JP3808251B2 - Solid wire for gas shielded arc welding - Google Patents

Solid wire for gas shielded arc welding Download PDF

Info

Publication number
JP3808251B2
JP3808251B2 JP24676599A JP24676599A JP3808251B2 JP 3808251 B2 JP3808251 B2 JP 3808251B2 JP 24676599 A JP24676599 A JP 24676599A JP 24676599 A JP24676599 A JP 24676599A JP 3808251 B2 JP3808251 B2 JP 3808251B2
Authority
JP
Japan
Prior art keywords
welding
bead
content
humping
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24676599A
Other languages
Japanese (ja)
Other versions
JP2001071175A (en
Inventor
励一 鈴木
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24676599A priority Critical patent/JP3808251B2/en
Publication of JP2001071175A publication Critical patent/JP2001071175A/en
Application granted granted Critical
Publication of JP3808251B2 publication Critical patent/JP3808251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鋼板等に使用されるガスシールドアーク溶接用ソリッドワイヤに関し、特に、2m/分以上の溶接速度で使用することができ、薄板の高速溶接に好適なガスシールドアーク溶接用ソリッドワイヤに関する。
【0002】
【従来の技術】
一般に、通常板厚が0.5乃至6.0mmの薄板を使用する自動車業界等では、能率向上のために溶接ロボット化が進んでおり、その溶接速度は50乃至150cm/分であり、人手による半自動溶接に比べて大きい溶接速度が得られている。近時、更により一層の能率向上のため、溶接速度の向上が強く求められている。
【0003】
しかし、溶接速度が2m/分以上では、入熱が非常に小さく冷却速度が早いため、短絡の不規則等の発生により、ビードが一定の幅とはならず数珠玉状となる、いわゆるハンピングビードが起こりやすくなるという問題点がある。
【0004】
また、ビード形状も幅方向に広がらないうちに、凝固してしまうため、幅が狭く凸ビードになりやすく、外観が悪化するという問題点がある。
【0005】
更に、凸ビードになるため、止端形状に大きく影響を受ける継手疲労強度が低下するという問題点がある。
【0006】
更にまた、ビードの幅が狭いため、鋼板の開先のギャップが広い場合には、溶接不可能になりやすいという問題点がある。また、止端付近の開先を抉り取ってしまうアンダカットが発生しやすい等の問題点がある。
【0007】
そこで、従来、これらの問題点の一部を解決するために種々の技術が提案されている(特開昭61−7089号公報、特開昭61−165294号公報、特開昭49−103860号公報、特開平5−305476号公報等)。
【0008】
特開昭61−7089号公報には、Bi、Se及びTeを添加して短絡回数を増加させることにより、溶滴移行を安定にし、Ar-80%+CO2-20%のシールドガスハンピングを防止することができる高速ガスシールドアーク溶接用ワイヤが開示されている。
【0009】
また、特開昭61−165294号公報には、Si及びMnの量を特定し、更にAl及びTiを添加することにより、高速溶接時の溶滴移行を安定化させると共に、ハンピング、ブローホール及び割れの発生を防ぐことができる高速ガスシールドアーク溶接用ワイヤが開示されている。
【0010】
更に、特開昭49−103860号公報には、Si、Mn及びTiの添加量を規制することにより、高速溶接時の割れ及びブローホールを防止することができる超高速CO2仮付溶接用芯線が開示されている。
【0011】
更にまた、特開平5−305476号公報には、C、Si、Mn及びSを所定範囲内に限定し、かつMn/Si比を所定範囲内に限定することにより、板厚が6mm以下の薄板を1m/分以上の溶接速度で溶接することができるガスシールドアーク溶接用ソリッドワイヤが開示されている。
【0012】
【発明が解決しようとする課題】
しかし、上述のいずれの技術(特開昭61−7089号公報、特開昭61−165294号公報、特開昭49−103860号公報、特開平5−305476号公報等)においても、溶接速度が2m/分以上の高速溶接では未だ安定した耐ハンピング性を有しているとはいえない。また、ビード形状についても、耐ギャップ性又は薄板の設計で重要な継手疲労特性を十分に満足することができる溶接品質を得る検討がなされておらず、適用箇所が著しく限定されるという問題点がある。
【0013】
本発明はかかる問題点に鑑みてなされたものであって、溶接速度が2m/分を超える場合であっても、母材とのなじみがよく平坦で幅広の継手溶接強度が良好となるビード形状が得られ、鋼板にギャップがある場合でも、良好な溶接が可能なガスシールドアーク溶接用ソリッドワイヤを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明に係るガスシールドアーク溶接用ソリッドワイヤは、溶接速度が2m/分以上のガスシールドアーク溶接用のソリッドワイヤにおいて、C:0.04乃至0.12質量%、Si:0.35乃至0.80質量%、Mn:0.40乃至0.85質量%、P:0.020質量%以下、S:0.005乃至0.020質量%、Cr:0.01乃至0.20質量%、Ti:0.02乃至0.10質量%及びO:0.005乃至0.015質量%を含有し、更にK及びNaからなる群から選択された少なくとも1種を合計で0.1乃至12質量ppm含有すると共に、残部がFe及び不可避的不純物からなることを特徴とする。
イヤ。
【0016】
本発明においては、主ワイヤ成分及びメッキ又はワイヤ表面付近に存在する微量元素を規定することにより、短絡安定性向上させ、溶接金属の粘性を最適化し、優れたハンピング性を得ることができると共に、母材とのなじみがよく平坦で幅広のビードを得ることができる。このため、疲労強度及び耐ギャップ性が優れ、品質が優れた溶接継手を得ることができる。
【0017】
【発明の実施の形態】
以下、本発明の実施例に係るガスシールドアーク溶接用ソリッドワイヤについて詳細に説明する。
【0018】
本願発明者等は詳細な試験の結果、耐ハンピング性を向上させるには短絡移行の安定性を向上させるだけでなく、溶接金属の粘性又は表面張力を低下させることが有効であることを見出した。また、溶接金属の粘性を下げることにより、冷却速度が大きい場合でもビードの幅を広げることができる。更に、溶接金属と母材とのなじみが向上し、止端角度及び止端部の曲率半径が大きくなり、継手の疲労強度を向上させる知見を得た。
【0019】
図1は縦軸にハンピング限界溶接速度及びビート形状係数、横軸にArガスとCO2ガスとの比をとり、CO2ガスの量とハンピング限界溶接速度及びビート形状係数との関係を示すグラフ図である。図2はビード形状係数の算出方法を示す模式図である。なお、図1中、○はハンピング限界溶接速度を示し、△はビード形状係数を示す。
【0020】
溶接金属の粘性に最も大きく影響を与える元素はO及びSである。特に、溶接金属中のOの含有量を高くすることにより、溶接金属の粘性は大きく低下する。溶接金属中のOの含有量を高くする方法としては2つあり、1つは、シールドガスをCO2ガスとすることである。図1に示すように、Ar−CO2混合ガスよりもCO2ガスを使用したほうが、耐ハンピング性及びビード形状が向上することがわかる。なお、ハンピング限界溶接速度については、板厚が4.0mmの鋼板を使用し、水平重ねすみ肉の継手形状で溶接を行い、ハンピングを生じない最高溶接速度をハンピング限界溶接速度と定義した。
