JPH08243698A - Device for controlling fluidity of molten metal - Google Patents

Device for controlling fluidity of molten metal

Info

Publication number
JPH08243698A
JPH08243698A JP4591595A JP4591595A JPH08243698A JP H08243698 A JPH08243698 A JP H08243698A JP 4591595 A JP4591595 A JP 4591595A JP 4591595 A JP4591595 A JP 4591595A JP H08243698 A JPH08243698 A JP H08243698A
Authority
JP
Japan
Prior art keywords
electromagnet core
slots
molten metal
extending
electric coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4591595A
Other languages
Japanese (ja)
Inventor
Keisuke Fujisaki
崎 敬 介 藤
Kenzo Sawada
田 健 三 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4591595A priority Critical patent/JPH08243698A/en
Publication of JPH08243698A publication Critical patent/JPH08243698A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To improve the consumable electric power efficiency and to stabilize the thrust by restraining heat generation of an electric magnet core in a linear motor caused by current. CONSTITUTION: An electric coil is wound around the electric magnet core 10 inserting laminated sheets 10b-10k with stainless steel outer sheets 10a, 101. Two sets of the linear motors notching the slits s11-s22 in each part and forming the tapered part at the tip part of tooth t11-t17 between slots are arranged at the upper part of a mold opening part so as to become the axial symmetry to a molten steel pouring nozzle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋳型内溶融金属の流動
速度を調節する流動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow control device for adjusting the flow rate of molten metal in a mold.

【0002】[0002]

【従来の技術】例えば連続鋳造では、タンデイッシュよ
り鋳型に溶鋼が注入され、鋳型において溶鋼は鋳型壁面
から次第に冷却されつつ引き抜かれる。同一高さの鋳型
壁面における温度が不均一であると、表面割れやシェル
破断を生じ易い。これを改善するために、従来は、リニ
アモ−タを用いて、鋳型内で溶鋼を鋳型壁面に沿って流
動駆動する(例えば特開平1−228645号公報)。
2. Description of the Related Art In continuous casting, for example, molten steel is poured into a mold from a tundish, and in the mold, the molten steel is drawn from the wall surface of the mold while being gradually cooled. If the temperatures on the wall surfaces of the mold having the same height are not uniform, surface cracks and shell breakages are likely to occur. In order to improve this, conventionally, a linear motor is used to drive the molten steel to flow along the wall surface of the mold in the mold (for example, JP-A 1-228645).

【0003】電磁石コアのスロットに電気コイルを挿入
する際、電気コイルを電磁石コアに胴巻きにすることが
ある。これは、コイルエンドを溶鋼と反対方向の電磁石
コア背面に突出させることにより、リニアモータの幅
(推力方向yと直交するx方向)を小さくし、スロット
を深くして電気コイルはその底に挿入してスロット間の
歯の先端面(磁極端面)を溶鋼上面に近付けて対向させ
て、強い電磁力を溶鋼に直接作用させるのに効果があ
る。胴巻きにすることにより力率が低下するが、高周波
駆動により小さな電源容量で大きな電磁力を得ることが
できる。
When inserting the electric coil into the slot of the electromagnet core, the electric coil may be wound around the electromagnet core. This is because the width of the linear motor (x direction orthogonal to the thrust direction y) is made smaller by making the coil end project to the back surface of the electromagnet core in the direction opposite to the molten steel, and the slot is deepened so that the electric coil is inserted at its bottom. Then, it is effective to bring the tip surfaces (pole end surfaces) of the teeth between the slots close to and face the upper surface of the molten steel so that a strong electromagnetic force directly acts on the molten steel. Although the power factor is reduced by winding the body, a high electromagnetic force can obtain a large electromagnetic force with a small power source capacity.

【0004】[0004]

【発明が解決しようとする課題】しかし、電気コイルを
電磁石コアに胴巻きにした場合、リニアモータの駆動時
間が長くなると、電磁石コアの、スロットの底部及びコ
イルエンド(スロットから出てz方向に延びてコア背面
に向かう部分)と対向する端縁部が発熱する。これは、
電気コイルを電磁石コアに胴巻きにすることにより、コ
イルエンドが電磁石コアの平板面(y,z面)に平行
(zに平行)となり、コイルエンドに流れる電流により
該平板面に直交するx方向の交番磁束が発生し、この磁
束により誘起される渦電流が該平板面に生じ、コア端縁
部に沿う渦電流値が高く、これが比較的に高い発熱をも
たらす。温度が高くなる程電磁石コアの磁気特性が劣化
するので、リニアモータの溶鋼駆動推力が低下する。ま
た、電気コイルの温度上昇により抵抗値が増え、電力損
失が増える。これらを原因とする推力変動は溶融金属の
流動速度制御を乱す原因ともなる。
However, when the electric coil is wound around the electromagnet core and the driving time of the linear motor becomes long, the bottom of the slot and the coil end of the electromagnet core (extending from the slot and extending in the z direction). (The part toward the back surface of the core) and the edge portion facing the core generate heat. this is,
By winding the electric coil around the electromagnet core, the coil end becomes parallel (parallel to z) to the flat plate surface (y, z plane) of the electromagnet core, and the current flowing in the coil end causes the coil end in the x direction orthogonal to the flat plate surface. An alternating magnetic flux is generated, and an eddy current induced by this magnetic flux is generated in the flat plate surface, and the eddy current value along the edge of the core is high, which causes relatively high heat generation. Since the magnetic characteristics of the electromagnet core deteriorate as the temperature increases, the molten steel driving thrust of the linear motor decreases. Further, the resistance value increases due to the temperature rise of the electric coil, and the power loss increases. Thrust fluctuations due to these factors also disturb the flow velocity control of the molten metal.

【0005】本発明は、胴巻きリニアモータの推力変動
を抑制することを第1の目的とし、電磁石コアの発熱を
抑制することを第2の目的とし、うず電流損を低減する
ことを第3の目的とする。
A first object of the present invention is to suppress a thrust force fluctuation of a body wound linear motor, a second object is to suppress heat generation of an electromagnet core, and a third object is to reduce eddy current loss. To aim.

【0006】[0006]

【課題を解決するための手段】本発明の流動制御装置
は、複数個のx方向に延びy方向に分布するスロットを
有する電磁石コア(10/20);スロットに挿入され、電磁
石コアの(10/20)、スロット底(SBT)があるy方向に延び
る基部(CST)を周回して電磁石コアに装着された、複数
個の電気コイル(1Aa,1Ba,1Ca,2Aa,2Ba,2Ca/4Ab,4Bb,4C
b,5Ab,5Bb,5Cb);および、スロットの配列方向yに沿う
推力を溶融金属(MM)に与えるための位相差がある交流電
圧を電気コイルのそれぞれに印加する通電手段(20F1/20
L2);を備え、かつ、電磁石コア(10/20)は、薄板積層体
に更に透磁率が低く導電率が低い外板を積層したもの,
x方向に延びるスリット(S11〜S22/S31〜S42)を有する
もの、および/又は、スロット間の歯の先端部に近いほ
ど歯横断面を小さくするテ−パ(P14,P24/P34,P44)を有
するもの、である。
The flow control device of the present invention is provided with an electromagnet core (10/20) having a plurality of slots extending in the x direction and distributed in the y direction; / 20), a plurality of electric coils (1Aa, 1Ba, 1Ca, 2Aa, 2Ba, 2Ca / 4Ab, mounted on the electromagnet core around the base (CST) extending in the y direction with the slot bottom (SBT). 4Bb, 4C
b, 5Ab, 5Bb, 5Cb); and energizing means (20F1 / 20) for applying an AC voltage having a phase difference to each of the electric coils to give thrust to the molten metal (MM) along the slot arrangement direction y.
L2); and the electromagnet core (10/20) is obtained by laminating an outer plate having a low magnetic permeability and a low electric conductivity on a thin plate laminate.
Those having slits (S11 to S22 / S31 to S42) extending in the x direction, and / or a taper (P14, P24 / P34, P44) that reduces the tooth cross section closer to the tips of the teeth between the slots. Is the one that has.

