Mn)が2.45を超える
と、Siの増加によってワイヤ電気抵抗率が増加するた
め、溶接電流は低下する。これによって、溶込み深さが
小さくなり、溶落ちは発生し難くなる。しかし、Si及
びMn共に添加量が増加するため、脱酸作用によって溶
融池の粘度及び表面張力が過大となり、開先面への架橋
不良が発生し易くなる。従って、Si×(Si+Mn)
は0.75〜2.45とする。
When Si × (Si + Mn) exceeds 2.45, the electric current of the wire decreases due to the increase of Si, and the welding current decreases. As a result, the penetration depth becomes smaller, and burn-through is less likely to occur. However, since the addition amounts of both Si and Mn increase, the viscosity and surface tension of the molten pool become excessively large due to the deoxidizing action, so that defective crosslinking easily occurs on the groove surface. Therefore, Si x (Si + Mn)
Is 0.75 to 2.45.

【0033】図5は、横軸にワイヤ中のSi量をとり、
縦軸にMn量をとって、溶接作業性が良好な組成範囲を
示すグラフ図である。この図5に示すように、Si及び
Mnが前述の、、、の条件を満たす場合に、良
好な作業性が得られる。
In FIG. 5, the horizontal axis represents the amount of Si in the wire,
FIG. 3 is a graph showing the composition range in which the workability is good, with the vertical axis representing the amount of Mn. As shown in FIG. 5, good workability can be obtained when Si and Mn satisfy the above conditions.

【0034】[0034]

【実施例】以下、本発明の実施例について本発明の特許
請求の範囲から外れる比較例と比較して説明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples that depart from the claims of the present invention.

【0035】下記表1に示す組成及び形状の鋼板を下記
表2に示す溶接条件にて溶接した。供試ワイヤの組成は
下記表3に示す。そして、鋼板の溶落ち及びスパッタ発
生量等を実験した結果を下記表4に示す。なお、前記溶
接条件としては、ワイヤ径、シールドガス組成、ワイヤ
送給速度、溶接機の出力電流波形を変化させ、ワイヤ組
成等と共に、その特性を調査した。
Steel plates having the compositions and shapes shown in Table 1 below were welded under the welding conditions shown in Table 2 below. The composition of the test wire is shown in Table 3 below. Table 4 below shows the results of experiments on burn-through and spatter generation of the steel sheet. As the welding conditions, the wire diameter, the shield gas composition, the wire feeding speed, and the output current waveform of the welding machine were changed, and the characteristics were investigated together with the wire composition and the like.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 この表4に示すように、本発明の特許請求の範囲にて規
定した条件を満足する場合に、アーク形態がスプレーで
あり、溶接速度が100cm/minと速くても良好な
溶接結果が得られた。しかし、前記条件から外れる比較
例の場合は、スパッタが多発するか、ビード形状が不良
となり、また架橋不良が発生した。
[Table 4] As shown in Table 4, when the conditions defined in the claims of the present invention are satisfied, the arc form is spray, and good welding results can be obtained even if the welding speed is as high as 100 cm / min. It was However, in the case of the comparative example which deviates from the above conditions, spatter frequently occurs, the bead shape becomes defective, or cross-linking failure occurs.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
1.2〜1.6mm厚の薄鋼板の溶接において、溶接能
率を低下させることなく、スパッタを防止し、溶落ちを
防止することができ、ビード外観及び形状が良好であ
り、架橋不良を防止できるガスシールドアーク溶接方法
を得ることができる。
As described above, according to the present invention,
When welding thin steel sheets with a thickness of 1.2 to 1.6 mm, spatter can be prevented and burn through can be prevented without lowering the welding efficiency, the bead appearance and shape are good, and cross-linking failure can be prevented. A possible gas shielded arc welding method can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】横軸にワイヤの直径をとり、縦軸にルート間隔
をとって、ワイヤ径と溶接可能なルート間隔との関係を
示すグラフ図である。
FIG. 1 is a graph showing a relationship between a wire diameter and a weldable root interval, with a horizontal axis representing a wire diameter and a vertical axis representing a root interval.