【0021】
また、ビード形状係数については、図2に示すように、板厚が3.2mmの鋼板からなる母材1を継手形状として水平重ねすみ肉とし、溶接電流を420A、溶接電圧を各ガス組成における適性値、溶接速度を250cm/分の条件で溶接を行った。ビート形状係数をa、溶接金属2の理論のど厚の長さをL、理論のど厚の基準線からビード凸部までの距離をYとするとき、ビード形状係数aは下記数式1にて表わされる。
【0022】
【数1】
a=Y/L
【0023】
この数式1に示すように、ビード形状係数aの値が大きいほうがビード形状は凸になる。
【0024】
図3は縦軸に溶接金属の酸素量、横軸にSi又はMnの含有量をとり、Si又はMnの含有量が溶接金属の酸素量に与える影響を示すグラフ図である。なお、図3中は●はMnを示し、▲はSiを示す。
【0025】
残りはワイヤ成分のうち、脱酸成分を低減することにより達成することができる。但し、図3に示すように、主要脱酸成分のうち、SiよりもMnのほうが大きく溶接金属の酸素量増大に寄与することがわかった。このため、本発明は、JIS Z3312に規定されるワイヤよりもMn含有量を大きく低減させている。また、Al又はCaの強力な脱酸効果を有する元素は微量の添加で溶接金属の粘性を増加させてしまうため、脱酸不足によるブローホールの発生の感受性を下げる効果がある。一方、Al又はCaの元素はビード形状を凸にし、ビード幅も狭くし、耐ギャップ性又は止端形状に影響を受ける継手疲労強度が低下する知見を得た。従って、これらは本発明においては故意に添加しない。本発明では、更に、Crを適量添加することにより、ワイヤの融点を低下させ、止端部におけるビードと母材とのなじみを向上させている。
【0026】
また、従来のAr−CO2混合ガス溶接において、溶滴移行の安定性向上に有効であることがわかっているK及びNaがCO2ガス溶接の場合でも、直径が1.2mmの細径ワイヤで溶接電流が400Aを超える高電流密度の場合には、その溶滴移行を安定化させる効果があることを明らかにした。このことにより、不規則な溶滴移行を減少させ、耐ハンピング性の向上に有効であることがわかった。本発明は以上の知見に基づいてなされたものである。
【0027】
以下、本発明のガスシールドアーク溶接用ソリッドワイヤの数値限定理由について説明する。
【0028】
C:0.04乃至0.12重量%
Cは溶接金属の強度を確保するため必要な元素である。また、Cの含有量の増加以下、本発明のガスシールドアーク溶接用ソリッドワイヤの数値限定理由につと共に、短絡回数を増加させ、高速溶接時の短いアーク長でも安定した溶滴移行を得ることができる。これらは、軟鋼だけでなくSPFH540等の高張力鋼板にも適用できる溶接金属の強度を得るため、Cの含有量は最低0.04重量%は必要である。また、Cの含有量が0.04重量%未満では、溶滴移行が不規則でハンピングが発生しやすい。一方、Cは高温では強力な脱酸効果を有するので、Cの含有量が0.12重量%を超えると、溶接金属の酸素量が減少し、粘性が増加する。この結果、ビード形状の凸化又はビード幅の減少が生じる。更に、Cの含有量が0.12重量%を超えると、焼入れ性が過剰になり、割れが発生しやすくなる。従って、Cの含有量は0.04乃至0.12重量%とする。なお、より望ましい範囲としては、溶滴移行の点から下限は0.09重量%である。
【0029】
Si:0.35乃至0.80重量%
Siは主要な脱酸成分の1つである。Siの含有量が0.35重量%未満では、脱酸不足になり、ブローホールが発生しやすくなる。また、ビード形状も悪化する。一方、Siの含有量が0.80重量%を超えると、脱酸が過剰となり、溶接金属中の酸素量が低下し、高速溶接時のビードの凸化又はビード幅の減少が生じ、良好な耐ギャップ性及び継手疲労強度を得ることができない。従って、Siの含有量は0.35乃至0.80重量%とする。
【0030】
Mn:0.40乃至0.85重量%
MnはSiと同様に主要脱酸成分である。Mnの含有量が0.40重量%未満では脱酸不足になり、ブローホールが発生すると共に、必要な強度を得ることができない。一方、Mnの含有量が0.85重量%を超えると、脱酸が過剰となり溶接金属中の酸素量が低下し、高速溶接時のビードの凸化又はビード幅の減少が生じ、良好な耐ギャップ性及び継手疲労強度を得ることができない。従って、Mnの含有量は0.40乃至0.85重量%とする。なお、より好ましい範囲としては、ビード形状の点からMnの含有量は0.55乃至0.80重量%である。
【0031】
P:0.020重量%
Pは高温割れ感受性を増加させる。高速溶接では、特に、高い耐高温割れ性を必要とするため、JIS Z3312に規定される通常のワイヤよりもPを低く抑えることが望ましい。Pの含有量が0.020重量%以下であれば、問題ない。従って、Pの含有量は0.020重量%以下に規制する。
【0032】
S:0.005乃至0.020重量%
SもPと同様に高温割れ感受性を増加させる元素である。但し、Pとは異なり、添加により溶接金属の粘性又は表面張力を大きく減少させる効果があり、適性量添加することによりビード幅を増加させ、止端部におけるビードと母材とのなじみを向上させ、止端形状を改善させる。これらの効果はSの含有量が0.005重量%以上の添加で有効となる。一方、Sの含有量が0.020重量%を超えると、高温割れが生じる。従って、Sの含有量は0.005乃至0.020重量%とする。
【0033】
Cr:0.01乃至0.20重量%
Crは脱酸効果が小さく、少量の添加では溶接金属の粘性に殆ど影響を与えない。また、Crの添加により溶接金属の融点が低下し、高速溶接時の急激な溶接部の温度低下においても、液相状態が長く保持され、ビード形状の平坦化、幅広化及び止端部のなじみの向上の効果を得ることができる。これらの効果はCrの含有量が0.01重量%以上の添加で有効になる。一方、Crの含有量が0.20重量%を超えると、溶接金属の強度上昇が著しく、割れを発生させる可能性が高くなる。従って、Crの含有量は0.01乃至0.20重量%とする。
【0034】
O:0.005重量%以上
上述のように溶接金属中の酸素量を増加させることにより、高速溶接時のビード形状の凸化及びビード幅の減少を改善することができる。ワイヤに含まれる酸素量を多くすれば、溶接金属中に含まれる酸素量も多くなる。ワイヤ中のOの含有量が0.005重量%未満では、溶接金属の酸素も不十分となり、耐ハンピング性の低下、ビード形状の凸化及びビード幅の減少が生じる。従って、Oの含有量は0.005重量%以上とする。なお、ワイヤの酸素は線材全体での分布又は表面酸化等の手法による表面付近への酸素濃化等、その存在形態は無関係であることが分かっており、このため、特に限定されるものではない。
【0035】
K及びNaからなる群から選択された少なくとも1種:合計で0.1乃至12重量ppm
K及びNaのアルカリ金属は電位傾向の小さいAr-80%+CO2-20%程度の混合ガス溶接において、溶滴移行を安定にする効果があることが今までの研究で明らかにされている。しかし、これらはCO2ガスでは効果がないとされてきた。本願発明者等はCO2ガスでも電流密度が高い状態では、これらの元素がアーク安定に有効である知見を得た。
【0036】
薄板の高速溶接では、ワイヤ先端の狙い位置ずれが溶接不良を生じさせる原因になりやすく、狙い位置を安定にするため、母材−チップ先端距離(突出し長さ)を15mm程度に短くする必要がある。一方、高速溶接では高速送給モータを使用し、ワイヤ送給量を18m/分以上に高くすることが多い。この場合、ワイヤの突出し長さが短いのでジュール発熱の効果が小さく、電流が400A以上と高くなり、高電流密度状態となる。即ち、薄板の高速溶接では他の溶接対象と比べて高電流密度となりやすく、K及びNaの添加によりアークを安定化させることができるため、耐ハンピング性を向上させることが可能である。この耐ハンピング性を向上させる効果を得るためには、K及びNaのうち、一方又は双方で合計0.1重量ppm以上含有させる必要がある。一方、K及びNaのうち、一方又は双方の合計が12重量ppmを超えても溶滴移行安定化の効果は飽和してしまうと共に、K又はNaがワイヤ表面に存在する場合、送給抵抗を高めてワイヤ送給不良による溶滴移行不安定を起こしやすくなる。更に、K又はNaがメッキ又はFe−メッキ間に存在するときには、メッキの密着性又は純度を低下させ、アークを不安定にさせる。従って、K及びNaからなる群から選択された少なくとも1種を合計で0.1乃至12重量ppm含有する。