【0007】本発明の一実施例は、y方向に延び相対向
する1対の長辺(5F,5L)とx方向に延び相対向する1対
の短辺(4R,4L)を含む鋳型の、1対の長辺の一方(5F)に
沿って分布しx方向に延びる複数個の第1組のスロット
およびx方向に延びる第1組のスリット(S11〜S22)を有
し、薄板積層体に更に透磁率が低く導電率が低い外板を
積層した電磁石コアであって、スロット間の歯の先端
が、1対の短辺の一方(4R)に近い位置の鋳型内溶融金属
上面に対向しかつ鋳型開口内にある、第1電磁石コア(1
0);第1組のスロットに挿入され、第1電磁石コア(10)
の、スロット底(SBT)があるy方向に延びる基部(CST)を
周回する胴巻きで第1電磁石コア(10)に装着され、一部
分が前記一方の長辺(5F)の上端面の上方に位置する、複
数個の第1組の電気コイル(1Aa,1Ba,1Ca,2Aa,2Ba,2C
a);第1組のスロットの配列方向yに沿う推力を溶融金
属に与えるための位相差がある交流電圧を第1組の電気
コイルのそれぞれに印加する第1通電手段(20F1);上記
1対の長辺の他方(5L)に沿って分布しx方向に延びる複
数個の第2組のスロットおよびx方向に延びる第2組の
スリット(S31〜S42)を有し、薄板積層体に更に透磁率が
低く導電率が低い外板を積層した電磁石コアであって、
スロット間の歯の先端が、上記1対の短辺の他方(4L)に
近い位置の鋳型内溶融金属上面に対向しかつ鋳型開口内
にある、第2電磁石コア(20);第2組のスロットに挿入
され、第2電磁石コア(20)の、スロット底(SBT)がある
y方向に延びる基部(CST)を周回する胴巻きで第2電磁
石コア(20)に装着され、一部分が前記他方の長辺(5L)の
上端面の上方に位置する、複数個の第2組の電気コイル
(4Ab,4Bb,4Cb,5Ab,5Bb,5Cb);および、第2組のスロッ
トの配列方向yに沿う推力を溶融金属に与えるための位
相差がある交流電圧を第2組の電気コイルのそれぞれに
印加する第2通電手段(20L2);を備える。そして、上記
外板はステンレス板であり、上記スリットは、スロット
間の歯の先端面からz方向に延びる歯端スリット(s11〜
s15/s31〜s35),スロットの底(SBT)からz方向に延びる
スロット底スリット(s16〜s19/S36〜s39)、および、電
磁石コアの、スロットの底に対向する背面からz方向に
延びる背面スリット(s20〜s22/s40〜s42)である。
One embodiment of the present invention is a mold comprising a pair of long sides (5F, 5L) extending in the y direction and facing each other and a pair of short sides (4R, 4L) extending in the x direction and facing each other. A thin plate laminate having a plurality of first set slots extending in the x direction and distributed along one pair of long sides (5F) and a first set of slits (S11 to S22) extending in the x direction. Is an electromagnet core in which outer plates with lower magnetic permeability and lower conductivity are laminated, and the tips of the teeth between the slots face the upper surface of the molten metal in the mold at a position near one of the pair of short sides (4R). The first electromagnet core (1
0); inserted into the first set of slots, the first electromagnet core (10)
Of the slot bottom (SBT) is attached to the first electromagnet core (10) with a body winding that wraps around the base (CST) extending in the y direction, and a part of it is located above the upper end surface of the one long side (5F). A plurality of electric coils of the first set (1Aa, 1Ba, 1Ca, 2Aa, 2Ba, 2C
a); first energizing means (20F1) for applying an AC voltage having a phase difference for applying a thrust along the array direction y of the first set of slots to the molten metal to each of the first set of electric coils; The thin plate laminate further has a plurality of second set slots extending in the x direction and a second set of slits (S31 to S42) distributed along the other (5L) of the long sides of the pair and extending in the x direction. An electromagnet core having a laminate of outer plates having low magnetic permeability and low conductivity,
The second electromagnet core (20); the second set of the second set, in which the tips of the teeth between the slots face the upper surface of the molten metal in the mold at a position close to the other (4L) of the pair of short sides and are in the mold opening. The second electromagnet core (20) is inserted into the slot, and is attached to the second electromagnet core (20) by a body winding that surrounds the base (CST) of the second electromagnet core (20) that extends in the y direction having the slot bottom (SBT), and a part of the other is attached to the other. A plurality of second sets of electric coils located above the upper end surface of the long side (5 L)
(4Ab, 4Bb, 4Cb, 5Ab, 5Bb, 5Cb); and an AC voltage having a phase difference for applying thrust to the molten metal along the arrangement direction y of the slots of the second set, to each of the electric coils of the second set. The second energizing means (20L2) for applying to the. The outer plate is a stainless plate, and the slits are tooth end slits (s11 to
s15 / s31 to s35), slot bottom slits (s16 to s19 / S36 to s39) extending from the bottom of the slot (SBT) in the z direction, and the back surface of the electromagnet core extending in the z direction from the back surface facing the bottom of the slot. It is a slit (s20-s22 / s40-s42).

【0008】なお、カッコ内には、理解を容易にするた
めに、図面に示し後述する実施例の対応要素の記号を、
参考までに付記した。
In order to facilitate understanding, the symbols of the corresponding elements of the embodiment shown in the drawings and described later are given in parentheses.
It is added for reference.

【0009】[0009]

【実施例】図1に、本発明の一実施例の、連続鋳造鋳型
に対するリニアモ−タの配置を示す。図中5Fおよび5
Lは、連続鋳造鋳型の第1および第2長片、6Rおよび
6Lは第1および第2短片であり、これらが囲む空間
に、注入ノズル30を通して溶鋼が、図1紙面の表側か
ら裏側に向けて(垂直方向zで上方から下方に)、注入
される。各辺(5F,5L,6R,6L)は銅板1F,
1L,3R,3Lに、非磁性ステンレス板2F,2L,
4R,4Lを裏当てしたものである。なお、鋳型各辺の
上端面には図3に示すように、ステンレスカバ−板が乗
っているが、図1および図2においてはその図示は省略
した。
FIG. 1 shows the arrangement of a linear motor in a continuous casting mold according to an embodiment of the present invention. 5F and 5 in the figure
L is the first and second long pieces of the continuous casting mold, 6R and 6L are the first and second short pieces, and the molten steel is passed through the injection nozzle 30 into the space surrounded by them from the front side to the back side of FIG. (From top to bottom in the vertical direction z). Each side (5F, 5L, 6R, 6L) is a copper plate 1F,
1L, 3R, 3L, non-magnetic stainless steel plate 2F, 2L,
4R and 4L are backed. A stainless cover plate is placed on the upper end surface of each side of the mold as shown in FIG. 3, but the illustration is omitted in FIGS. 1 and 2.

【0010】この実施例では、鋳型(5F,5L,6
R,6L)内の溶鋼を駆動するために、鋳型内の溶鋼の
上表面に対向して、第1および第2電磁石コア10およ
び20が、注入ノズル30を中心として対角線上に配置
されている。これらは3相リニアモ−タであり、第1電
磁石コア10は、長片5Fに沿って右から左に(+yか
ら−yの方向に)溶鋼を駆動し、第2電磁石コア20
は、長片5Fに沿って左から右に溶鋼を駆動する。
In this embodiment, the molds (5F, 5L, 6
R, 6L), the first and second electromagnet cores 10 and 20 are arranged diagonally about the injection nozzle 30 so as to face the upper surface of the molten steel in the mold. . These are three-phase linear motors, and the first electromagnet core 10 drives the molten steel from the right to the left (in the direction from + y to -y) along the long piece 5F, and the second electromagnet core 20.
Drives the molten steel from left to right along the long piece 5F.

【0011】図2の(a)には、第1電磁石コア10の
拡大縦断面(図1の2A−2A線拡大断面)を示し、
(b)には第2電磁石コア10の拡大縦断面を示し、図
3の(a)および(b)には、電磁石コア10の拡大横
断面(図2の3A−3A線及び3B−3B線拡大断面)
を示す。これらの図面において寸法引出線(一点鎖線)
間の小形の数字は寸法値(mm)を示す。なお、第1電
磁石コア10を含む第1リニアモ−タと第2電磁石コア
20を含む第2リニアモ−タとは、同一寸法および同一
電気定格のものであり、鋳型開口の中心位置にあるノズ
ル30に対して軸対称に配置されている。
FIG. 2A shows an enlarged vertical section of the first electromagnet core 10 (enlarged section 2A-2A in FIG. 1).
FIG. 3B shows an enlarged vertical cross section of the second electromagnet core 10, and FIGS. 3A and 3B show enlarged horizontal cross sections of the electromagnet core 10 (lines 3A-3A and 3B-3B in FIG. 2). (Enlarged cross section)
Indicates. Dimension leader line (dashed line) in these drawings
Small numbers in between indicate dimensional values (mm). The first linear motor including the first electromagnet core 10 and the second linear motor including the second electromagnet core 20 have the same size and the same electric rating, and the nozzle 30 located at the center position of the mold opening. Are arranged symmetrically with respect to.

【0012】図1〜図3を参照すると、この実施例で
は、電磁石コア10は、y方向に長く、この長手方向y
にスロット用の6個の切欠を等ピッチで形成した、平板
面が櫛形である多数の薄鋼板(これらのグル−プ区分が
10b〜10k;以下ではグル−プ区分の一単位を板と
称す)を積層したものである。薄鋼板10b〜10kの
外表面には、薄鋼板と同じく櫛形の、外板(ステンレス
板)10aおよび10lが重ねられており、これらの外
板10aおよび10lが、薄鋼板10b〜10kを挟み
これらの薄鋼板(以下、ラミネート板と称す)を保護し
ている。
With reference to FIGS. 1 to 3, in this embodiment, the electromagnet core 10 is long in the y direction, and the longitudinal direction y
A large number of thin steel plates having a comb-shaped flat plate surface in which six notches for slots are formed at equal pitches (these group sections are 10b to 10k; hereinafter, one unit of the group section is referred to as a plate. ) Are laminated. On the outer surfaces of the thin steel plates 10b to 10k, outer plates (stainless steel plates) 10a and 10l, which are comb-shaped like the thin steel plates, are stacked, and the outer plates 10a and 10l sandwich the thin steel plates 10b to 10k. The thin steel plate (hereinafter, referred to as a laminated plate) is protected.