【図2】横軸にO2ガスの添加率をとり、縦軸にルート
間隔をとってO2添加率と溶接可能なルート間隔との関
係を示すグラフ図である。
FIG. 2 is a graph showing the relationship between the O 2 addition rate and the weldable root interval, with the horizontal axis representing the O 2 gas addition rate and the vertical axis representing the root interval.

【図3】横軸にワイヤ送給速度をとり、縦軸にルート間
隔をとって、ワイヤ送給速度と溶接可能なルート間隔と
の関係を示すグラフ図である。
FIG. 3 is a graph showing a relationship between a wire feeding speed and a weldable root interval, with a horizontal axis representing a wire feeding speed and a vertical axis representing a root interval.

【図4】横軸にピーク期間をとり、縦軸にピーク電流を
とって、これらのパルス波形と溶落ち、スパッタとの関
係を示すグラフ図である。
FIG. 4 is a graph showing the relationship between these pulse waveforms, burn-through, and sputtering, with the horizontal axis representing the peak period and the vertical axis representing the peak current.

【図5】横軸にワイヤ中のSi量をとり、縦軸にMn量
をとって、溶接作業性が良好な組成範囲を示すグラフ図
である。
FIG. 5 is a graph showing the composition range in which welding workability is good, with the horizontal axis representing the amount of Si in the wire and the vertical axis representing the amount of Mn.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 301 C22C 38/00 301Y 38/14 38/14 (72)発明者 佐藤 正晴 神奈川県藤沢市宮前字裏河内100番1 株 式会社神戸製鋼所藤沢事業所内 (72)発明者 中野 利彦 神奈川県藤沢市宮前字裏河内100番1 株 式会社神戸製鋼所藤沢事業所内 (72)発明者 今岡 進 神奈川県藤沢市宮前字裏河内100番1 株 式会社神戸製鋼所藤沢事業所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location C22C 38/00 301 C22C 38/00 301Y 38/14 38/14 (72) Inventor Masaharu Sato Kanagawa Prefecture Fujisawa-shi Miyamae Urakawachi 100-1 Co., Ltd. Kobe Steel, Fujisawa Works (72) Inventor Toshihiko Nakano Fujisawa-shi, Kanagawa Prefecture Miyazaki Urakawachi 100-1 Co., Ltd. Kobe Steel, Fujisawa Works (72) Inventor Susumu Imaoka 100-1 Urakawachi, Miyamae, Fujisawa-shi, Kanagawa Stock company Kobe Steel Works, Fujisawa Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 厚さ1.2mm〜1.6mmの薄鋼板を
対象とするガスシールドアーク溶接法において、直径が
公称1.2mmであって、C:0.03〜0.10重量
%、Si:0.5〜1.2重量%、Mn:0.7〜1.
3重量%、S:0.005〜0.03重量%、O:0.
001〜0.015重量%、残部が鉄及び不可避的不純
物からなり、この不可避的不純物においてTi:0.0
1重量%以下、Al:0.01重量%以下に規制し、更
にSi+Mn:1.3〜2.3重量%、Si×(Si+
Mn):0.75〜2.45に規制した化学組成を有す
る溶接用ワイヤを使用し、Arに3〜7体積%のO2
混合したシールドガス中でワイヤ送給速度を4〜7m/
minとし、溶接電源の出力電流を、ピーク電流値が3
80〜460A、ピーク期間が0.8〜2.5msのパ
ルス波形として、スプレーアークにてパルスマグ溶接す
ることを特徴とするガスシールドアーク溶接法。
1. A gas shielded arc welding method for a thin steel sheet having a thickness of 1.2 mm to 1.6 mm, wherein the diameter is nominally 1.2 mm and C: 0.03 to 0.10% by weight, Si: 0.5 to 1.2% by weight, Mn: 0.7 to 1.
3% by weight, S: 0.005 to 0.03% by weight, O: 0.
001 to 0.015% by weight, the balance consisting of iron and unavoidable impurities, in which Ti: 0.0
1% by weight or less, Al: 0.01% by weight or less, Si + Mn: 1.3 to 2.3% by weight, Si × (Si +
Mn): a welding wire having a chemical composition regulated to 0.75 to 2.45 is used, and a wire feed rate is 4 to 7 m / in a shielding gas in which Ar is mixed with 3 to 7% by volume of O 2.
min, and the output current of the welding power source has a peak current value of 3
A gas shielded arc welding method, which comprises pulse-mag welding with a spray arc in a pulse waveform of 80 to 460 A and a peak period of 0.8 to 2.5 ms.
JP5082395A 1995-03-10 1995-03-10 Gas shielded arc welding method Expired - Lifetime JP2922814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5082395A JP2922814B2 (en) 1995-03-10 1995-03-10 Gas shielded arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5082395A JP2922814B2 (en) 1995-03-10 1995-03-10 Gas shielded arc welding method