【0037】
なお、K及びNaはワイヤのメッキ中又はメッキ表面にそれらの化合物を浸透若しくは付着させること等が技術的にも可能であり、付着形態及び付着位置に影響されない。
【0038】
Ti:0.02乃至0.10重量%
Tiはアークを広げ、溶接金属と母材とのなじみ(止端形状)を改善する効果がある。このなじみを改善する効果を得るためには、Tiの含有量は0.02重量%以上の添加が必要である。一方、Tiの含有量が0.10重量%を超えると、溶接金属の粘性を増加させ、耐ハンピング性を低下させる。また、ビード形状を凸にし、ビード幅が狭くなる等のビード形状が悪化する。更に、スラグも多く発生し、ビード外観及び塗装性が悪化する。従って、Tiの含有量は0.02乃至0.10重量%とすることが好ましい。
【0039】
なお、この他に、本発明に係るガスシールドアーク溶接用ソリッドワイヤには、通常のソリッドワイヤと同様に銅メッキを施すことも何ら問題もなくできる。そのメッキ量及びメッキ品質等は、ワイヤ送給性に影響を与えない範囲では、耐ハンピング性及びビード形状には影響を与えず、特に規定されるものではない。
【0040】
【実施例】
以下、本発明の範囲に入るガスシールドアーク溶接用ソリッドワイヤの実施例について、その特性を比較例と比較して具体的に説明する。図4は水平重ねすみ肉溶接継手を示す模式図である。図5は止端部の曲率半径の定義を示し、(a)は曲率半径が大きい場合の模式図であり、(b)は曲率半径が小さい場合の模式図である。図6(a)は水平重ね溶接継手の疲労試験片を示す模式図であり、(b)は図6(a)のA−A線による断面図である。
【0041】
表1乃至表4に示す化学成分のワイヤを使用して図4に示すように、母材1をギャップを調整して2枚重ね合わせ、すみ肉部にワイヤW突出し長さ15mm、トーチ傾斜角45°で表5に示す溶接条件で溶接を行った。溶接部について、ハンピング発生率、耐ギャップ性、止端部の曲率半径、継手の疲労強度、ブローホールの有無、割れの有無及びビード外観の評価を行った。なお、表2及び表4に示すK及びNaの単位は重量ppmであり、メッキ浴層に添加することで、ワイヤのメッキ中に存在している。
【0042】
ハンピング発生率については、ハンピングが発生した長さの溶接長さに対する割合とした。評価はこのハンピング発生率が5%以下を合格とし、ハンピング発生率が5%を超えるものを不合格とした。
【0043】
耐ギャップ性については、ギャップが1mmのときの溶接の可否とした。評価は全く問題なく溶接できたものを◎とし、一部不安定部が発生したものを○とし、溶接不可と思われるものを×とした。
【0044】
止端部の曲率半径については、図4(a)及び(b)に示すように、溶接ビードを10箇所採取し、止端部を拡大観察して曲率半径rを求め、これらの値の平均値とした。評価は曲率半径が0.50mm以上を合格とし、曲率半径が0.50mm未満を不合格とした。なお、曲率半径rが大きいほど、止端部におけるビードと母材とのなじみがよく、良好な疲労強度を得ることができる。
【0045】
継手の疲労強度については、図5(a)及び(b)に示されるような疲労試験片3を水平重ね溶接したものから採取し、試験機として平面曲げ疲労試験機を使用し、応力負荷形態として両振りの正弦波応力を負荷させて、応力(S)−破断寿命(N)の測定を行い、破断寿命(N)における応力(S)とした。評価はこの応力(S)で示されるう疲労強度が200N/mm2以上を合格とし、疲労強度が200N/mm2未満を不合格とした。
【0046】
ブローホールの有無及び割れの有無については、X線透過法により、ブローホールの数及び割れの有無を確認した。ブローホールの有無の評価は、溶接長さ500mm当たりのブローホールの数が5個以下のものを合格とし、溶接長さ500mm当たりのブローホールの数が6個以上のものを不合格とした。割れの有無の評価は、割れがないものを合格とし、割れが1箇所でも存在したものを不合格とした。
【0047】
ビード外観については、ビード形状又はスラグ巻き込み等を観察した。これらの結果を表6乃至表9に示す。
【0048】
【表1】

Figure 0003808251
【0049】
【表2】
Figure 0003808251
【0050】
【表3】
Figure 0003808251
【0051】
【表4】
Figure 0003808251
【0052】
【表5】
Figure 0003808251
【0053】
【表6】
Figure 0003808251
【0054】
【表7】
Figure 0003808251
【0055】
【表8】
Figure 0003808251
【0056】
【表9】
Figure 0003808251
【0057】
上記表6及び表7に示すように、本発明の範囲内にある実施例No.1乃至は、優れたアーク安定性及び低粘性の溶接金属を得ることができるため、高速溶接においてもハンピング発生率が低く、耐ハンピング性が優れていた。また、ビード形状も平坦で幅広であることから、ギャップがある場合でも問題なく溶接することができ、耐ギャップ性が優れていた。更に、止端形状が滑らかで止端部の曲率半径も大きく、ビードと母材とのなじみがよいため、継手の疲労強度も高かった。更にまた、ブローホールの有無及び割れの有無も良好であり、高能率かつ優れた溶接品質を得ることができた。
【0058】
一方、表8及び表9に示すように、比較例No.11乃至29はハンピング発生率、耐ギャップ性、止端部の曲率半径、継手の疲労強度、ブローホールの有無、割れの有無及びビード外観について良好な結果を得ることができなかった。
【0059】
比較例No.11は、Cの含有量が本発明の範囲未満であるため、短絡回数が減少し、アークが不安定になりハンピングビードになりやすく、ハンピング発生率が高くなり耐ハンピング性が劣った。
【0060】
比較例No.12は、Cの含有量が本発明の範囲を超えているため、焼入れ性が大幅に増し、低温割れが発生した。
【0061】
比較例No.13は、Si及びMnの含有量が本発明の範囲未満であるため、脱酸力が不足し、ブローホールが発生した。
【0062】
比較例No.14は、Si及びCrの含有量が本発明の範囲を超えている。このため過剰なCrにより、強度が過剰になり低温割れが発生した。一方、過剰なSiにより、溶接金属の粘性が増加し、ハンピング発生率が高くなると共に、ビード形状も凸になり、耐ハンピング性及び疲労強度が劣った。更に、ビード幅も細くギャップがあると溶接が不可能になり、耐ギャップ性が劣った。
【0063】
比較例No.15は、Mnの含有量が本発明の範囲を超えているため、溶接金属の粘性が増加し、ハンピング発生率が高くなると共に、ビード形状も凸になり、耐ハンピング性及び疲労強度が劣った。更に、ビード幅も細くギャップがあると溶接が不可能になり、耐ギャップ性が劣った。
【0064】
比較例No.16は、P及びSの含有量が本発明の範囲を超えているため、高温割れ感受性が増大すると共に、高速溶接であるため、凝固割れが発生した。
【0065】
比較例No.17は、S及びOの含有量が本発明の範囲未満であるため、溶接金属の粘性が増加し、ハンピングしやすくハンピング発生率が高くなり、耐ハンピング性が劣った。また、ビード形状が凸で幅も狭くなったため、耐ギャップ性も劣った。更に、止端部の曲率半径も小さく疲労強度も低下した。
【0066】
比較例No.18は、Crの含有量が本発明の範囲未満であるため、Cr添加による溶接金属の融点低下効果を得ることができず、溶接部の温度低下に伴い、早くに凝固が始まるため、止端部のなじみが悪く止端部の曲率半径が小さかった。このため、疲労強度が低かった。
【0067】
比較例No.19は、Ti及びNaの含有量が本発明の範囲を超えている。このため、過剰なTiにより溶接金属の粘性が高くなり、ビード形状が凸であると共に、ビードの幅が狭くなり、耐ギャップ性が劣り、疲労強度も低かった。一方、溶接金属の粘性の増加と過剰なNaとにより、メッキ密着性の低下に起因するアーク不安定により、ハンピング発生率が高く耐ハンピング性が劣った。また、Ti酸化物を主成分とするスラグが過剰に発生しビード外観が悪化した。
【0068】
比較例No.20は、KとNaの合計の含有量が本発明の範囲を超えているため、メッキ中のKとNaの合計量が過剰になりメッキ品質が低下しアークが不安定により、ハンピング発生率が高くなり、耐ハンピング性が劣った。
【0069】