【0013】電磁石コア10には、6個のスロットがあ
り、スロットのそれぞれに電気コイル1Aa〜2Caが
挿入され、これらの電気コイル1Aa〜2Caが電磁石
コア10の基部CSTを周回している。すなわち電気コ
イルは胴巻きである。なお、電磁石コア10および電気
コイル1Aa〜2Caは冷却されかつ耐熱カバ−で被覆
されているが、冷却構造およびカバ−は図示を省略して
いる。電磁石コア10は、下面にx方向に延びるスロッ
トがある櫛形であり、各スロットに電気コイルが挿入さ
れ、スロット間の歯t11〜t17の下端面が磁極端面
であり、連続鋳造鋳型(5F,5L,6R,6L)内の
溶鋼の上表面に対向しており、歯t11〜t17の先端
部は、エッジ(尖り)による磁界の乱れ(これにより渦
電流が発生し発熱する)を抑制するために、x軸および
z軸に対して傾斜したテ−パ(P14,P24:図3)
となっている。このテ−パ(P14,P24)の存在に
より、磁界が歯t11〜t17の先端面の中央に集中
し、磁界の乱れが少なく、発熱が少くなる。
The electromagnet core 10 has six slots, and the electric coils 1Aa to 2Ca are inserted into the respective slots, and these electric coils 1Aa to 2Ca circulate around the base portion CST of the electromagnet core 10. That is, the electric coil is a body winding. Although the electromagnet core 10 and the electric coils 1Aa to 2Ca are cooled and covered with a heat-resistant cover, the cooling structure and the cover are not shown. The electromagnet core 10 has a comb shape having a slot extending in the x direction on the lower surface, an electric coil is inserted into each slot, and the lower end surfaces of the teeth t11 to t17 between the slots are magnetic pole end surfaces, and the continuous casting mold (5F, 5L , 6R, 6L) to face the upper surface of the molten steel, and the tips of the teeth t11 to t17 suppress the disturbance of the magnetic field due to the edge (sharpness) (which causes eddy currents and heat generation). , Taper inclined with respect to x-axis and z-axis (P14, P24: FIG. 3)
Has become. Due to the presence of the tapers (P14, P24), the magnetic field is concentrated in the center of the tip surfaces of the teeth t11 to t17, the magnetic field is less disturbed, and heat generation is less.

【0014】電磁石コア10にはまた、スロット間の歯
t11〜t17の先端面からz方向に延びる歯端スリッ
トs11〜s15,スロットの底SBTからz方向に延
びるスロット底スリットs16〜s19、および、電磁
石コアの、スロットの底SBTに対向する背面からz方
向に延びる背面スリットs20〜s22が、切込まれて
いる。これらのスリットは、y,z平面(x軸に直交す
る面)上をリング状に流れる渦電流を遮断するためのも
のであり、いずれも、x軸およびy軸に実質上平行であ
って、ステンレス外板10a,10lおよびそれらの間
のラミネート板10b〜10kの全体を横切っている。
The electromagnet core 10 also includes tooth end slits s11 to s15 extending in the z direction from the tip surfaces of the teeth t11 to t17 between the slots, slot bottom slits s16 to s19 extending in the z direction from the bottom SBT of the slot, and Back slits s20 to s22 extending in the z direction from the back surface of the electromagnet core facing the bottom SBT of the slot are cut. These slits are for blocking eddy currents that flow in a ring shape on the y and z planes (planes orthogonal to the x axis), and are both substantially parallel to the x axis and the y axis. The stainless steel outer plates 10a and 10l and the laminate plates 10b to 10k between them are entirely traversed.

【0015】電磁石コア10の各スロットに挿入された
電気コイル1Aa〜2Caの、二辺(コイルエンド)
は、外板10a,10lの外空間をz方向に延びて電磁
石コア10の上平面(スロットを切った面に対して背
面)に向かっている。すなわち電気コイル1Aa〜2C
aは電磁石コア10に「胴巻き」されている。コイルエ
ンドが外板10a,10lの外空間をz方向に延びてい
るので、右ネジの法則により、コイルエンド(z軸)を
中心とする周回交番磁束が各コイルエンド周りに発生
し、この交番磁束がステンレス外板10a,10lの外
表面と実質上垂直に、電磁石コア10に進入する。電磁
石コア10のステンレス外板10a,10lおよびそれ
らの間のラミネ−ト板10b〜10kには、この上記交
番磁束(x軸)を中心とし、各板の板面に沿う(板面上
でル−プを描く)周回交番電流(渦電流)が誘起され、
そのジュ−ル熱により、各板が発熱する。推力を効率的
に発生するために、後述するようにリニアモ−タには1
0Hz以上例えば50Hzの高周波通電をするが、高周
波表皮効果によりコアのエッジ部で渦電流値が大きく、
エッジ部が発熱し易い。前述の歯端スリットs11〜s
15,スロット底スリットs16〜s19、および、背
面スリットs20〜s22はいずれもエッジ(端面)か
らコア内部に向けて切込まれているので、エッジ部の渦
電流を抑制もしくは遮断するので、エッジ部の発熱が低
減する。
Two sides (coil ends) of the electric coils 1Aa to 2Ca inserted into the respective slots of the electromagnet core 10.
Extends in the z direction in the outer space of the outer plates 10a and 10l and faces the upper plane of the electromagnet core 10 (the rear surface with respect to the plane in which the slots are cut). That is, the electric coils 1Aa to 2C
“A” is “wrapped around” the electromagnet core 10. Since the coil ends extend in the outer space of the outer plates 10a and 10l in the z direction, a circular alternating magnetic flux centered on the coil ends (z axis) is generated around each coil end according to the right-handed screw law, and this alternating The magnetic flux enters the electromagnet core 10 substantially perpendicularly to the outer surfaces of the stainless steel outer plates 10a and 10l. The stainless steel outer plates 10a and 10l of the electromagnet core 10 and the laminar plates 10b to 10k between them are centered on the alternating magnetic flux (x axis) and extend along the plate surface of each plate (on the plate surface). -Circulating alternating current (eddy current) is induced,
Due to the jule heat, each plate generates heat. In order to efficiently generate thrust, the linear motor has 1
A high frequency current of 0 Hz or more, for example 50 Hz is applied, but the eddy current value is large at the edge of the core due to the high frequency skin effect,
Edges easily generate heat. The above-mentioned tooth end slits s11 to s
15, the slot bottom slits s16 to s19, and the back surface slits s20 to s22 are all cut from the edge (end face) toward the inside of the core, so that the eddy current at the edge portion is suppressed or cut off. Heat generation is reduced.

【0016】図2の(b)に、第2電磁石コア20の拡
大縦断面(図1の2B−2B線拡大断面)を示す。電磁
石コア20も、10と同様な構造であり、長辺5Fおよ
び短辺6Rに対する第1電磁石コア10の配置位置関係
と同じく、長辺5Lおよび短辺6Lに対して位置決めさ
れている。
FIG. 2B shows an enlarged vertical section of the second electromagnet core 20 (enlarged section taken along line 2B-2B in FIG. 1). The electromagnet core 20 also has a structure similar to that of 10, and is positioned with respect to the long side 5L and the short side 6L, similar to the positional relationship of the first electromagnet core 10 with respect to the long side 5F and the short side 6R.

【0017】図8の(a)には、スリットを入れない状
態(比較例)でリニアモータを駆動した場合の電磁石コ
ア10の温度分布の計算機シミュレ−ション結果を示
し、(b)には歯端スリットs11〜s15およびスロ
ット底スリットs16〜s19を入れた状態でリニアモ
ータを駆動した場合の電磁石コア10の温度分布の計算
機シミュレ−ション結果を示す。これは、図2の(a)
に相当する断面図である。図8より、スリットを入れな
い状態でリニアモータを駆動した場合には、スロットの
底SBTおよびコア背面において温度が上昇している。
この温度上昇は、コアの磁気特性を劣化させ電気コイル
の抵抗値を増大させるので、コイル胴巻きリニアモータ
の電力効率を低下させると推察する。しかし、図8
(b)に示すように、歯端スリットs11〜s15およ
びスロット底スリットs16〜s19を入れることによ
り、コアエッジ部の表面温度が低下する。渦電流がスリ
ットを迂回するため、スリットの底部に発熱が集中する
が、迂回ル−プが長くその抵抗値が高いので、発熱量は
少く、全体としてエネルギーロスが小さくなる。
FIG. 8A shows a computer simulation result of the temperature distribution of the electromagnet core 10 when the linear motor is driven without slits (comparative example), and FIG. The computer simulation result of the temperature distribution of the electromagnet core 10 when the linear motor is driven in a state where the end slits s11 to s15 and the slot bottom slits s16 to s19 are inserted is shown. This is shown in FIG.
It is a sectional view corresponding to. From FIG. 8, when the linear motor is driven without slits, the temperature rises at the bottom SBT of the slot and the back surface of the core.
It is presumed that this temperature rise deteriorates the magnetic characteristics of the core and increases the resistance value of the electric coil, and thus lowers the power efficiency of the coil body winding linear motor. However, FIG.
As shown in (b), by inserting the tooth end slits s11 to s15 and the slot bottom slits s16 to s19, the surface temperature of the core edge portion is lowered. Since the eddy current bypasses the slit, heat is concentrated at the bottom of the slit. However, since the bypass loop is long and its resistance value is high, the amount of heat generated is small and the energy loss is small as a whole.