Publications (2)

Publication Number Publication Date
JPH08243749A true JPH08243749A (en) 1996-09-24
JP2922814B2 JP2922814B2 (en) 1999-07-26

Family

ID=12869497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5082395A Expired - Lifetime JP2922814B2 (en) 1995-03-10 1995-03-10 Gas shielded arc welding method

Country Status (1)

Country Link
JP (1) JP2922814B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224350A (en) * 2006-02-22 2007-09-06 Kobe Steel Ltd Method for arc-welding steel sheet
US20080142490A1 (en) * 2006-12-13 2008-06-19 Kabushiki Kaisha Kobe Seiko Sho ( Kobe Steel, Ltd.) Gas-shielded arc welding method
JP2008207211A (en) * 2007-02-26 2008-09-11 Nippon Steel & Sumikin Welding Co Ltd Copper-plated solid wire for pulse mag welding

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839193B2 (en) 2006-12-01 2011-12-21 株式会社神戸製鋼所 Solid wire
JP4909138B2 (en) * 2006-12-29 2012-04-04 株式会社神戸製鋼所 Solid wire
US8461485B2 (en) 2006-12-29 2013-06-11 Kobe Steel, Ltd. Solid wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224350A (en) * 2006-02-22 2007-09-06 Kobe Steel Ltd Method for arc-welding steel sheet
US20080142490A1 (en) * 2006-12-13 2008-06-19 Kabushiki Kaisha Kobe Seiko Sho ( Kobe Steel, Ltd.) Gas-shielded arc welding method
JP2008207211A (en) * 2007-02-26 2008-09-11 Nippon Steel & Sumikin Welding Co Ltd Copper-plated solid wire for pulse mag welding

Also Published As

Publication number Publication date
JP2922814B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
EP0812647A2 (en) Weld wire
EP2610361B1 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP6800770B2 (en) Pulse MAG welding method for thin steel sheets
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
KR100343750B1 (en) Pit and blow hole resistant flux-cored wire electrode for gas-shielded arc-welding of galvanized steel sheet
JP2922814B2 (en) Gas shielded arc welding method
JP2000225465A (en) Gas shield pulse arc welding method
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JP4725700B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP7311473B2 (en) arc welding method
JP2801161B2 (en) Solid wire for pulse MAG welding
KR102150974B1 (en) Tandem gas shielded arc welding wire having good low temperature toughness
JP2857329B2 (en) Gas shielded arc welding method
JP6709177B2 (en) Pulse MAG welding method for thin steel sheet
JP6676553B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
JP5086881B2 (en) High-speed gas shield arc welding method for thin steel sheet
JPS62248597A (en) Flux cored wire for gas shielded arc welding
JP2005219062A (en) Yag-laser and arc hybrid welding method
JP3523777B2 (en) Two-electrode electrogas arc welding method
JP2001321985A (en) Gas shielded arc welding wire for thin steel sheet and pulse mag welding method using the same
JP3808251B2 (en) Solid wire for gas shielded arc welding
KR20180076460A (en) A solid wire having reduced slag
JP4639598B2 (en) Electrogas arc welding method
JP6676552B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
JP2005254284A (en) Gas shielded arc welding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term