比較例No.21は、KとNaの合計の含有量が本発明の範囲未満である。このため、CO2高電流密度におけるアーク安定化の効果が得られないため、ハンピング発生率が高く、十分な耐ハンピング性を得ることできなかった。
【0070】
比較例No.22は、JIS Z3312 YGW12に規定される低電流用の一般的なワイヤである。Mnの含有量が本発明の範囲を超え、Cr、O、K及びNaの含有量が本発明の範囲未満である。Mnが過剰であり、Oが過少であるため、焼入れ性が過剰になり、硬度過剰に起因する低温割れが発生した。また、溶接金属の粘性が高く、K及びNaが過少なことからハンピング発生率が高く耐ハンピング性が劣り、ビード外観は幅が狭く凸状を呈し、耐ギャップ性も劣った。更に、Crが無添加であるため、止端部の曲率半径も小さくなり、継手強度が低かった。
【0071】
比較例No.23は、JIS Z3312 YGW11に規定される高電流用の一般的なワイヤである。Mn及びTiの含有量が本発明の範囲を超え、S、Cr、O、K及びNaの含有量が本発明の範囲未満である。Mnが過剰であり、Oが過少であるため、焼入れ性が過剰になり、硬度過剰に起因する低温割れが発生した。YGW11(比較例No.23)のYGW12(比較例No.22)に対する成分的な特徴はTiの添加であるが、そのTiの添加量が高速溶接用としては過剰である。Ti及びMnの含有量を合せて、溶接金属の粘性を非常に大きくし、加えて、K及びNaが過少なことからビード外観は幅が狭く凸状を呈し、ハンピング発生率が高く耐ハンピング性が劣ると共に、耐ギャップ性が劣った。また、過剰なTiによりビード全体をTi酸化物のスラグが被り、ビード外観も悪化した。更に、過度の溶接金属の粘性及びCrの無添加により、止端部の曲率半径の改善効果がないことから、止端部の曲率半径が小さくなり、継手強度が低かった。
【0072】
比較例No.24はTiの含有量が本発明の範囲を超えているため、過剰なTiにより溶接金属の粘性が高くなり、ビード形状が凸であると共に、ビードの幅が狭くなり、耐ギャップ性が劣り、疲労強度も低かった。
【0073】
比較例No.25はSiの含有量が本発明の範囲を超えているため、溶接金属の粘性が増加し、耐ハンピング性が低下し、ビード形状も凸になり疲労強度も低下した。また、ビード幅も細いため、ギャップがあると溶接不可能であった。
【0074】
比較例No.26はPの含有量が本発明の範囲を超えているため、耐高温割れ性が低下し、凝固割れが発生した。
【0075】
比較例No.27はSの含有量が本発明の範囲を超えているため、比較例No.26と同様に耐高温割れ性が低下し、凝固割れが発生した。
【0076】
比較例No.28はSの含有量が本発明の範囲未満であるため、溶接金属の粘性が増加し、ハンピングしやすくなった。また、比較例No.28はビードが凸で幅も狭くなったため、耐ギャップ性が低下し、止端半径も小さくなり、疲労強度が低下した。
【0077】
比較例No.29はOの含有量が本発明の範囲未満であるため、比較例No.28と同様に溶接金属の粘性が増加し、ハンピングしやすくなった。また、比較例No.29はビードが凸で幅も狭くなったため、耐ギャップ性が低下し、止端半径も小さくなり、疲労強度が低下した。
【0078】
【発明の効果】
以上詳述したように本発明によれば、溶接速度が2m/分を超える場合であっても、耐ハンピング性が優れ、継手溶接強度が良好となる母材とのなじみがよく平坦で幅広のビード形状を得ることができる。また、ビード形状が母材とのなじみがよく幅広であることから、鋼板にギャップがある場合であっても、良好な溶接が可能であり耐ギャップ性が優れ、薄板の鋼板に好適である。
【0079】
更に、溶接品質を維持したまま、大幅な速度向上が図れることから溶接適用箇所が限定されず溶接工程の能率向上に寄与するものであり、よって、産業に多大な貢献をなす。
【図面の簡単な説明】
【図1】縦軸にハンピング限界溶接速度及びビート形状係数、横軸にArガスとCO2ガスとの比をとり、CO2ガスの量とハンピング限界溶接速度及びビート形状係数との関係を示すグラフ図である。
【図2】ビード形状係数の算出方法を示す模式図である。
【図3】縦軸に溶接金属の酸素量、横軸にSi又はMnの含有量をとり、Si又はMnの含有量が溶接金属の酸素量に与える影響を示すグラフ図である。
【図4】水平重ねすみ肉溶接継手を示す模式図である。
【図5】止端部の曲率半径の定義を示し、(a)は曲率半径が大きい場合の模式図であり、(b)は曲率半径が小さい場合の模式図である。
【図6】(a)は水平重ね溶接継手の疲労試験片を示す模式図であり、(b)は図6(a)のA−A線による断面図である。
【符号の説明】
1;母材
2;溶接金属
3;疲労試験片
W;ワイヤ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid wire for gas shielded arc welding used for steel plates and the like, and more particularly to a solid wire for gas shielded arc welding that can be used at a welding speed of 2 m / min or more and is suitable for high-speed welding of thin plates. .
[0002]
[Prior art]
In general, in the automobile industry, etc., which normally uses a thin plate having a thickness of 0.5 to 6.0 mm, welding robots are progressing to improve efficiency, and the welding speed is 50 to 150 cm / min. Large welding speed is obtained compared with semi-automatic welding. Recently, in order to further improve efficiency, there is a strong demand for improvement in welding speed.
[0003]
However, when the welding speed is 2 m / min or more, the heat input is very small and the cooling speed is high, so that the bead does not have a constant width but a bead shape due to the occurrence of irregular short-circuiting, etc. There is a problem that is likely to occur.
[0004]
Further, since the bead shape is solidified before spreading in the width direction, there is a problem that the width is narrow and the convex bead tends to be formed, and the appearance is deteriorated.
[0005]
Furthermore, since it becomes a convex bead, there exists a problem that the joint fatigue strength greatly influenced by a toe shape falls.
[0006]
Furthermore, since the width of the bead is narrow, there is a problem that welding is not easily possible when the gap of the groove of the steel plate is wide. In addition, there is a problem that an undercut that scoops up the groove near the toe is likely to occur.