【0018】また、図9には外板10a,10lにステ
ンレス板を用いた場合の外板10a,ラミネート板10
b,10cの温度分布を示し、図10には外板にCu板
を用いた場合(比較例1)の外板10a,10b及びラ
ミネート板10cの温度分布を示し、図10には外板に
Cu板を用いた場合(比較例2)の外板10a,10b
及びラミネート板10cの温度分布(いずれも計算機に
よるシミュレ−ション結果)を示す。透磁率が低く導電
率が低い外板(ステンレス)を電磁石コアの表面に積層
することにより、外板面に垂直な方向の磁束がコア内へ
進入するのが抑制され、スロット間の歯の内部のうず電
流が抑制されて、歯の温度が低くなる。このことを、図
9の(c)が示している。つまり、Fe製のラミネ−ト
板(例えば電磁鋼板)のみの積層体を電磁石コアとした
場合、あるいは良導電体外板を施した場合(図10,1
1の(c))に比べて温度の上昇を防ぐことができる。
この知見に従って、上記実施例では、外板10a,10
lにステンレス板を用いている。
Further, FIG. 9 shows an outer plate 10a and a laminated plate 10 when stainless plates are used for the outer plates 10a and 10l.
b and 10c, the temperature distributions of the outer plates 10a and 10b and the laminate plate 10c when a Cu plate is used as the outer plate (Comparative Example 1) are shown in FIG. Outer plates 10a and 10b when a Cu plate is used (Comparative Example 2)
And the temperature distribution of the laminate 10c (both simulation results by computer). By stacking an outer plate (stainless steel) with low permeability and low conductivity on the surface of the electromagnet core, magnetic flux in the direction perpendicular to the outer plate surface is suppressed from entering the core, and the inside of the teeth between the slots is suppressed. The eddy current is suppressed and the temperature of the tooth is lowered. This is shown in FIG. 9 (c). That is, when a laminated body made of only a Fe laminate plate (for example, an electromagnetic steel plate) is used as an electromagnet core, or when a good conductor outer plate is applied (Figs. 1 and 1).
It is possible to prevent an increase in temperature as compared with (c) of 1).
According to this finding, in the above-mentioned embodiment, the outer plates 10a, 10
A stainless plate is used for l.

【0019】図9〜図11の(b)および(c)に示す
ように、ラミネ−ト板(10b,10c)では、スロッ
ト間の歯の先端において温度上昇が大きい。上述の実施
例の歯端スリットs11〜s15はこの温度上昇を抑制
するために設けたものであり、スロット間の歯の先端の
渦電流を抑制もしくは遮断するので、歯先端部の発熱が
低減する。
As shown in FIGS. 9 to 11 (b) and (c), in the laminate plates (10b, 10c), the temperature rises greatly at the tips of the teeth between the slots. The tooth end slits s11 to s15 of the above-described embodiment are provided to suppress this temperature rise, and suppress or block the eddy current at the tip of the tooth between the slots, so that heat generation at the tooth tip is reduced. .

【0020】図4に、図2の(a),(b)に示す電気
コイル1Aa〜2Caと4Ab〜5Cbの結線および電
源回路との接続態様を示す。この結線は2極のものであ
り、電気コイルに3相交流を通電する。例えば、電気コ
イル1Aa〜2Caは、図4ではこの順に、u,V,
w,U,v,Wと表わしている。そして「U」は3相交
流のU相の正相通電(そのままの通電)を、「u」はU
相の逆相通電(U相より180度の位相づれ通電)を表
わし、電気コイル「U」にはその巻始め端にU相が印加
されるのに対し、電気コイル「u」にはその巻終り端に
U相が印加されることを意味する。同様に、「V」は3
相交流のV相の正相通電を、「v」はV相の逆相通電
を、「W」は3相交流のW相の正相通電を、「w」はW
相の逆相通電を表わす。図4に示す端子U11,V11
およびW11は、電気コイル1Aa〜2Caの電源接続
端子であり、端子U12,V12およびW12は、電気
コイル4Ab〜5Cbの電源接続端子である。
FIG. 4 shows the connection of the electric coils 1Aa to 2Ca and 4Ab to 5Cb shown in FIGS. 2A and 2B and the connection with the power supply circuit. This connection has two poles, and three-phase alternating current is applied to the electric coil. For example, the electric coils 1Aa to 2Ca have u, V, and
It is represented as w, U, v, W. And "U" is the positive phase energization of the U phase of the three-phase AC (as it is), and "u" is U
Represents the reverse phase energization (phase energization 180 degrees from the U phase), and the U phase is applied to the winding start end of the electric coil "U", while the winding is wound on the electric coil "u". This means that the U phase is applied at the end. Similarly, "V" is 3
Phase alternating current V phase positive phase energization, "v" is V phase reverse phase energization, "W" is three phase AC W phase positive phase energization, and "w" is W
Indicates the reverse phase energization of a phase. Terminals U11 and V11 shown in FIG.
And W11 are power supply connection terminals of the electric coils 1Aa to 2Ca, and terminals U12, V12 and W12 are power supply connection terminals of the electric coils 4Ab to 5Cb.

【0021】図5に、電気コイル1Aa〜2Caに3相
交流を流す電源回路20F1を示す。3相交流電源(3
相電力線)21には直流整流用のサイリスタブリッジ2
2A1が接続されており、その出力(脈流)はインダク
タ25A1およびコンデンサ26A1で平滑化される。平
滑化された直流電圧は3相交流形成用のパワ−トランジ
スタブリッジ27A1に印加され、これが出力する3相
交流のU相が図4に示す電源接続端子U11に、V相が
電源接続端子V11に、またW相が電源接続端子W11
に印加される。
FIG. 5 shows a power supply circuit 20F1 for supplying a three-phase alternating current to the electric coils 1Aa to 2Ca. 3-phase AC power supply (3
Phase power line) 21 is a thyristor bridge 2 for DC rectification
2A1 is connected, and its output (pulsating current) is smoothed by the inductor 25A1 and the capacitor 26A1. The smoothed DC voltage is applied to the power transistor bridge 27A1 for forming a three-phase AC, and the U-phase of the three-phase AC output from the power-transistor bridge 27A1 is supplied to the power connection terminal U11 shown in FIG. , And W phase is the power supply connection terminal W11
Is applied to

【0022】電気コイル1Aa〜2Caが連続鋳造鋳型
の長辺に沿った循環流を起こす推力を発生する為のコイ
ル電圧指令値VdcA1が位相角α算出器24A1に与え
られ、位相角α算出器24A1が、指令値VdcA1に対
応する導通位相角α(サイリスの実施例では50Hz)
の、定電圧3相交流信号を発生して、比較器29A1に
与える。比較器29A1にはまた、三角波発生器30A
1が3KHzの、定電圧三角波を与える。比較器29A
1は、U相信号が正レベルのときには、それが三角波発
生器30A1が与える三角波のレベル以上のとき高レベ
ルH(トランジスタオン)で、三角波のレベル未満のと
き低レベルL(トランジスタオフ)の信号を、U相の正
区間宛て(U相正電圧出力用トランジスタ宛て)にゲ−
トドライバ28A1に出力し、U相信号が負レベルのと
きには、それが三角波発生器30A1が与える三角波の
レベル以下のとき高レベルHで、三角波のレベルを越え
るとき低レベルLの信号を、U相の負区間宛て(U相負
電圧出力用トランジスタ宛て)にゲ−トドライバ28A
1に出力する。V相信号およびW相信号に関しても同様
である。ゲ−トドライバ28A1は、これら各相,正,
負区間宛ての信号に対応してトランジスタブリッジ27
A1の各トランジスタをオン,オフ付勢する。
A coil voltage command value VdcA1 for generating thrust for causing the electric coils 1Aa to 2Ca to generate a circulating flow along the long side of the continuous casting mold is given to the phase angle α calculator 24A1 and the phase angle α calculator 24A1. However, the conduction phase angle α corresponding to the command value VdcA1 (50 Hz in the Siris embodiment)
, A constant voltage three-phase AC signal is generated and given to the comparator 29A1. The comparator 29A1 also includes a triangular wave generator 30A.
1 gives a constant voltage triangular wave of 3 KHz. Comparator 29A
1 is a high level H (transistor on) when the U-phase signal is at a positive level and is higher than the triangular wave level provided by the triangular wave generator 30A1, and a low level L (transistor off) when the U-phase signal is less than the triangular wave level. To the positive section of the U phase (to the U phase positive voltage output transistor).
When the U-phase signal is at a negative level, it is a high level H when it is below the level of the triangular wave provided by the triangular wave generator 30A1, and a low level L signal when it exceeds the level of the triangular wave. Gate driver 28A to the negative section (to the U-phase negative voltage output transistor)
Output to 1. The same applies to the V-phase signal and the W-phase signal. The gate driver 28A1 is provided for each phase, positive,
Transistor bridge 27 corresponding to the signal to the negative section
Each transistor of A1 is energized on and off.

【0023】これにより、電源接続端子U11には、3
相交流のU相電圧が出力され、電源接続端子V11に同
様なV相電圧が出力され、また電源接続端子W11に同
様なW相電圧が出力され、これらの電圧の上ピ−ク/下
ピ−ク間レベルはコイル電圧指令値VdcA1で定まる。
この3相電圧の周波数はこの実施例では周波数指令値F
dcにより50Hzである。すなわち、コイル電圧指令値
VdcA1で指定されたピ−ク電圧値(推力)の50Hz
の3相交流電圧が、図2及び図4に示す電気コイル1A
a〜2Caに印加される。
As a result, the power supply connection terminal U11 has three terminals.
A U-phase voltage of phase alternating current is output, a similar V-phase voltage is output to the power supply connection terminal V11, and a similar W-phase voltage is output to the power supply connection terminal W11. The inter-curve level is determined by the coil voltage command value VdcA1.
The frequency of the three-phase voltage is the frequency command value F in this embodiment.
It is 50 Hz by dc. That is, the peak voltage value (thrust) specified by the coil voltage command value VdcA1 is 50 Hz.
The three-phase AC voltage of the electric coil 1A shown in FIGS.
a to 2Ca.

【0024】図6に、電気コイル4Ab〜5Cbに3相
交流を流す電源回路20L2を示す。この電源回路20
L2の構成は、上述の20F1と同一であるが、コイル
電圧指令値(VdcB2)が異なる。
FIG. 6 shows a power supply circuit 20L2 for supplying a three-phase alternating current to the electric coils 4Ab to 5Cb. This power circuit 20
The configuration of L2 is the same as that of 20F1 described above, but the coil voltage command value (VdcB2) is different.

【0025】すなわち、電気コイル4Ab〜5Cbが連
続鋳造鋳型の長辺に沿った循環流を起こす推力を発生す
る為のコイル電圧指令値VdcB2が、位相角α算出器2
4Bに与えられる。これらのコイル電圧指令値VdcA1
(図5)およびコイル電圧指令値VdcB2(図6)は、
図7に示すコンピュ−タ43が、各電源回路20F1お
よび20L2に与えるものである。
That is, the coil voltage command value VdcB2 for generating the thrust that causes the electric coils 4Ab to 5Cb to cause the circulating flow along the long side of the continuous casting mold is the phase angle α calculator 2.
Given to 4B. These coil voltage command values VdcA1
(FIG. 5) and the coil voltage command value VdcB2 (FIG. 6)
The computer 43 shown in FIG. 7 supplies each of the power supply circuits 20F1 and 20L2.

【0026】図7に、図2に示す鋳型短片6Lおよび6
Rの背部を示す。これらの短片6L,6Rには、熱電対
S31〜S3nおよびS41〜S4nが、それぞれ鋳片
引抜き方向(高さ方向z;上下方向)に各一列で等間隔
に配列され、それぞれの熱電対は、裏当てステンレス板
を貫通し銅板のやや内部の(溶鋼に接する表面部の)温
度を検出する。信号処理回路41A及び41Bが熱電対
が検出する温度を表わすアナログ信号(検出信号)を発
生してアナログゲ−ト42に与える。
FIG. 7 shows the mold short pieces 6L and 6 shown in FIG.
The back of R is shown. In these short pieces 6L, 6R, thermocouples S31 to S3n and S41 to S4n are arranged at equal intervals in one row in the slab drawing direction (height direction z; vertical direction), and each thermocouple is The temperature of the inside of the copper plate (on the surface that contacts molten steel) is detected by penetrating the backing stainless steel plate. The signal processing circuits 41A and 41B generate an analog signal (detection signal) representing the temperature detected by the thermocouple and apply it to the analog gate 42.

【0027】コンピュ−タ43は、アナログゲ−ト42
を制御して、熱電対S31〜S3nおよびS41〜S4
nの検出信号を順次に選択してA/D変換して読込み、
高温値抽出処理44により、熱電対S31〜S3nの検
出温度の中の最高温度値Tm1L1および次に高い温度
値Tm2L1を抽出し、かつ、熱電対S41〜S4nの
検出温度の中の最高温度値Tm1R1および次に高い温
度値Tm2R1を抽出する。そして、短片6Lの代表温
度 (Tm1L1−Tm2L1)×0.7+TM2L1 を算出し、短片6Rの代表温度 (Tm1R1−Tm2R1)×0.7+TM2R1 を算出して、両者の差すなわち短片6L,6R間の代表
温度差 (Tm1L1-Tm2L1)×0.7+TM2L1−(Tm1R1-Tm2R1)×0.7−T
M2R1 を算出して、それが正値(0以上)である(短片6Rの
方が温度が高い)ときには、VdcA1=代表温度差×
A(Aは係数)を算出し、かつ、VdcB2=B−VdcA
1を算出する。代表温度差が負値である(短片15Lの
方が温度が高い)ときには、VdcB2=−代表温度差×
Aを算出し、かつVdcA1=B−VdcB2を算出する。
The computer 43 is an analog gate 42.
To control thermocouples S31 to S3n and S41 to S4.
n detection signals are sequentially selected, A / D converted and read,
By the high temperature value extraction process 44, the highest temperature value Tm1L1 and the next highest temperature value Tm2L1 among the detection temperatures of the thermocouples S31 to S3n are extracted, and the highest temperature value Tm1R1 of the detection temperatures of the thermocouples S41 to S4n. And the next highest temperature value Tm2R1. Then, the representative temperature (Tm1L1-Tm2L1) × 0.7 + TM2L1 of the short piece 6L is calculated, the representative temperature (Tm1R1-Tm2R1) × 0.7 + TM2R1 of the short piece 6R is calculated, and the difference between them, that is, the representative between the short pieces 6L and 6R. Temperature difference (Tm1L1-Tm2L1) × 0.7 + TM2L1-(Tm1R1-Tm2R1) × 0.7-T
When M2R1 is calculated and is a positive value (0 or more) (the temperature of the short piece 6R is higher), VdcA1 = representative temperature difference ×
A (A is a coefficient) is calculated, and VdcB2 = B-VdcA
Calculate 1. When the representative temperature difference is a negative value (the temperature of the short piece 15L is higher), VdcB2 = −representative temperature difference ×
A is calculated, and VdcA1 = B−VdcB2 is calculated.

【0028】VdcA1は、短片6R側の電気コイル1A
a〜2Ca(図4)に対する電流レベル(推力)指令値
であり、VdcB2は短片6L側の電気コイル4Ab〜5
Cb(図4)に対する電流レベル(推力)である。これ
らの指令値は、代表温度差が正値(短片6Rの方が温度
が高い)ときには電気コイル1Aa〜2Caの電気コイ
ルに流す3相交流電流レベルを大きくして強い推力(図
1の点線矢印)をかけ、電気コイル4Ab〜5Cbに流
す相交流電流レベルを小さくして推力を弱くし、逆に、
代表温度差が負値(短片6Lの方が温度が高い)ときに
は、電気コイル4Ab〜5Cbに流す3相交流電流レベ
ルを大きくして強い推力をかけ、電気コイル1Aa〜2
Ca流す3相交流電流レベルを小さくして推力を弱くす
ることを意味する。
VdcA1 is an electric coil 1A on the short piece 6R side.
a to 2Ca (FIG. 4) is a current level (thrust) command value, and VdcB2 is an electric coil 4Ab to 5B on the short piece 6L side.
It is a current level (thrust) with respect to Cb (FIG. 4). When the representative temperature difference is a positive value (the temperature of the short piece 6R is higher), these command values increase the three-phase AC current level flowing in the electric coils of the electric coils 1Aa to 2Ca to increase the strong thrust (dotted line arrow in FIG. 1). ) To reduce the phase AC current level flowing in the electric coils 4Ab to 5Cb to weaken the thrust, and conversely,
When the representative temperature difference is a negative value (the temperature of the short piece 6L is higher), the three-phase AC current level flowing in the electric coils 4Ab to 5Cb is increased to apply a strong thrust to the electric coils 1Aa to 2A.
This means that the three-phase AC current level flowing Ca is reduced to weaken the thrust.

【0029】ノズル30から鋳型に流れ込む溶鋼流がノ
ズル30に関して実質上対称であると、短片6Rと6L
の温度は実質上同じとなり、表層流がノズル30に関し
て対称となり、この場合には、VdcA1=VdcB2とな
って、短片6R側の電気コイル1Aa〜2Caと短片6
L側の電気コイル4Ab〜5Cbの通電レベルが実質上
等しく、第1電磁石コア10と第2電磁石コア20は、
図1に点線矢印で示すように、実質上等しい強さの、方
向が逆の推力を溶鋼に与える。これにより、溶鋼の実際
の表層流は、循環流に対して同方向であるノズル30か
らの突出流による表層流は拡大され、循環流に対して逆
方向である表層流は打ち消される形となり、溶鋼表面に
循環流をもたらす。これにより、気泡の浮上が促進さ
れ、溶鋼中へのパウダ巻き込みがなくなり、表層付近の
鋳型内面がきれいにぬぐわれて溶鋼の滞留がなくなる。
鋳型内溶鋼の温度分布が均一化する。
When the molten steel flow flowing from the nozzle 30 into the mold is substantially symmetrical with respect to the nozzle 30, the short pieces 6R and 6L are formed.
Are substantially the same and the surface layer flow is symmetrical with respect to the nozzle 30, and in this case, VdcA1 = VdcB2, and the electric coils 1Aa to 2Ca and the short piece 6R on the short piece 6R side.
The energization levels of the L-side electric coils 4Ab to 5Cb are substantially equal, and the first electromagnet core 10 and the second electromagnet core 20 are
As shown by the dotted arrows in FIG. 1, thrusts of substantially equal strength but opposite directions are given to the molten steel. As a result, the actual superficial flow of the molten steel is such that the superficial flow due to the projecting flow from the nozzle 30, which is in the same direction as the circulating flow, is enlarged, and the superficial flow in the opposite direction to the circulating flow is canceled, Creates a circulating flow on the surface of molten steel. As a result, the floating of the bubbles is promoted, the powder is not caught in the molten steel, the inner surface of the mold near the surface layer is wiped clean, and the molten steel does not stay.
Uniform temperature distribution of molten steel in the mold.

【0030】品質の安定した製品を得るには、前述のよ
うな循環流を安定して誘起する為にリニアモータの推力
を安定させる必要があり、長時間の駆動を要する場合に
おいては電磁石コアの温度上昇による推力の低下が問題
となる。
In order to obtain a product of stable quality, it is necessary to stabilize the thrust of the linear motor in order to stably induce the circulating flow as described above. The decrease in thrust due to temperature rise becomes a problem.

【0031】リニアモ−タを「胴巻き」のものとしてい
るので、それを鋳型上部、特に上開口幅が狭い鋳型の上
部、に設置することが容易となり、前述のように、循環
流を溶鋼に誘起することができる。
Since the linear motor is of a "body-wound" type, it is easy to install it on the upper part of the mold, especially on the upper part of the mold with a narrow upper opening width, and as described above, a circulating flow is induced in the molten steel. can do.

【0032】電磁石コア10,20は、コア外部からラ
ミネ−ト板の平板面に垂直にコア内部に進入する磁束を
抑制するように、透磁率が低く導電率が低いステンレス
外板でラミネ−ト板を挟んだものとしているので、ラミ
ネ−ト板の機械的保護がなされると共に、スロット間の
歯の内部発熱が低減し(図9の(c))、これによりコ
ア(特に、磁極となる歯)の磁気特性の劣化が抑制さ
れ、リニアモ−タの電力消費効率が向上する。特に、リ
ニアモ−タを高周波駆動する場合に、その効果が高い。
The electromagnet cores 10 and 20 are made of a stainless steel outer plate having a low magnetic permeability and a low electric conductivity so as to suppress a magnetic flux entering from the outside of the core to the inside of the core perpendicular to the flat plate surface of the laminating plate. Since the plates are sandwiched, the lamination plate is mechanically protected, and the internal heat generation of the teeth between the slots is reduced (FIG. 9 (c)), whereby the core (especially the magnetic pole) is formed. Deterioration of the magnetic characteristics of the teeth is suppressed, and the power consumption efficiency of the linear motor is improved. Especially, the effect is high when the linear motor is driven at a high frequency.

【0033】電磁石コア10,20に、歯端スリットS
11〜S15,S31〜S35,スロット底スリットS
16〜S19,S36〜S39および背面スリットS2
0〜S22,S40〜S42を切込んでいるので、スロ
ット間の歯の先端部,スロット底およびコア背面の渦電
流が抑制されて該各部の発熱が低減し、これにより電気
コイルの抵抗値の増大やコア磁気特性の劣化が抑制さ
れ、リニアモ−タの電力消費効率が向上する。特に、リ
ニアモ−タを高周波駆動する場合に、その効果が高い。
The tooth end slit S is formed on the electromagnet cores 10 and 20.
11 to S15, S31 to S35, slot bottom slit S
16-S19, S36-S39 and back slit S2
Since 0 to S22 and S40 to S42 are cut, eddy currents at the tips of the teeth between the slots, the bottom of the slots and the back surface of the core are suppressed, and the heat generation of the respective parts is reduced, thereby reducing the resistance value of the electric coil. The increase and the deterioration of the core magnetic characteristics are suppressed, and the power consumption efficiency of the linear motor is improved. Especially, the effect is high when the linear motor is driven at a high frequency.

【0034】電磁石コア10,20のスロット間の歯t
11〜t17,t21〜t27の先端部に、先端面に近
いほど歯水平断面を小さくするテ−パP14,P24/
P34,P44を形成しているので、磁界が歯t11〜
t17,t21〜t27の先端面の中央に集中し、歯先
端エッジ部近傍の電界の乱れが少なく、該乱れによる渦
電流が抑制され、歯先端の発熱が少くなる。
Teeth t between the slots of the electromagnet cores 10 and 20.
Tapers P14, P24 / which reduce the horizontal tooth cross section toward the tip of 11 to t17 and t21 to t27
Since P34 and P44 are formed, the magnetic field is generated by the teeth t11 to t11.
Concentrated at the center of the tip surface of t17, t21 to t27, the disturbance of the electric field near the tooth tip edge portion is small, the eddy current due to the disturbance is suppressed, and the heat generation at the tooth tip is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の、連続鋳造鋳型の溶鋼表
面の上方の、電磁石コアおよび電気コイルの配列を示す
平面図である。
FIG. 1 is a plan view showing an arrangement of electromagnet cores and electric coils above a surface of molten steel of a continuous casting mold according to an embodiment of the present invention.

【図2】 図1に示す電磁石コア10および20の拡大
縦断面図である。
FIG. 2 is an enlarged vertical sectional view of electromagnet cores 10 and 20 shown in FIG.

【図3】 図2に示す電磁石コア10および20の拡大
横断面図である。
3 is an enlarged cross-sectional view of the electromagnet cores 10 and 20 shown in FIG.

【図4】 図2に示す電気コイルの結線及び電源回路と
の接続態様を示す電気回路図である。
4 is an electric circuit diagram showing a connection mode of the electric coil shown in FIG. 2 and a connection with a power supply circuit.

【図5】 図2の(a)に示す電気コイル1Aa〜2C
aに3相交流電圧を印加する電源回路を示す電気回路図
である。
FIG. 5 shows electric coils 1Aa to 2C shown in FIG.
It is an electric circuit diagram which shows the power supply circuit which applies a three-phase alternating current voltage to a.

【図6】 図2の(b)に示す電気コイル4Ab〜5C
bに3相交流を印加する電源回路を示す電気回路図であ
る。
FIG. 6 shows electric coils 4Ab to 5C shown in FIG.
It is an electric circuit diagram which shows the power supply circuit which applies three-phase alternating current to b.

【図7】 図1に示す鋳造鋳型の短片6L,6Rの背部
とそれらに備わった熱電対に接続された電気回路を示す
ブロック図である。
7 is a block diagram showing the electric circuits connected to the backs of the short pieces 6L and 6R of the casting mold shown in FIG. 1 and the thermocouples provided therein.

【図8】 (a)は、電磁石コア10にスリットを入れ
ない状態でリニアモータを駆動した場合の図2に示す外
板10aの温度分布を示す平面図であり、(b)には電
磁石コア10にスリットを入れた状態でリニアモータを
駆動した場合の図2に示す外板10aの温度分布を示す
平面図である。
8 (a) is a plan view showing a temperature distribution of the outer plate 10a shown in FIG. 2 when the linear motor is driven without slits in the electromagnet core 10, and FIG. 8 (b) is an electromagnet core. 3 is a plan view showing a temperature distribution of an outer plate 10a shown in FIG. 2 when a linear motor is driven in a state where slits are provided in 10.

【図9】 (a)は外板10aにステンレス板を用いた
場合の外板10aの温度分布を示す平面図であり、
(b)は外板10aにステンレス板を用いた場合のラミ
ネート板10bの温度分布を示す平面図であり、(c)
は外板10aにステンレス板を用いた場合のラミネート
板10cの温度分布を示す平面図である。
FIG. 9A is a plan view showing a temperature distribution of the outer plate 10a when a stainless plate is used for the outer plate 10a,
(B) is a plan view showing a temperature distribution of the laminated plate 10b when a stainless plate is used as the outer plate 10a, (c).
FIG. 6 is a plan view showing a temperature distribution of a laminate plate 10c when a stainless plate is used for the outer plate 10a.

【図10】 (a)は外板10aにCu板を用いた場合
の外板10aの温度分布を示す平面図であり、(b)は
外板10aにCu板を用いた場合のラミネート板10b
の温度分布を示す平面図であり、(c)は外板10aに
Cu板を用いた場合のラミネート板10cの温度分布を
示す平面図である。
10A is a plan view showing a temperature distribution of the outer plate 10a when a Cu plate is used for the outer plate 10a, and FIG. 10B is a laminated plate 10b when a Cu plate is used for the outer plate 10a.
3C is a plan view showing the temperature distribution of FIG. 3C, and FIG. 6C is a plan view showing the temperature distribution of the laminate plate 10c when a Cu plate is used as the outer plate 10a.

【図11】 (a)は外板10aにB(真鍮)板を用い
た場合の外板10aの温度分布を示す平面図であり、
(b)は外板10aにB(真鍮)板を用いた場合のラミ
ネート板10bの温度分布を示す平面図であり、(c)
は外板10aにB(真鍮)板を用いた場合のラミネート
板10cの温度分布を示す平面図である。
FIG. 11A is a plan view showing a temperature distribution of the outer plate 10a when a B (brass) plate is used for the outer plate 10a,
(B) is a plan view showing a temperature distribution of the laminated plate 10b when a B (brass) plate is used as the outer plate 10a, (c).
[Fig. 4] is a plan view showing a temperature distribution of a laminate plate 10c when a B (brass) plate is used for the outer plate 10a.

【符号の説明】[Explanation of symbols]

1F,1L,3R,3L:銅板 2F,2L,4R,4L:非磁性ステンレス板 5F,5L:長片 6R,6L:短片 10,20:電磁石コア 10a,10l:
外板 10b〜k:ラミネート板 20b〜l:ラミ
ネート板 30:注入ノズル 20F1,20L
2:電源回路 MM:溶鋼 PW:パウダ SBT:スロット底 CST:コアの基
部 t11〜t17,t21〜t27:歯 s11〜s22,s31〜s42:スリット P14,P24,P34,P44:テ−パ 1Aa,1Ba,1Ca,2Aa,2Ba,2Ca :電気コイル 4Ab,4Bb,4Cb,5Ab,5Bb,5Cb :電気コイル U11,V11,W11/U12,V12,W12:電源接続端子
1F, 1L, 3R, 3L: Copper plate 2F, 2L, 4R, 4L: Non-magnetic stainless steel plate 5F, 5L: Long piece 6R, 6L: Short piece 10, 20: Electromagnetic core 10a, 10l:
Outer plate 10b-k: Laminate plate 20b-l: Laminate plate 30: Injection nozzle 20F1, 20L
2: Power supply circuit MM: Molten steel PW: Powder SBT: Slot bottom CST: Core base t11 to t17, t21 to t27: Tooth s11 to s22, s31 to s42: Slit P14, P24, P34, P44: Tape 1Aa, 1Ba, 1Ca, 2Aa, 2Ba, 2Ca: Electric coil 4Ab, 4Bb, 4Cb, 5Ab, 5Bb, 5Cb: Electric coil U11, V11, W11 / U12, V12, W12: Power supply connection terminal

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】複数個のx方向に延びy方向に分布するス
ロットを有し、薄板積層体に更に透磁率が低く導電率が
低い外板を積層した電磁石コア;スロットに挿入され、
電磁石コアの、スロット底があるy方向に延びる基部を
周回して電磁石コアに装着された、複数個の電気コイ
ル;および、 スロットの配列方向yに沿う推力を溶融金属に与えるた
めの位相差がある交流電圧を電気コイルのそれぞれに印
加する通電手段;を備える溶融金属の流動制御装置。
1. An electromagnet core having a plurality of slots extending in the x-direction and distributed in the y-direction, wherein an outer plate having a lower magnetic permeability and a lower electric conductivity is further laminated on a thin plate laminated body;
A plurality of electric coils mounted on the electromagnet core around the base of the electromagnet core extending in the y direction having the slot bottom; and a phase difference for giving thrust to the molten metal along the slot arrangement direction y. A flow control device for molten metal, comprising: an energizing means for applying a certain AC voltage to each of the electric coils.
【請求項2】複数個のx方向に延びy方向に分布するス
ロットおよびx方向に延びるスリットを有する電磁石コ
ア;スロットに挿入され、電磁石コアの、スロット底が
あるy方向に延びる基部を周回して電磁石コアに装着さ
れた、複数個の電気コイル;および、 スロットの配列方向yに沿う推力を溶融金属に与えるた
めの位相差がある交流電圧を電気コイルのそれぞれに印
加する通電手段;を備える溶融金属の流動制御装置。
2. An electromagnet core having a plurality of slots extending in the x-direction and distributed in the y-direction and slits extending in the x-direction; inserted into the slot and circling a base portion of the electromagnet core extending in the y-direction having a slot bottom. A plurality of electric coils mounted on the electromagnet core; and energizing means for applying an AC voltage having a phase difference for applying a thrust along the slot arrangement direction y to the molten metal to each of the electric coils. Molten metal flow control device.
【請求項3】複数個のx方向に延びy方向に分布するス
ロットを有し、スロット間の歯の先端部に先端面に近い
ほど歯横断面を小さくするテ−パを有する、薄板積層体
の電磁石コア;スロットに挿入され、電磁石コアの、ス
ロット底があるy方向に延びる基部を周回して電磁石コ
アに装着された、複数個の電気コイル;および、 スロットの配列方向yに沿う推力を溶融金属に与えるた
めの位相差がある交流電圧を電気コイルのそれぞれに印
加する通電手段;を備える溶融金属の流動制御装置。
3. A thin plate laminate having a plurality of slots extending in the x direction and distributed in the y direction, and having a taper at the tip of the teeth between the slots, the cross section of the tooth becoming smaller toward the tip surface. An electromagnet core; a plurality of electric coils that are inserted into the slots and are attached to the electromagnet core by orbiting the base of the electromagnet core that extends in the y direction having the slot bottom; and thrust force along the slot arrangement direction y. A flow control device for molten metal, comprising: an energizing means for applying an alternating voltage having a phase difference to the molten metal to each of the electric coils.
【請求項4】複数個のx方向に延びy方向に分布するス
ロットおよびx方向に延びるスリットを有し、薄板積層
体に更に透磁率が低く導電率が低い外板を積層した電磁
石コア;スロットに挿入され、電磁石コアの、スロット
底があるy方向に延びる基部を周回して電磁石コアに装
着された、複数個の電気コイル;および、 スロットの配列方向yに沿う推力を溶融金属に与えるた
めの位相差がある交流電圧を電気コイルのそれぞれに印
加する通電手段;を備える溶融金属の流動制御装置。
4. An electromagnet core comprising a plurality of slots extending in the x-direction and distributed in the y-direction and slits extending in the x-direction, and an outer plate having a low magnetic permeability and a low electrical conductivity laminated on a thin plate laminate; a slot. A plurality of electric coils that are inserted into the electromagnet core and are mounted on the electromagnet core around the base of the electromagnet core that extends in the y direction with the bottom of the slot; and to apply thrust to the molten metal along the arrangement direction y of the slots. A flow control device for molten metal, comprising: energizing means for applying an AC voltage having a phase difference to each of the electric coils.
【請求項5】複数個のx方向に延びy方向に分布するス
ロットを有し、スロット間の歯の先端部に先端面に近い
ほど歯横断面を小さくするテ−パを有する、薄板積層体
に更に透磁率が低く導電率が低い外板を積層した電磁石
コア;スロットに挿入され、電磁石コアの、スロット底
があるy方向に延びる基部を周回して電磁石コアに装着
された、複数個の電気コイル;および、 スロットの配列方向yに沿う推力を溶融金属に与えるた
めの位相差がある交流電圧を電気コイルのそれぞれに印
加する通電手段;を備える溶融金属の流動制御装置。
5. A thin plate laminate having a plurality of slots extending in the x direction and distributed in the y direction, and having a taper at the tip of the teeth between the slots, the cross section of the tooth becoming smaller toward the tip surface. An electromagnet core further laminated with an outer plate having a low magnetic permeability and a low electric conductivity; a plurality of electromagnet cores that are inserted into the slots and are mounted on the electromagnet cores around the base of the electromagnet core that extends in the y direction with the slot bottom. A molten metal flow control device comprising: an electric coil; and an energizing means for applying an AC voltage having a phase difference for applying a thrust force along the slot arrangement direction y to the molten metal to each of the electric coils.
【請求項6】複数個のx方向に延びy方向に分布するス
ロットおよびx方向に延びるスリットを有し、スロット
間の歯の先端部に先端面に近いほど歯横断面を小さくす
るテ−パを有する電磁石コア;スロットに挿入され、電
磁石コアの、スロット底があるy方向に延びる基部を周
回して電磁石コアに装着された、複数個の電気コイル;
および、 スロットの配列方向yに沿う推力を溶融金属に与えるた
めの位相差がある交流電圧を電気コイルのそれぞれに印
加する通電手段;を備える溶融金属の流動制御装置。
6. A taper having a plurality of slots extending in the x-direction and distributed in the y-direction and slits extending in the x-direction, with the tooth cross-sections being made smaller at the tips of the teeth between the slots as they are closer to the tips. An electromagnet core having: a plurality of electric coils inserted into the slot and mounted on the electromagnet core around a base of the electromagnet core extending in the y direction having a slot bottom;
And a flow control device for the molten metal, comprising: energizing means for applying an AC voltage having a phase difference for applying thrust to the molten metal along the slot arrangement direction y to each of the electric coils.
【請求項7】複数個のx方向に延びy方向に分布するス
ロットおよびx方向に延びるスリットを有し、スロット
間の歯の先端部に先端面に近いほど歯横断面を小さくす
るテ−パを有する、薄板積層体に更に透磁率が低く導電
率が低い外板を積層した電磁石コア;スロットに挿入さ
れ、電磁石コアの、スロット底があるy方向に延びる基
部を周回して電磁石コアに装着された、複数個の電気コ
イル;および、 スロットの配列方向yに沿う推力を溶融金属に与えるた
めの位相差がある交流電圧を電気コイルのそれぞれに印
加する通電手段;を備える溶融金属の流動制御装置。
7. A taper having a plurality of slots extending in the x-direction and distributed in the y-direction and slits extending in the x-direction, and the tooth cross-sections are made smaller at the tips of the teeth between the slots as they are closer to the tips. An electromagnet core in which an outer plate having a low magnetic permeability and a low electrical conductivity is further laminated on a thin plate laminate having: a slotted bottom of the electromagnet core extending in the y direction and attached to the electromagnet core. Flow control of molten metal; a plurality of electric coils; and energizing means for applying an AC voltage having a phase difference for applying thrust to the molten metal along the array direction y of the slots to each of the electric coils apparatus.
【請求項8】y方向に延び相対向する1対の長辺とx方
向に延び相対向する1対の短辺を含む鋳型の、1対の長
辺の一方に沿って分布しx方向に延びる複数個の第1組
のスロットおよびx方向に延びる第1組のスリットを有
し、薄板積層体に更に透磁率が低く導電率が低い外板を
積層した電磁石コアであって、スロット間の歯の先端
が、1対の短辺の一方に近い位置の鋳型内溶融金属上面
に対向しかつ鋳型開口内にある、第1電磁石コア;第1
組のスロットに挿入され、第1電磁石コアの、スロット
底があるy方向に延びる基部を周回する胴巻きで第1電
磁石コアに装着され、一部分が前記一方の長辺の上端面
の上方に位置する、複数個の第1組の電気コイル;第1
組のスロットの配列方向yに沿う推力を溶融金属に与え
るための位相差がある交流電圧を第1組の電気コイルの
それぞれに印加する第1通電手段;上記1対の長辺の他
方に沿って分布しx方向に延びる複数個の第2組のスロ
ットおよびx方向に延びる第2組のスリットを有し、薄
板積層体に更に透磁率が低く導電率が低い外板を積層し
た電磁石コアであって、スロット間の歯の先端が、上記
1対の短辺の他方に近い位置の鋳型内溶融金属上面に対
向しかつ鋳型開口内にある、第2電磁石コア;第2組の
スロットに挿入され、第2電磁石コアの、スロット底が
あるy方向に延びる基部を周回する胴巻きで第2電磁石
コアに装着され、一部分が前記他方の長辺の上端面の上
方に位置する、複数個の第2組の電気コイル;および、 第2組のスロットの配列方向yに沿う推力を溶融金属に
与えるための位相差がある交流電圧を第2組の電気コイ
ルのそれぞれに印加する第2通電手段;を備える溶融金
属の流動制御装置。
8. A mold having a pair of long sides extending in the y direction and facing each other and a pair of short sides extending in the x direction and facing each other, and distributed along one of the pair of long sides in the x direction. What is claimed is: 1. An electromagnet core comprising a plurality of first set slots extending and a first set slit extending in the x direction, wherein an outer plate having a lower magnetic permeability and a lower electrical conductivity is further laminated on a thin plate laminate, A first electromagnet core having tooth tips facing the upper surface of the molten metal in the mold at a position close to one of the pair of short sides and within the mold opening;
The first electromagnet core is inserted into a pair of slots, and is attached to the first electromagnet core by a body winding that wraps around a base portion of the first electromagnet core that extends in the y direction and has a slot bottom. A part of the first electromagnet core is located above the upper end surface of the one long side. A plurality of first sets of electric coils; first
First energizing means for applying an AC voltage having a phase difference for applying thrust to the molten metal along the arrangement direction y of the pair of slots to each of the first set of electric coils; along the other of the pair of long sides An electromagnet core having a plurality of second sets of slots distributed in the x direction and a second set of slits extending in the x direction, and an outer plate having a lower magnetic permeability and a lower electric conductivity, which is further laminated on a thin plate laminate. And the tips of the teeth between the slots face the upper surface of the molten metal in the mold at a position close to the other of the pair of short sides and are in the mold opening; a second electromagnet core; inserted into a second set of slots A plurality of first electromagnet cores, which are attached to the second electromagnet core by a body winding that surrounds a base portion having a slot bottom and extending in the y direction, and a part of which is located above the upper end surface of the other long side. Two sets of electric coils; and a second set of slots Flow control device for molten metal, comprising: second energizing means for applying an AC voltage having a phase difference for applying a thrust force along the arrangement direction y to the molten metal to each of the second set of electric coils.
【請求項9】外板はステンレス板である請求項1,請求
項4,請求項5,請求項7又は請求項8記載の溶融金属
の流動制御装置。
9. The molten metal flow control device according to claim 1, claim 4, claim 5, claim 7, or claim 8, wherein the outer plate is a stainless plate.
【請求項10】スリットは、スロット間の歯の先端面か
らz方向に延びる歯端スリットを含む、請求項2,請求
項4,請求項6,請求項7又は請求項8記載の溶融金属
の流動制御装置。
10. The molten metal of claim 2, claim 4, claim 6, claim 7 or claim 8, wherein the slit includes a tooth end slit extending in the z direction from the tip surface of the tooth between the slots. Flow control device.
【請求項11】スリットは、スロットの底からz方向に
延びるスロット底スリットを含む、請求項2,請求項
4,請求項6,請求項7,請求項8又は請求項10記載
の溶融金属の流動制御装置。
11. The molten metal of claim 2, claim 4, claim 6, claim 7, claim 8 or claim 10, wherein the slit comprises a slot bottom slit extending in the z-direction from the bottom of the slot. Flow control device.
【請求項12】スリットは、電磁石コアの、スロットの
底に対向する背面からz方向に延びる背面スリットを含
む、請求項2,請求項4,請求項6,請求項7,請求項
8,請求項10又は請求項11記載の溶融金属の流動制
御装置。
12. The slit includes a back slit extending in the z direction from a back surface of the electromagnet core facing the bottom of the slot, claim 2, claim 4, claim 6, claim 7, claim 8, and claim 9. The molten metal flow control device according to claim 10 or 11.
JP4591595A 1995-03-06 1995-03-06 Device for controlling fluidity of molten metal Withdrawn JPH08243698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4591595A JPH08243698A (en) 1995-03-06 1995-03-06 Device for controlling fluidity of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4591595A JPH08243698A (en) 1995-03-06 1995-03-06 Device for controlling fluidity of molten metal

Publications (1)

Publication Number Publication Date
JPH08243698A true JPH08243698A (en) 1996-09-24

Family

ID=12732553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4591595A Withdrawn JPH08243698A (en) 1995-03-06 1995-03-06 Device for controlling fluidity of molten metal

Country Status (1)

Country Link
JP (1) JPH08243698A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096895A (en) * 2012-11-08 2014-05-22 Toshiba Corp Electromagnetic pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096895A (en) * 2012-11-08 2014-05-22 Toshiba Corp Electromagnetic pump

Similar Documents

Publication Publication Date Title
Bardalai et al. Reduction of winding AC losses by accurate conductor placement in high frequency electrical machines
JP4423564B2 (en) Temperature detection type magnetic device
JP3420966B2 (en) Continuous casting machine for molten metal
JPH08243698A (en) Device for controlling fluidity of molten metal
JPWO2007032472A1 (en) Superconducting magnet and electromagnetic stirrer, motor and generator using the same
JP5347596B2 (en) Canned linear motor armature and canned linear motor
JPH0647500A (en) Device and method for magnetical limiting of molten metal
JP3089176B2 (en) Flow controller for molten metal
JP3510101B2 (en) Flow controller for molten metal
JP2002044932A (en) Linear motor and manufacturing method for the motor
JP3124214B2 (en) Flow controller for molten metal
JP3533042B2 (en) Flow controller for molten metal
JP3273107B2 (en) Flow controller for molten metal
JP2585818Y2 (en) Stator for canned linear motor
JP3124217B2 (en) Flow controller for molten metal
JP3273105B2 (en) Flow controller for molten metal
KR920000514B1 (en) Electromagnetic levitation casting apparatus having improved levitation coil assembly
JP3006991B2 (en) Continuous casting equipment
JP3293746B2 (en) Flow controller for molten metal
RU2109594C1 (en) Device and method for magnetic holding of molten metal
JPH11127569A (en) Linear motor
EP0916434A1 (en) Electromagnetic meniscus control in continuous casting
JPH105948A (en) Molten metal flow control device
JPH09136147A (en) Rotary driving device of conductive body
JP3138611B2 (en) Flow control device for molten metal in continuous casting mold

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507