[0007]
Therefore, various techniques have been proposed in order to solve some of these problems (Japanese Patent Laid-Open Nos. 61-7089, 61-165294, 49-103860). Publication, JP-A-5-305476, etc.).
[0008]
In JP-A-61-7089, Bi, Se, and Te are added to increase the number of short-circuits, thereby stabilizing droplet transfer and Ar-80% + CO2A high speed gas shielded arc welding wire that can prevent -20% shield gas humping is disclosed.
[0009]
JP-A-61-165294 specifies the amount of Si and Mn, and further adds Al and Ti to stabilize the droplet transfer during high-speed welding, as well as humping, blowhole and A high-speed gas shielded arc welding wire that can prevent cracking has been disclosed.
[0010]
Furthermore, Japanese Patent Application Laid-Open No. 49-103860 discloses an ultrahigh-speed CO that can prevent cracks and blow holes during high-speed welding by regulating the amount of addition of Si, Mn, and Ti.2A core wire for temporary welding is disclosed.
[0011]
Further, JP-A-5-305476 discloses a thin plate having a plate thickness of 6 mm or less by limiting C, Si, Mn and S within a predetermined range and limiting the Mn / Si ratio within a predetermined range. A solid wire for gas shielded arc welding that can be welded at a welding speed of 1 m / min or more is disclosed.
[0012]
[Problems to be solved by the invention]
However, in any of the above-described techniques (JP-A 61-7089, JP-A 61-165294, JP-A 49-103860, JP-A-5-305476, etc.) It cannot be said that high-speed welding at 2 m / min or more still has stable humping resistance. In addition, with regard to the bead shape, no examination has been made to obtain a welding quality that can sufficiently satisfy an important joint fatigue characteristic in the gap resistance or the design of a thin plate, and there is a problem that the application location is remarkably limited. is there.
[0013]
The present invention has been made in view of such a problem, and even when the welding speed exceeds 2 m / min, the bead shape has a good fit with the base material and a flat and wide joint weld strength. The object of the present invention is to provide a solid wire for gas shielded arc welding capable of satisfactory welding even when there is a gap in the steel sheet.
[0014]
[Means for Solving the Problems]
  The solid wire for gas shielded arc welding according to the present invention is:For solid wire for gas shielded arc welding with welding speed of 2m / min or more,C: 0.04 to 0.12 mass%, Si: 0.35 to 0.80 mass%, Mn: 0.40 to 0.85 mass%, P: 0.020 mass% or less, S: 0.005 To 0.020% by mass, Cr: 0.01 to 0.20% by mass, Ti: 0.02 to 0.10% by mass, and O: 0.005 to 0.015% by mass, and further K and Na It is characterized in that at least one selected from the group consisting of 0.1 to 12 ppm in total is contained, and the balance consists of Fe and inevitable impurities.
No.
[0016]
In the present invention, by defining the main wire component and the trace element present near the plating or wire surface, the short circuit stability is improved, the viscosity of the weld metal is optimized, and excellent humping properties can be obtained. A flat and wide bead can be obtained with good compatibility with the base material. For this reason, a welded joint having excellent fatigue strength and gap resistance and excellent quality can be obtained.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a solid wire for gas shielded arc welding according to an embodiment of the present invention will be described in detail.
[0018]
As a result of detailed tests, the inventors of the present application have found that it is effective not only to improve the stability of short circuit transition but also to reduce the viscosity or surface tension of the weld metal in order to improve the humping resistance. . In addition, by reducing the viscosity of the weld metal, the width of the bead can be increased even when the cooling rate is high. Furthermore, the familiarity between the weld metal and the base material was improved, the toe angle and the radius of curvature of the toe part were increased, and the knowledge of improving the fatigue strength of the joint was obtained.
[0019]
Fig. 1 shows the hamping limit welding speed and beat shape factor on the vertical axis, and Ar gas and CO on the horizontal axis.2Take the ratio with gas, CO2It is a graph which shows the relationship between the quantity of gas, a humping limit welding speed, and a beat shape factor. FIG. 2 is a schematic diagram showing a method for calculating a bead shape factor. In FIG. 1, ◯ indicates the humping limit welding speed, and Δ indicates the bead shape factor.
[0020]
Elements that have the greatest influence on the viscosity of the weld metal are O and S. In particular, the viscosity of the weld metal is greatly reduced by increasing the content of O in the weld metal. There are two ways to increase the content of O in the weld metal.2Gas. As shown in FIG. 1, Ar—CO2CO rather than mixed gas2It can be seen that the use of gas improves the humping resistance and bead shape. Regarding the humping limit welding speed, a steel plate having a thickness of 4.0 mm was used, welding was performed with a joint shape of a horizontal overlapped fillet, and the maximum welding speed at which no humping occurred was defined as the humping limit welding speed.
[0021]
As for the bead shape factor, as shown in FIG. 2, the base material 1 made of a steel plate having a thickness of 3.2 mm is used as a joint shape, and the fillet is horizontal, the welding current is 420 A, and the welding voltage is set for each gas composition. Welding was performed under the conditions of aptitude value and welding speed of 250 cm / min. When the beat shape factor is a, the theoretical throat length of the weld metal 2 is L, and the distance from the theoretical throat thickness reference line to the bead convex portion is Y, the bead shape factor a is expressed by the following formula 1. .
[0022]
[Expression 1]
a = Y / L
[0023]
As shown in Equation 1, the bead shape becomes convex as the value of the bead shape factor a increases.
[0024]
FIG. 3 is a graph showing the influence of the Si or Mn content on the oxygen content of the weld metal, with the vertical axis representing the oxygen content of the weld metal and the horizontal axis representing the Si or Mn content. In FIG. 3, ● represents Mn, and ▲ represents Si.
[0025]
The rest can be achieved by reducing the deoxidizing component of the wire component. However, as shown in FIG. 3, it was found that among the main deoxidation components, Mn is larger than Si and contributes to an increase in the oxygen content of the weld metal. For this reason, the present invention greatly reduces the Mn content as compared with the wire defined in JIS Z3312. Further, an element having a strong deoxidation effect of Al or Ca increases the viscosity of the weld metal when added in a small amount, and therefore has an effect of reducing the sensitivity of blowholes due to insufficient deoxidation. On the other hand, the element of Al or Ca made the bead shape convex, narrowed the bead width, and obtained the knowledge that the joint fatigue strength affected by the gap resistance or the toe shape decreased. Therefore, these are not added intentionally in the present invention. In the present invention, furthermore, by adding an appropriate amount of Cr, the melting point of the wire is lowered, and the familiarity between the bead and the base material at the toe is improved.
[0026]
In addition, conventional Ar-CO2In mixed gas welding, K and Na, which are known to be effective in improving the stability of droplet transfer, are CO.2Even in the case of gas welding, it has been clarified that there is an effect of stabilizing the droplet transfer when the welding current is higher than 400 A with a thin wire having a diameter of 1.2 mm. This has been found to be effective in reducing irregular droplet transfer and improving humping resistance. The present invention has been made based on the above findings.
[0027]
Hereinafter, the reason for limiting the numerical value of the solid wire for gas shielded arc welding of the present invention will be described.
[0028]
C: 0.04 to 0.12% by weight
C is an element necessary for ensuring the strength of the weld metal. In addition to the increase in the C content, the reason for limiting the numerical value of the solid wire for gas shielded arc welding according to the present invention is to increase the number of shorts and obtain stable droplet transfer even with a short arc length during high-speed welding. Can do. In order to obtain the strength of a weld metal that can be applied not only to mild steel but also to high-tensile steel sheets such as SPFH540, the C content needs to be at least 0.04% by weight. On the other hand, when the C content is less than 0.04% by weight, droplet transfer is irregular and humping is likely to occur. On the other hand, since C has a strong deoxidation effect at high temperatures, when the C content exceeds 0.12% by weight, the oxygen content of the weld metal decreases and the viscosity increases. As a result, the bead shape becomes convex or the bead width decreases. Furthermore, if the content of C exceeds 0.12% by weight, the hardenability becomes excessive and cracking tends to occur. Therefore, the C content is 0.04 to 0.12% by weight. As a more desirable range, the lower limit is 0.09% by weight from the viewpoint of droplet transfer.
[0029]
Si: 0.35 to 0.80% by weight
Si is one of the main deoxidation components. When the Si content is less than 0.35% by weight, deoxidation is insufficient and blowholes are likely to occur. Also, the bead shape is deteriorated. On the other hand, when the content of Si exceeds 0.80% by weight, deoxidation becomes excessive, the amount of oxygen in the weld metal decreases, and bead convexity or bead width reduction during high-speed welding occurs, which is good. Gap resistance and joint fatigue strength cannot be obtained. Therefore, the Si content is set to 0.35 to 0.80% by weight.
[0030]
Mn: 0.40 to 0.85% by weight
Mn is a main deoxidizing component like Si. If the Mn content is less than 0.40% by weight, deoxidation is insufficient, blowholes are generated, and the required strength cannot be obtained. On the other hand, if the Mn content exceeds 0.85% by weight, deoxidation becomes excessive and the amount of oxygen in the weld metal decreases, resulting in bead convexity or bead width reduction during high-speed welding, resulting in good resistance. Gap properties and joint fatigue strength cannot be obtained. Therefore, the Mn content is set to 0.40 to 0.85% by weight. As a more preferable range, the Mn content is 0.55 to 0.80% by weight from the point of bead shape.
[0031]
P: 0.020% by weight
P increases hot cracking susceptibility. Since high-speed welding particularly requires high hot cracking resistance, it is desirable to keep P lower than a normal wire defined in JIS Z3312. If the content of P is 0.020% by weight or less, there is no problem. Therefore, the P content is restricted to 0.020% by weight or less.
[0032]
S: 0.005 to 0.020% by weight
S, like P, is an element that increases the hot cracking susceptibility. However, unlike P, the addition has the effect of greatly reducing the viscosity or surface tension of the weld metal. Adding an appropriate amount increases the bead width and improves the familiarity between the bead and the base metal at the toe. , Improve the toe shape. These effects become effective when the S content is 0.005% by weight or more. On the other hand, when the S content exceeds 0.020% by weight, hot cracking occurs. Therefore, the content of S is set to 0.005 to 0.020% by weight.
[0033]
Cr: 0.01 to 0.20% by weight
Cr has a small deoxidation effect, and a small amount of addition hardly affects the viscosity of the weld metal. In addition, the melting point of the weld metal decreases due to the addition of Cr, and the liquid phase state is maintained for a long time even when the temperature of the welded part rapidly decreases during high-speed welding, and the bead shape is flattened, widened, and the toe is familiar. The effect of improvement can be obtained. These effects become effective when the Cr content is 0.01% by weight or more. On the other hand, if the Cr content exceeds 0.20% by weight, the strength of the weld metal is remarkably increased, and the possibility of generating cracks increases. Therefore, the Cr content is 0.01 to 0.20% by weight.
[0034]
O: 0.005% by weight or more
By increasing the amount of oxygen in the weld metal as described above, it is possible to improve bead shape convexity and bead width reduction during high-speed welding. If the amount of oxygen contained in the wire is increased, the amount of oxygen contained in the weld metal also increases. When the O content in the wire is less than 0.005% by weight, the oxygen of the weld metal becomes insufficient, resulting in a decrease in humping resistance, a bead shape convexity and a decrease in bead width. Therefore, the content of O is set to 0.005% by weight or more. It is known that the presence of oxygen in the wire is irrelevant, such as the distribution of the whole wire or the concentration of oxygen near the surface by a technique such as surface oxidation. .
[0035]
At least one selected from the group consisting of K and Na: 0.1 to 12 ppm in total
The alkali metals of K and Na are Ar-80% + CO with a small potential tendency2Previous studies have shown that it has the effect of stabilizing droplet transfer in mixed gas welding at around -20%. But these are CO2Gas has been considered ineffective. The inventors of this application are CO2In the state where the current density is high even in the gas, the knowledge that these elements are effective for the arc stabilization was obtained.
[0036]
In high-speed welding of thin plates, a misalignment of the wire tip tends to cause welding failure, and the base material-tip tip distance (protruding length) needs to be shortened to about 15 mm in order to stabilize the aiming position. is there. On the other hand, in high-speed welding, a high-speed feed motor is used, and the wire feed rate is often increased to 18 m / min or more. In this case, since the protruding length of the wire is short, the effect of Joule heat generation is small, the current becomes as high as 400 A or more, and a high current density state is obtained. That is, in high-speed welding of thin plates, a high current density is likely to be obtained as compared with other welding objects, and the arc can be stabilized by the addition of K and Na, so that it is possible to improve the humping resistance. In order to obtain the effect of improving the humping resistance, it is necessary to contain a total of 0.1 ppm by weight of one or both of K and Na. On the other hand, even if the total of one or both of K and Na exceeds 12 ppm by weight, the effect of stabilizing the droplet transfer is saturated, and when K or Na is present on the wire surface, the feeding resistance is reduced. It becomes high and it becomes easy to raise | generate the droplet transfer instability by the wire feeding defect. Furthermore, when K or Na is present between the plating or Fe-plating, the adhesion or purity of the plating is lowered and the arc becomes unstable. Accordingly, at least one selected from the group consisting of K and Na is contained in a total amount of 0.1 to 12 ppm by weight.
[0037]
K and Na are technically possible to penetrate or attach these compounds to the plating surface or the plating surface, and are not affected by the attachment form and the attachment position.
[0038]
Ti: 0.02 to 0.10% by weight
Ti has the effect of expanding the arc and improving the familiarity (toe shape) between the weld metal and the base metal. In order to obtain the effect of improving this familiarity, it is necessary to add 0.02% by weight or more of Ti. On the other hand, if the Ti content exceeds 0.10% by weight, the viscosity of the weld metal is increased and the humping resistance is lowered. Further, the bead shape is deteriorated such that the bead shape is convex and the bead width is narrowed. Furthermore, a lot of slag is generated, and the bead appearance and paintability deteriorate. Therefore, the Ti content is preferably 0.02 to 0.10% by weight.
[0039]
In addition, the solid wire for gas shielded arc welding according to the present invention can be subjected to copper plating similarly to a normal solid wire without any problem. The plating amount, plating quality, and the like are not particularly specified as long as they do not affect the wire feedability and do not affect the humping resistance and bead shape.
[0040]
【Example】
Hereinafter, the characteristics of the solid wire for gas shielded arc welding that falls within the scope of the present invention will be specifically described by comparing the characteristics with those of a comparative example. FIG. 4 is a schematic view showing a horizontal overlap fillet weld joint. FIG. 5 shows the definition of the radius of curvature of the toe, (a) is a schematic diagram when the radius of curvature is large, and (b) is a schematic diagram when the radius of curvature is small. Fig.6 (a) is a schematic diagram which shows the fatigue test piece of a horizontal lap weld joint, (b) is sectional drawing by the AA line of Fig.6 (a).
[0041]
As shown in FIG. 4 using wires having chemical components shown in Tables 1 to 4, two base materials 1 are overlapped with a gap adjusted, the wire W protrudes from the fillet portion, the length is 15 mm, and the torch inclination angle Welding was performed under the welding conditions shown in Table 5 at 45 °. The welded portion was evaluated for humping rate, gap resistance, radius of curvature of the toe, joint fatigue strength, presence / absence of blowholes, presence / absence of cracks, and bead appearance. The units of K and Na shown in Tables 2 and 4 are ppm by weight, and are present during the plating of the wire by adding to the plating bath layer.
[0042]
The humping occurrence rate was the ratio of the length at which humping occurred to the weld length. In the evaluation, the hamping occurrence rate was 5% or less, and the hamping occurrence rate exceeded 5% was rejected.
[0043]
Regarding the gap resistance, it was determined whether welding was possible when the gap was 1 mm. In the evaluation, ◎ indicates that welding was possible without any problems, ◯ indicates that some of the unstable portions occurred, and X indicates that welding was considered impossible.
[0044]
Regarding the radius of curvature of the toe, as shown in FIGS. 4 (a) and (b), ten weld beads were sampled, the toe was enlarged and observed to obtain the radius of curvature r, and the average of these values. Value. In the evaluation, a curvature radius of 0.50 mm or more was accepted, and a curvature radius of less than 0.50 mm was rejected. In addition, the larger the radius of curvature r, the better the familiarity between the bead and the base material at the toe and the better the fatigue strength.
[0045]
As for the fatigue strength of the joint, the fatigue test piece 3 as shown in FIGS. 5 (a) and 5 (b) was collected from the horizontal lap weld, and a plane bending fatigue tester was used as the tester. The stress (S) -breaking life (N) was measured by applying a double sine wave stress as stress (S) at the breaking life (N). The fatigue strength indicated by this stress (S) is 200 N / mm.2The above is accepted and the fatigue strength is 200 N / mm.2Less than was rejected.
[0046]
About the presence or absence of a blowhole and the presence or absence of a crack, the number of blowholes and the presence or absence of a crack were confirmed by the X-ray transmission method. In the evaluation of the presence or absence of blowholes, the number of blowholes per 500 mm weld length was 5 or less, and the number of blowholes per 500 mm weld length was 6 or less. In the evaluation of the presence or absence of a crack, a test without a crack was accepted, and a test with one crack was rejected.
[0047]
About the bead appearance, bead shape or slag entrainment was observed. These results are shown in Tables 6 to 9.
[0048]
[Table 1]
Figure 0003808251
[0049]
[Table 2]
Figure 0003808251
[0050]
[Table 3]
Figure 0003808251
[0051]
[Table 4]
Figure 0003808251
[0052]
[Table 5]
Figure 0003808251
[0053]
[Table 6]
Figure 0003808251
[0054]
[Table 7]
Figure 0003808251
[0055]
[Table 8]
Figure 0003808251
[0056]
[Table 9]
Figure 0003808251
[0057]
  As shown in Table 6 and Table 7 above, Examples No. 1 to No. 1 are within the scope of the present invention.7Can obtain a weld metal having excellent arc stability and low viscosity, so that the rate of humping is low even in high-speed welding, and the humping resistance is excellent. In addition, since the bead shape is flat and wide, it can be welded without any problem even when there is a gap, and the gap resistance is excellent. Furthermore, the toe shape was smooth, the radius of curvature of the toe part was large, and the fit between the bead and the base material was good, so the fatigue strength of the joint was also high. Furthermore, the presence or absence of blow holes and the presence or absence of cracks were also good, and high efficiency and excellent welding quality could be obtained.
[0058]
On the other hand, as shown in Tables 8 and 9, Comparative Examples Nos. 11 to 29 are humping occurrence rate, gap resistance, radius of curvature of the toe, fatigue strength of the joint, presence or absence of blowholes, presence or absence of cracks, and beads. Good results for the appearance could not be obtained.
[0059]
In Comparative Example No. 11, since the C content is less than the range of the present invention, the number of short-circuits decreases, the arc becomes unstable and tends to be a humping bead, the hamping occurrence rate increases, and the humping resistance is improved inferior.
[0060]
In Comparative Example No. 12, since the C content exceeded the range of the present invention, the hardenability was greatly increased and low temperature cracking occurred.
[0061]
In Comparative Example No. 13, since the contents of Si and Mn were less than the range of the present invention, the deoxidizing power was insufficient and blow holes were generated.
[0062]
In Comparative Example No. 14, the contents of Si and Cr exceed the scope of the present invention. For this reason, excessive Cr caused the strength to become excessive and cold cracking occurred. On the other hand, excess Si increased the viscosity of the weld metal, resulting in a high humping rate and a convex bead shape, resulting in poor humping resistance and fatigue strength. Further, if the bead width is narrow and there is a gap, welding becomes impossible and the gap resistance is inferior.
[0063]
In Comparative Example No. 15, since the Mn content exceeds the range of the present invention, the viscosity of the weld metal is increased, the hamping rate is increased, the bead shape is also convex, and the humping resistance and fatigue are increased. The strength was inferior. Further, if the bead width is narrow and there is a gap, welding becomes impossible and the gap resistance is inferior.
[0064]
In Comparative Example No. 16, since the P and S contents exceeded the range of the present invention, the hot cracking susceptibility increased, and solidification cracking occurred because of high-speed welding.
[0065]
In Comparative Example No. 17, since the contents of S and O were less than the range of the present invention, the viscosity of the weld metal increased, the hamping rate was increased easily, and the humping resistance was inferior. Further, since the bead shape is convex and the width is narrow, the gap resistance is also inferior. Further, the radius of curvature of the toe portion was small and the fatigue strength was also reduced.
[0066]
In Comparative Example No. 18, since the Cr content is less than the range of the present invention, the melting point lowering effect of the weld metal due to the addition of Cr cannot be obtained, and solidification starts early as the temperature of the welded portion decreases. For this reason, the familiarity of the toe portion was poor and the radius of curvature of the toe portion was small. For this reason, the fatigue strength was low.
[0067]
In Comparative Example No. 19, the contents of Ti and Na exceed the scope of the present invention. For this reason, the viscosity of the weld metal is increased by excessive Ti, the bead shape is convex, the width of the bead is narrowed, the gap resistance is inferior, and the fatigue strength is also low. On the other hand, the increase in the viscosity of the weld metal and the excessive Na caused arc instability due to a decrease in plating adhesion, resulting in a high humping rate and poor humping resistance. Moreover, the slag which has Ti oxide as a main component generate | occur | produced excessively and the bead appearance deteriorated.
[0068]
In Comparative Example No. 20, since the total content of K and Na exceeds the range of the present invention, the total amount of K and Na during plating becomes excessive, the plating quality is lowered, and the arc is unstable. The hamping rate increased and the humping resistance was inferior.
[0069]
In Comparative Example No. 21, the total content of K and Na is less than the range of the present invention. For this reason, CO2Since the effect of stabilizing the arc at a high current density could not be obtained, the hamping rate was high and sufficient humping resistance could not be obtained.
[0070]
Comparative Example No. 22 is a general wire for low current defined in JIS Z3312 YGW12. The content of Mn exceeds the range of the present invention, and the content of Cr, O, K and Na is less than the range of the present invention. Since Mn was excessive and O was excessive, hardenability was excessive and cold cracking due to excessive hardness occurred. Further, since the weld metal has a high viscosity and K and Na are too small, the occurrence rate of humping is high and the humping resistance is inferior. The bead appearance is narrow and convex, and the gap resistance is also inferior. Furthermore, since Cr was not added, the radius of curvature of the toe portion was reduced, and the joint strength was low.
[0071]
Comparative Example No. 23 is a general high-current wire defined in JIS Z3312 YGW11. The contents of Mn and Ti exceed the scope of the present invention, and the contents of S, Cr, O, K and Na are less than the scope of the present invention. Since Mn was excessive and O was excessive, hardenability was excessive and cold cracking due to excessive hardness occurred. The component characteristic of YGW 11 (Comparative Example No. 23) with respect to YGW 12 (Comparative Example No. 22) is the addition of Ti, but the addition amount of Ti is excessive for high-speed welding. Combined with the Ti and Mn contents, the weld metal has a very high viscosity. In addition, since K and Na are too small, the bead appearance is narrow and convex, with a high rate of humping and resistance to humping. Was inferior and the gap resistance was inferior. In addition, excessive Ti covered the entire bead with Ti oxide slag, and the bead appearance was also deteriorated. Furthermore, since there is no effect of improving the radius of curvature of the toe due to excessive viscosity of the weld metal and no addition of Cr, the radius of curvature of the toe is reduced and the joint strength is low.
[0072]
In Comparative Example No. 24, since the Ti content exceeds the range of the present invention, excess Ti increases the viscosity of the weld metal, the bead shape is convex, the bead width is narrowed, and the gap resistance is reduced. The fatigue strength was low.
[0073]
In Comparative Example No. 25, since the Si content exceeded the range of the present invention, the viscosity of the weld metal increased, the humping resistance decreased, the bead shape became convex, and the fatigue strength also decreased. In addition, since the bead width is narrow, welding was impossible if there was a gap.
[0074]
In Comparative Example No. 26, the P content exceeded the range of the present invention, so the hot cracking resistance was reduced and solidification cracking occurred.
[0075]
In Comparative Example No. 27, since the S content exceeded the range of the present invention, the hot cracking resistance was reduced and solidification cracking occurred as in Comparative Example No. 26.
[0076]
In Comparative Example No. 28, since the S content was less than the range of the present invention, the viscosity of the weld metal increased, and it became easy to hump. In Comparative Example No. 28, the bead was convex and the width was narrow, so that the gap resistance was lowered, the toe radius was also reduced, and the fatigue strength was lowered.
[0077]
In Comparative Example No. 29, the content of O was less than the range of the present invention, so that the viscosity of the weld metal was increased as in Comparative Example No. 28, and humping was facilitated. In Comparative Example No. 29, the bead was convex and the width was narrow, so that the gap resistance was lowered, the toe radius was also reduced, and the fatigue strength was lowered.
[0078]
【The invention's effect】
As described above in detail, according to the present invention, even when the welding speed exceeds 2 m / min, the flatness and wideness are excellent with the base material that has excellent humping resistance and good joint welding strength. A bead shape can be obtained. Further, since the bead shape is familiar with the base material and is wide, even if the steel plate has a gap, it can be welded well, has excellent gap resistance, and is suitable for a thin steel plate.
[0079]
Furthermore, since the speed can be significantly improved while maintaining the welding quality, the location where the welding is applied is not limited and contributes to improving the efficiency of the welding process, thus making a great contribution to the industry.
[Brief description of the drawings]
FIG. 1 shows the hamping limit welding speed and beat shape factor on the vertical axis, and Ar gas and CO on the horizontal axis.2Take the ratio with gas, CO2It is a graph which shows the relationship between the quantity of gas, a humping limit welding speed, and a beat shape factor.
FIG. 2 is a schematic diagram showing a method for calculating a bead shape factor.
FIG. 3 is a graph showing the influence of the Si or Mn content on the oxygen content of the weld metal, with the vertical axis representing the oxygen content of the weld metal and the horizontal axis representing the Si or Mn content.
FIG. 4 is a schematic view showing a horizontal overlap fillet weld joint.
5A and 5B show definitions of the radius of curvature of the toe, where FIG. 5A is a schematic diagram when the radius of curvature is large, and FIG. 5B is a schematic diagram when the radius of curvature is small.
6A is a schematic diagram showing a fatigue test piece of a horizontal lap weld joint, and FIG. 6B is a cross-sectional view taken along the line AA in FIG. 6A.
[Explanation of symbols]
1; Base material
2; weld metal
3; Fatigue specimen
W: Wire

Claims (1)

溶接速度が2m/分以上のガスシールドアーク溶接用のソリッドワイヤにおいて、C:0.04乃至0.12質量%、Si:0.35乃至0.80質量%、Mn:0.40乃至0.85質量%、P:0.020質量%以下、S:0.005乃至0.020質量%、Cr:0.01乃至0.20質量%、Ti:0.02乃至0.10質量%及びO:0.005乃至0.015質量%を含有し、更にK及びNaからなる群から選択された少なくとも1種を合計で0.1乃至12質量ppm含有すると共に、残部がFe及び不可避的不純物からなることを特徴とするガスシールドアーク溶接用ソリッドワイヤ。 In a solid wire for gas shielded arc welding with a welding speed of 2 m / min or more, C: 0.04 to 0.12 mass%, Si: 0.35 to 0.80 mass%, Mn: 0.40 to 0.00. 85% by mass, P: 0.020% by mass or less, S: 0.005 to 0.020% by mass, Cr: 0.01 to 0.20% by mass, Ti: 0.02 to 0.10% by mass, and O : 0.005 to 0.015% by mass, further containing at least one selected from the group consisting of K and Na in a total of 0.1 to 12 ppm by mass, and the balance from Fe and inevitable impurities A solid wire for gas shielded arc welding.
JP24676599A 1999-08-31 1999-08-31 Solid wire for gas shielded arc welding Expired - Fee Related JP3808251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24676599A JP3808251B2 (en) 1999-08-31 1999-08-31 Solid wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24676599A JP3808251B2 (en) 1999-08-31 1999-08-31 Solid wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2001071175A JP2001071175A (en) 2001-03-21
JP3808251B2 true JP3808251B2 (en) 2006-08-09

Family

ID=17153344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24676599A Expired - Fee Related JP3808251B2 (en) 1999-08-31 1999-08-31 Solid wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP3808251B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4052834A4 (en) * 2019-10-31 2023-01-04 JFE Steel Corporation Mig welding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204195A (en) * 1990-01-04 1991-09-05 Nippon Steel Corp Wire for gas shielded arc fillet welding
JP2723801B2 (en) * 1994-05-13 1998-03-09 株式会社神戸製鋼所 Gas shielded arc welding wire
JP3400716B2 (en) * 1997-07-04 2003-04-28 株式会社神戸製鋼所 Solid wire for gas shielded arc welding
JP2000158182A (en) * 1998-11-25 2000-06-13 Kawasaki Steel Corp Steel wire for gas shield arc welding and its manufacture

Also Published As

Publication number Publication date
JP2001071175A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP4986563B2 (en) Flux-cored wire for electrogas arc welding and 2-electrode electrogas arc welding method
JP4857015B2 (en) Gas shielded arc welding flux cored wire and welding method
JP5244059B2 (en) Welded solid wire and weld metal
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
JP2012081514A (en) Fillet arc welding method of galvanized steel sheet
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JP2002239725A (en) Gas-shielded arc welding for steel sheet
JP2004195543A (en) Steel wire for gas shielded arc welding
JP3433891B2 (en) Gas shielded arc welding wire for P-added sheet steel and MAG welding method
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
CN105458465B (en) Gas-shielded arc welding method
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JP3808251B2 (en) Solid wire for gas shielded arc welding
JPH07232294A (en) Welding wire for galvanized steel sheet and welding method
JP2711130B2 (en) Gas shielded arc welding wire
KR101091469B1 (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
JP2005169414A (en) Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2007118069A (en) Gas-shielded arc welding method
JP6071797B2 (en) Flux for single-sided submerged arc welding
JP2005219062A (en) Yag-laser and arc hybrid welding method
JP3523777B2 (en) Two-electrode electrogas arc welding method
JP4697693B2 (en) Two-electrode vertical electrogas arc welding method for extra heavy steel
CN113613829A (en) Ni-based alloy flux-cored wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees