JP3124217B2 - Flow controller for molten metal - Google Patents

Flow controller for molten metal

Info

Publication number
JP3124217B2
JP3124217B2 JP07318823A JP31882395A JP3124217B2 JP 3124217 B2 JP3124217 B2 JP 3124217B2 JP 07318823 A JP07318823 A JP 07318823A JP 31882395 A JP31882395 A JP 31882395A JP 3124217 B2 JP3124217 B2 JP 3124217B2
Authority
JP
Japan
Prior art keywords
electromagnet
molten metal
mold
piece
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07318823A
Other languages
Japanese (ja)
Other versions
JPH09155515A (en
Inventor
崎 敬 介 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07318823A priority Critical patent/JP3124217B2/en
Publication of JPH09155515A publication Critical patent/JPH09155515A/en
Application granted granted Critical
Publication of JP3124217B2 publication Critical patent/JP3124217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属上表面に
対向して配置した電磁石により溶融金属を撹拌駆動し、
更にメニスカスより下方において溶融金属を間に置いて
対向配置した別の電磁石によって、溶融金属下降流に制
動を加える機能を合せ持つ電磁撹拌装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for agitating and driving a molten metal by an electromagnet arranged opposite to an upper surface of the molten metal,
Further, the present invention relates to an electromagnetic stirrer having a function of applying braking to a downward flow of the molten metal by another electromagnet disposed below the meniscus with the molten metal interposed therebetween.

【0002】[0002]

【従来の技術】例えば連続鋳造では、タンデイッシュよ
り鋳型に溶鋼が注入され、鋳型において溶鋼は鋳型壁面
から次第に冷却されつつ引き抜かれる。同一高さの鋳型
壁面における温度が不均一であると、表面割れやシェル
破断を生じ易い。これを改善するために、従来は、リニ
アモ−タを用いて、鋳型内で溶鋼をその上面と平行に、
鋳型壁面に沿って流動駆動する提案(例えば特開平1−
228645号公報)、あるいは注湯ノズル30から鋳
型内に流れ込む溶鋼流に制動を加えることにより、溶鋼
中に含まれる介在物の低減を図る提案(例えば特開平3
−258442号公報)がある。
2. Description of the Related Art In continuous casting, for example, molten steel is poured into a mold from a tundish, and the molten steel is drawn from the mold wall while being gradually cooled. If the temperatures on the mold wall surfaces at the same height are not uniform, surface cracks and shell ruptures are likely to occur. In order to improve this, conventionally, molten steel was placed in a mold parallel to its upper surface using a linear motor.
Proposal of flow driving along the mold wall surface (for example,
228645) or a proposal to reduce inclusions contained in molten steel by applying a brake to the molten steel flow flowing into the mold from the pouring nozzle 30 (for example, Japanese Patent Laid-Open No.
-258442).

【0003】特開平1−228645号公報に提示の溶
鋼の流動駆動はある程度の効果があるものの、注入ノズ
ルを介してタンデイッシュに流入する溶鋼の流れにより
鋳型壁面に沿った循環流動が乱される。この種の流動駆
動には、鋳型の長辺に沿って配列された複数個の磁極の
それぞれに電気コイルを巻回したリニアモ−タ型の電磁
石が用いられ、電気コイルは3相の各相毎に束ねられ、
120°位相のずれた3相電源の各相に束ねられた単位
で接続され、3相電源の電圧および又は周波数をインバ
−タやサイクロコンバ−タで調整され、これにより、所
要の駆動力および速度が得られる。
Although the flow driving of molten steel disclosed in Japanese Patent Application Laid-Open No. 1-228645 has a certain effect, the circulating flow along the mold wall surface is disturbed by the flow of molten steel flowing into the tundish through the injection nozzle. . For this type of flow driving, a linear motor type electromagnet in which an electric coil is wound around each of a plurality of magnetic poles arranged along the long side of the mold is used. Bundled into
The phase and the phase of the three-phase power supply are connected in units bundled into each phase of the three-phase power supply having a phase shift of 120 °, and the voltage and / or frequency of the three-phase power supply is adjusted by an inverter or a cycloconverter. Speed is obtained.

【0004】図10の(a)に、鋳型の垂直断面図を示
し、図10の(b)には鋳型の上方から鋳型内溶鋼の上
面(メニスカス)を見おろした平面を示す。図10の
(a)の実線矢印で示すようにノズル30から流出口1
9を通して鋳型内に溶鋼が流れ込み、鋳型短辺方向およ
びやや下方向に溶鋼流,,,を生じ、これが鋳
型短辺に当って一部は上方に、他は下方に流れる。上方
に流れる溶鋼流,が、メニスカスでは図10の
(b)に実線矢印で示すように、ノズル30に向かう表
層流を生ずる。この表層流はメニスカス上のパウダを巻
き込み易い。一方、溶鋼が固体に変わるときにCOなど
の気体(気泡)が発生する。加えて、鋳型内面の一部に
溶鋼が滞留するとパウダが溶鋼に残留し易く、しかもブ
レ−クアウトの原因となる焼付きとなり易い。これらを
防止するため、表層に安定した整流を形成させるのが良
い。
FIG. 10A is a vertical sectional view of a mold, and FIG. 10B is a plan view of the upper surface (meniscus) of molten steel in the mold from above the mold. As shown by a solid arrow in FIG.
The molten steel flows into the mold through 9 and generates a molten steel flow,..., In the direction of the short side of the mold and slightly downward, and this flows on the short side of the mold, partly upward and others downward. The molten steel flow flowing upward generates a surface flow toward the nozzle 30 at the meniscus as shown by a solid line arrow in FIG. This surface flow tends to entrain the powder on the meniscus. On the other hand, when the molten steel changes to a solid, a gas (bubbles) such as CO is generated. In addition, if the molten steel stays in a part of the inner surface of the mold, the powder is likely to remain in the molten steel, and furthermore, it tends to cause seizure which causes breakout. In order to prevent these, it is preferable to form a stable rectification on the surface layer.

【0005】そこで従来は、表層流,の起こす表層
流に対して、図13の(b)に示すように、鋳型長辺に
沿って鋳型の外側面に対向するリニアモ−タ3RFおよ
び3RLで、図10の(b)に点線矢印で示す方向の電
磁駆動力を溶鋼に与えて、図10の(b)に2点鎖線矢
印で示すような、鋳型内壁1に沿う循環流を溶鋼の表層
に生起しようとしている。この循環流により気泡の浮上
が促進され、溶鋼中へのパウダ巻き込みがなくなり、表
層付近の鋳型内面がきれいにぬぐわれて溶鋼の滞留がな
くなる。
Therefore, conventionally, as shown in FIG. 13 (b), the linear motors 3RF and 3RL facing the outer surface of the mold along the long side of the mold are required to respond to the surface flow caused by the surface flow. An electromagnetic driving force in the direction indicated by the dotted arrow in FIG. 10B is applied to the molten steel, and the circulating flow along the mold inner wall 1 as shown by the two-dot chain arrow in FIG. About to happen. Due to this circulation flow, the floating of bubbles is promoted, powder is not entrained in the molten steel, the inner surface of the mold near the surface layer is wiped cleanly, and the stagnation of the molten steel is eliminated.

【0006】−方、特開平3−258442号公報にて
提案されている「電磁ブレ−キ装置」では、鋳型長辺に
沿って長辺の幅とほぼ等しい幅の一対の電磁石が対向し
て設置され、その電気コイルには直流電流が流される。
その電磁石の発生する一定磁界(直流磁界)中に流れる
溶鋼にはフレミングの右手の法則に従がう起電力が生
じ、磁束を周回する電流が流れ、この電流と磁界との相
互作用により溶鋼に、その流れを止めようとする制動力
が働き、これが図10の(a)に示す下方への溶鋼流
,を制動し、溶鋼流,に伴なう介在物の下方へ
の潜りこみを抑制する。
On the other hand, in an "electromagnetic brake device" proposed in Japanese Patent Application Laid-Open No. 3-258442, a pair of electromagnets having a width substantially equal to the width of the long side of the mold are opposed along the long side of the mold. It is installed and direct current flows through the electric coil.
The molten steel flowing in the constant magnetic field (DC magnetic field) generated by the electromagnet generates an electromotive force according to Fleming's right-hand rule, and a current circulating in the magnetic flux flows. The braking force acts to stop the flow, which brakes the downward molten steel flow shown in FIG. 10 (a), and suppresses the sinking of the inclusions accompanying the molten steel flow downward. .

【0007】[0007]

【発明が解決しようとする課題】ところで、例えば図1
3の(a)に示すように、注湯ノズル30の2つの流出
口19から鋳型内空間に流出する溶鋼流,の一方
が強く他方が弱くなると、すなわち対称性がくずれる
と、これに伴って表層流も、図13の(b)に示すよう
に、溶鋼流が弱い流出口の上に位置する表層流(溶鋼流
側)が弱くなる。
By the way, for example, FIG.
As shown in FIG. 3 (a), if one of the molten steel flows flowing out of the two outlets 19 of the pouring nozzle 30 into the space inside the mold is strong, and the other is weak, that is, if the symmetry is lost, this is accompanied by this. As for the surface flow, as shown in FIG. 13B, the surface flow (the molten steel flow side) located above the outflow port where the molten steel flow is weak is weakened.

【0008】このような溶鋼流の乱れ(偏流)は鋳型内
溶鋼MMに、高温部と低温部を生ずることになる。すな
わち溶鋼流が強い箇所では温度が高く、弱い箇所では温
度が低い。同一高さの鋳型壁面における温度が不均一で
あると、表面割れやシェル破断を生じ易い。
[0008] Such turbulence (deviation) of the molten steel flow causes a high-temperature part and a low-temperature part in the molten steel MM in the mold. In other words, the temperature is high in a place where the molten steel flow is strong, and the temperature is low in a place where the flow is weak. If the temperatures on the mold wall surfaces at the same height are not uniform, surface cracks and shell ruptures are likely to occur.

【0009】リニアモ−タによる溶鋼駆動により、温度
の不均一性はある程度回避されるものの、注湯ノズル3
0の流出口19の流出特性は注湯中に流出口19への鋼
付着により変化し、この変化、特に2つの流出口の流出
特性差が大きくなったときには、かなりの温度偏差を生
ずる。更に注湯ノズル30から鋳型内に流れ込む溶鋼の
一部は上述の様に下方に向うが、この下方に流れる溶鋼
流,に介在物が乗って鋳型深くまで侵入し、鋳片内
部に捕捉され、品質上の問題となる。
Although the non-uniformity of temperature can be avoided to some extent by the molten steel driving by the linear motor, the pouring nozzle 3
The outflow characteristics of the outflow port 19 during the pouring change due to the adhesion of steel to the outflow port 19 during pouring, and when this change is made, particularly when the outflow characteristic difference between the two outflow ports becomes large, a considerable temperature deviation occurs. Further, a part of the molten steel flowing into the mold from the pouring nozzle 30 is directed downward as described above. However, the molten steel flow flowing downward, the inclusions intrude deep into the mold and are trapped inside the slab, This is a quality problem.

【0010】また、電磁ブレ−キ装置を単独で使用した
場合には、注湯ノズル30から鋳型内に流れ込む対称、
あるいは非対称溶鋼流に対する速度均一化の効果は認め
られるとしても、リニアモ−タ等を使用した鋳型内溶鋼
駆動装置と併用した場合には、該駆動装置による溶鋼流
(循環流)をも制動してしまう。すなわち該電磁ブレ−
キは、印加する一定磁界中を移動する溶鋼に対し制動力
を加えるものであるので、下方向に流れる溶鋼流,
のみならず、表層流,に対しても制動力が働いてし
まうことになる。
When the electromagnetic brake device is used alone, the symmetry that flows from the pouring nozzle 30 into the casting mold,
Alternatively, even if the effect of speed uniformity on the asymmetric molten steel flow is recognized, when used together with a molten steel driving device in a mold using a linear motor or the like, the molten steel flow (circulation flow) by the driving device is also braked. I will. That is, the electromagnetic brake
The key is to apply a braking force to the molten steel moving in a constant magnetic field to be applied.
In addition, the braking force acts on the surface flow.

【0011】本発明は、鋳型に対する鋳片の焼付きを防
止しかつ鋳片への介在物の混入を防止することを第1の
目的とし、鋳型内溶鋼のメニスカス付近での鋳型片の内
表面に沿って溶鋼を効果的に流れ駆動しかつ下降流を抑
制し均一化することを第2の目的とし、表層流を整流し
て均一化し下降突出流を強く抑制することを第3の目的
とする。
SUMMARY OF THE INVENTION It is a first object of the present invention to prevent seizure of a slab to a mold and to prevent inclusions from being mixed into the slab, and an inner surface of the slab near a meniscus of molten steel in the mold. The second object is to effectively drive and drive the molten steel along the path and to suppress and uniform the downward flow, and the third object is to rectify and uniform the surface flow to strongly suppress the downward projecting flow. I do.

【0012】[0012]

【課題を解決するための手段】本発明の溶融金属の流動
制御装置は、溶融金属を取り囲む、4辺形の各辺をなす
4つの鋳型片の、第1長片(5F)に沿って複数個のスロッ
トが分布し、第1長片(5F)と第1短片(6R)の近くの溶融
金属上表面に対向配置した第1組の電磁石コア(10)とこ
れを励磁するために各スロットに挿入された複数個の電
気コイル(1Aa〜2Ca)の組合せでなる第1組の電磁石(LM
F);前記鋳型片の、第2長片(5L)に沿って複数個のスロ
ットが分布し、第2長片(5L)と第2短片(6L)の近くの溶
融金属上表面に対向配置した第2組の電磁石コア(20)と
これを励磁するために各スロットに挿入された複数個の
電気コイル(4Ab〜5Cb)の組合せでなる第2組の電磁石(L
ML);第1組の電磁石(LMF)が第1長片(5F)に沿う方向の
推力を溶融金属上表面に与え、第2組の電磁石(LML)が
第2長片(5L)に沿う方向の推力を溶融金属上表面に与え
るための位相差がある交流電圧を第1組および第2組の
電磁石(LMF,LML)の電気コイル(1Aa〜2Ca,4Ab〜5Cb)の
それぞに印加する第1組の通電手段(20F1,20L2);およ
び、前記鋳型片の、メニスカス下方において、溶融金属
を間に置いて対向する少くとも1対の磁極(4AF,4AL)と
これを励磁するための電気コイル(4CF,4CL)の組合でな
る第3電磁石(4)、および、該電気コイルに溶融金属に
制動力を加えるための電流を通電する第3通電手段(20V
D);を備える。なお、理解を容易にするためにカッコ内
には、図面に示し後述する実施例の対応要素の記号を、
参考までに付記した。
According to the present invention, there is provided a molten metal flow control device comprising a plurality of four mold pieces, each of which is a quadrilateral, enclosing a molten metal along a first long piece (5F). The first set of electromagnet cores (10) arranged opposite to the upper surface of the molten metal near the first long piece (5F) and the first short piece (6R), and each slot for exciting this. A first set of electromagnets (LM) consisting of a combination of a plurality of electric coils (1Aa to 2Ca) inserted into
F); a plurality of slots are distributed along the second long piece (5L) of the mold piece, and are arranged opposite to the upper surface of the molten metal near the second long piece (5L) and the second short piece (6L). A second set of electromagnets (L) consisting of a combination of the second set of electromagnet cores (20) and a plurality of electric coils (4Ab to 5Cb) inserted into each slot to excite them.
ML); The first set of electromagnets (LMF) applies thrust in the direction along the first long piece (5F) to the upper surface of the molten metal, and the second set of electromagnets (LML) follows the second long piece (5L). AC voltage with a phase difference to give directional thrust to the upper surface of the molten metal is applied to each of the electric coils (1Aa-2Ca, 4Ab-5Cb) of the first and second sets of electromagnets (LMF, LML) A first pair of energizing means (20F1, 20L2); and a pair of at least one pair of magnetic poles (4AF, 4AL) opposed to each other under the meniscus of the mold piece with a molten metal interposed therebetween to excite them. A third electromagnet (4), which is a combination of electric coils (4CF, 4CL), and a third energizing means (20 V) for applying a current to the electric coil to apply a braking force to the molten metal.
D); In addition, in order to facilitate understanding, in parentheses, the symbols of the corresponding elements of the embodiment shown in the drawings and described below,
Added for reference.

【0013】これによれば、鋳型上方から見降ろして、
鋳型片(5F,6L,5L,6R)で囲まれる4角形の空間の2つの
対角方向の少くとも1つに1対の電磁石(LMF,LML)が存
在する。これら1対の電磁石(LMF,LML)が注入ノズル(3
0)の突出流により現われる溶融金属表面流と逆方向の推
力(図2に点線矢印で示す)を溶融金属に与えるので、
図2に実線矢印で示すような、比較的整った表層流が形
成され、結果として図10の(b)に2点鎖線矢印で示
すような比較的に定速度で安定した循環流が得られる。
これにより気泡の浮上が促進され、溶融金属中へのパウ
ダ巻き込みがなくなり、表層付近の鋳型内面がきれいに
ぬぐわれて溶融金属の滞留がなくなり、鋳型に対する鋳
片の焼付きが抑制される。また、図10の(a)に示す
ように、鋳型には注入ノズル(30)から溶融金属(MM)が連
続的に供給され、その一部は下方への突出流,とな
るが、第3組の電磁石(4)により下方突出流に制動力が
加わり突出流は抑制される。したがって溶融金属(MM)の
突出流による鋳片内部への異物(介在物)の巻き込み(侵
入)が抑制され、鋳片の内部品質が向上する。
According to this, looking down from above the mold,
There is a pair of electromagnets (LMF, LML) in at least one of two diagonal directions in a rectangular space surrounded by mold pieces (5F, 6L, 5L, 6R). The pair of electromagnets (LMF, LML) is used for injection nozzle (3
Since the thrust (indicated by a dotted arrow in FIG. 2) is applied to the molten metal in a direction opposite to the surface flow of the molten metal that appears due to the projecting flow of 0),
A relatively uniform surface flow is formed as shown by a solid line arrow in FIG. 2, and as a result, a stable circulating flow is obtained at a relatively constant speed as shown by a two-dot chain line arrow in FIG. .
As a result, the floating of bubbles is promoted, powder is not entangled in the molten metal, the inner surface of the mold near the surface layer is wiped cleanly, and the stagnation of the molten metal is eliminated. Further, as shown in FIG. 10A, molten metal (MM) is continuously supplied to the mold from the injection nozzle (30), and a part of the molten metal (MM) projects downward. A braking force is applied to the downward protruding flow by the set of electromagnets (4), and the protruding flow is suppressed. Therefore, the intrusion (entry) of foreign matter (inclusions) into the slab due to the projected flow of the molten metal (MM) is suppressed, and the internal quality of the slab is improved.

【0014】[0014]

【発明の実施の形態】本発明の好ましい実施例は、鋳型
短片の温度分布を検出する手段(S31〜S3n,S41〜S4n);
を更に備え、制御手段(43)は、温度が高い箇所の近くの
溶融金属に高い推力を与えるための通電指令を、第1組
の第1及び第2通電手段(20F1,20L2)に与える。これに
より、温度が高い溶鋼には高い推力が作用し、均一な表
層循環流が発生し、撹拌効果が高いので、温度の均一化
効果が高い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiment of the present invention is a means for detecting the temperature distribution of a short piece of a mold (S31 to S3n, S41 to S4n);
The control means (43) gives an energization command for giving a high thrust to the molten metal near the location where the temperature is high to the first set of first and second energization means (20F1, 20L2). Thereby, a high thrust acts on the molten steel having a high temperature, a uniform surface circulation flow is generated, and the stirring effect is high, so that the temperature uniforming effect is high.

【0015】また鋳型へ注入される溶鋼流の下降突出流
成分と鋳型片温度との相対関係、すなわち、ノズルから
出る溶鋼の流速が高いと、表層流をもたらす流れ,
および下降流,が強く、高い鋳型短片温度をもたら
すと共に強い下降突出流を生ずる関係から、鋳型短片温
度の上昇は下降突出流成分の増大を意味する。この鋳型
短片を温度分布検出手段(S31〜S3n,S41〜S4n)が検出
し、制御手段(43)が、鋳型短辺温度が高いときには高い
制動力を与える通電指令を第2組の通電手段(20VD)に与
え、これにより第3組の電磁石(4)は下降突出溶鋼流に
高い制動力を加える。
The relative relationship between the downward projecting flow component of the molten steel flow injected into the mold and the temperature of the mold piece, that is, if the flow velocity of the molten steel exiting from the nozzle is high, the flow that causes the surface flow,
The rise in mold strip temperature means an increase in the descending outflow component, because the downflow is strong, resulting in a high mold strip temperature and a strong downspout. The temperature distribution detecting means (S31 to S3n, S41 to S4n) detects this mold short piece, and the control means (43) issues an energization command to give a high braking force when the mold short side temperature is high. 20VD), whereby the third set of electromagnets (4) applies a high braking force to the downwardly projecting molten steel flow.

【0016】この制動力の上昇は、下降突出溶鋼流を強
く制動し、鋳片内部への異物(介在物)の巻き込み(侵
入)が抑制され、鋳片の内部品質が向上する。
The increase in the braking force strongly dampens the downwardly projecting molten steel flow, thereby suppressing the intrusion (intrusion) of foreign matter (inclusions) into the slab and improving the internal quality of the slab.

【0017】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0018】[0018]

【実施例】図1に、本発明の一実施例のリニアモ−タL
MF(第1組の電磁石),LML(第2組の電磁石)及
び電磁ブレ−キ4(第3組の電磁石)を備えた連続鋳造
鋳型の縦断面を示す。鋳型には、図示しない注入ノズル
30を通して溶鋼が、上方から下方(垂直方向z)に向
けて注入され、溶鋼MMのメニスカス(表面)はパウダ
PWで覆われる。鋳型は図示しない水箱ならびに鋳型内
水流路に流れる冷却水で冷却され、溶鋼MMは鋳型に接
する表面から次第に内部に固まって行き、鋳片SBが連
続的に引き抜かれるが、鋳型内に溶鋼MMが注がれるの
で、鋳型内には常時溶鋼MMがある。溶鋼MMの上部位
置にそのメニスカスと対向して2個のリニアモ−タLM
F,LMLが設けられており、これらが溶鋼MMのメニ
スカス直下の部分(表層域)に電磁力を与える。鋳型下
部付近には電磁ブレ−キ4が設けられており、溶鋼下降
流に対して電磁力(制動力)を与える。鋳型内におい
て、リニアモ−タLMF,LMLが溶鋼に与える磁束
は、電磁ブレ−キ4のレベルの溶鋼には実質上及ばず、
逆に、電磁ブレ−キ4が溶鋼に与える磁束は、溶鋼の表
層域には実質上及ばない。
FIG. 1 shows a linear motor L according to an embodiment of the present invention.
1 shows a longitudinal section of a continuous casting mold provided with MF (first set of electromagnets), LML (second set of electromagnets) and electromagnetic brake 4 (third set of electromagnets). Molten steel is injected into the mold from above through an injection nozzle 30 (not shown) downward (in the vertical direction z), and the meniscus (surface) of the molten steel MM is covered with powder PW. The mold is cooled by a water box (not shown) and cooling water flowing through a water flow path in the mold, and the molten steel MM gradually solidifies from the surface in contact with the mold, and the slab SB is continuously drawn out. As it is poured, there is always molten steel MM in the mold. Two linear motors LM are provided at upper positions of the molten steel MM so as to face the meniscus.
F and LML are provided, and these apply an electromagnetic force to a portion (surface layer area) immediately below the meniscus of the molten steel MM. An electromagnetic brake 4 is provided near the lower part of the mold, and applies an electromagnetic force (braking force) to the downward flow of molten steel. In the mold, the magnetic flux applied to the molten steel by the linear motors LMF and LML substantially does not reach the molten steel at the level of the electromagnetic brake 4.
Conversely, the magnetic flux applied by the electromagnetic brake 4 to the molten steel substantially does not reach the surface layer of the molten steel.

【0019】図2に、図1に示す鋳型の平面(上面)を
示す。なお、電磁ブレ−キ4の図示は省略している。図
2中、5F及び5Lは連続鋳造鋳型の第1及び第2長
片、6Rおよび6Lは第1および第2短片であり、これ
らが囲む空間に、注入ノズル30を通して溶鋼が、図2
紙面の表面から裏面に向けて(垂直方向zで上方から下
方に)、注入される。各片(5F,5L,6R,6L)
は銅板(1F,1L,3R,3L)に非磁性体ステンレ
ス板(2F,2L,4R,4L)を裏当したものであ
る。この実施例では、鋳型内、メニスカス直下の部分
(表層域)の溶鋼を、3相リニアモ−タ型電磁石で長片
5Lに沿って右から左に(+yから−yの方向に)駆動
するために、鋳型(5F,5L,6R,6L)内の溶鋼
の上表面に対向して第1および第2の電磁石LMF及び
LMLが、注入ノズル30を中心として対向線上に配置
されている。
FIG. 2 shows a plane (upper surface) of the mold shown in FIG. The illustration of the electromagnetic brake 4 is omitted. In FIG. 2, 5F and 5L are first and second long pieces of a continuous casting mold, 6R and 6L are first and second short pieces, and molten steel is passed through an injection nozzle 30 in a space surrounded by these.
Injection is performed from the front side of the paper to the back side (from the top to the bottom in the vertical direction z). Each piece (5F, 5L, 6R, 6L)
Is a copper plate (1F, 1L, 3R, 3L) backed by a non-magnetic stainless steel plate (2F, 2L, 4R, 4L). In this embodiment, in order to drive the molten steel in the portion (surface layer area) immediately below the meniscus in the mold from the right to the left (in the direction from + y to -y) along the long piece 5L by a three-phase linear motor type electromagnet. In addition, first and second electromagnets LMF and LML are arranged on the opposing lines with the injection nozzle 30 as the center, facing the upper surface of the molten steel in the mold (5F, 5L, 6R, 6L).

【0020】図4には図1のII−II線拡大断面、すなわ
ち電磁ブレ−キ4を水平に破断した断面を示す。電磁ブ
レ−キ4は鋳型下部を通過する溶鋼に対して電磁力を加
え、溶鋼下降突出流に対して制動力を与える。電磁ブレ
−キ4は鋳型下部において鋳型を水平に挾む様に配置さ
れており、図4を参照すると、電磁ブレ−キ4の電磁石
は、鋳型長片5F,5Lの幅とほぼ等しい幅であり、そ
の磁極4AF,4ALを、鋳型長片5F,5Lを間に置
いて対向させて設け、該磁極の外周にコイル4CF,4
CLを巻回してある。又、左右のヨ−ク4BL,4BR
にて左右の磁極を結び、閉じた磁路を形成している。従
って電磁ブレ−キ4は、磁極4AFと4AL間に水平方
向(図4のx軸方向)に磁界を印加し、溶鋼MMはこの
水平磁界中を下降(z軸方向)する。水平磁界を導体で
ある溶鋼が横切るので、この溶鋼には、その移動を止め
ようとする制動力が加わる。
FIG. 4 shows an enlarged cross section taken along the line II-II of FIG. 1, that is, a cross section of the electromagnetic brake 4 cut horizontally. The electromagnetic brake 4 applies an electromagnetic force to the molten steel passing below the mold, and applies a braking force to the molten steel downward projecting flow. The electromagnetic brake 4 is disposed so as to horizontally sandwich the mold at the lower part of the mold. Referring to FIG. 4, the electromagnet of the electromagnetic brake 4 has a width substantially equal to the width of the mold long pieces 5F and 5L. The magnetic poles 4AF and 4AL are provided facing each other with the mold long pieces 5F and 5L interposed therebetween, and the coils 4CF and 4AL are provided on the outer periphery of the magnetic poles.
CL is wound. Also, the left and right yoke 4BL, 4BR
The right and left magnetic poles are connected to form a closed magnetic path. Therefore, the electromagnetic brake 4 applies a magnetic field between the magnetic poles 4AF and 4AL in the horizontal direction (x-axis direction in FIG. 4), and the molten steel MM descends (z-axis direction) in this horizontal magnetic field. Since the molten steel as a conductor crosses the horizontal magnetic field, a braking force is applied to the molten steel to stop the movement.

【0021】図3の(a)には、第1組の電磁石LMF
の拡大縦断面(図2の2A−2A線拡大断面)を示す。
この実施例では、電磁石コア10には6個のスロットが
あり、スロットのそれぞれに電気コイル1Aa〜2Ca
が挿入されている。なお、電磁石コア10および電気コ
イル1Aa〜2Caは冷却され、かつ耐熱カバ−で被覆
されているが、冷却構造およびカバ−は図示を省略して
いる。電磁石コア10は下面にスロットがある櫛形であ
り、各スロットに電気コイルが挿入され、スロット間が
磁極でありその下端面が、連続鋳造鋳型(5F,5L,
6R,6L)内の溶鋼の上表面に対向している。電気コ
イルはコア10に対して胴巻きである。図3の(b)
に、第2電磁石LMLの拡大縦断面(図2の2B−2B
線拡大断面)を示す。第2電磁石LMFも第1電磁石L
MLと同様な構造であり、その電気コイルも胴巻きであ
る。
FIG. 3A shows a first set of electromagnets LMF.
2 shows an enlarged vertical cross section (enlarged cross section taken along line 2A-2A in FIG. 2).
In this embodiment, the electromagnet core 10 has six slots, each of which has an electric coil 1Aa to 2Ca.
Is inserted. The electromagnet core 10 and the electric coils 1Aa to 2Ca are cooled and covered with a heat-resistant cover, but the cooling structure and the cover are not shown. The electromagnet core 10 is in a comb shape having slots on the lower surface, an electric coil is inserted into each slot, a magnetic pole is provided between the slots, and the lower end surface thereof is a continuous casting mold (5F, 5L,
6R, 6L). The electric coil is wound around the core 10. FIG. 3 (b)
Next, an enlarged vertical section of the second electromagnet LML (2B-2B in FIG. 2)
(Enlarged section taken along line). The second electromagnet LMF is also the first electromagnet L
It has the same structure as the ML, and its electric coil is also a body winding.

【0022】リニアモ−タLMF,LMLは、図2の点
線矢印で示す推力を溶鋼MMに与えようとするものであ
り、この実施例では、第1リニアモ−タLMFと第2リ
ニアモ−タLMLでは異なった推力を発生するように、
各リニアモ−タに異なったレベルの電流を通電する。こ
の内容は後述する。
The linear motors LMF and LML are for applying a thrust indicated by dotted arrows in FIG. 2 to the molten steel MM. In this embodiment, the first linear motor LMF and the second linear motor LML To generate different thrusts,
A different level of current is applied to each linear motor. This content will be described later.

【0023】図5の(a)に、図2に示すリニアモ−タ
LMF及びLMLの電気コイル1Aa〜2Caと4Ab
〜5Cbの結線および電源回路との接続態様を示し、図
5の(b)に電磁ブレ−キ4の電気コイル結線および電
源回路との接続態様を示す。図5の(a)に示すリニア
モ−タLMF及びLMLの結線は2極(N=2)のもの
であり、電気コイルに3相交流(M=3)を通電する。
例えば、電気コイル1Aa〜2Caは、図5の(a)で
はこの順に、u,u,V,V,w,w,U,U,v,
v,W,Wと表わしている。そして「U」は3相交流の
U相の正相通電(そのままの通電)を、「u」はU相の
逆相通電(U相より180度の位相づれ通電)を表わ
し、電気コイル「U」にはその巻始め端にU相が印加さ
れるのに対し、電気コイル「u」にはその巻終り端にU
相が印加されることを意味する。同様に、「V」は3相
交流のV相の正相通電を、「v」はV相の逆相通電を、
「W」は3相交流のW相の正相通電を、「w」はW相の
逆相通電を表わす。図5の(a)に示す端子U11,V
11およびW11は、第1リニアモ−タLMFの電気コ
イル1Aa〜2Caの電源接続端子であり、端子U1
2,V12およびW12は、第2リニアモ−タLMLの
電気コイル4Ab〜5Cbの電源接続端子である。
FIG. 5A shows electric coils 1Aa to 2Ca and 4Ab of the linear motors LMF and LML shown in FIG.
5Cb and the connection with the power supply circuit are shown. FIG. 5B shows the electric coil connection of the electromagnetic brake 4 and the connection with the power supply circuit. The connection between the linear motors LMF and LML shown in FIG. 5A is of two poles (N = 2), and a three-phase alternating current (M = 3) is supplied to the electric coil.
For example, the electric coils 1Aa to 2Ca are arranged in the order of u, u, V, V, w, w, U, U, v,
v, W, and W. “U” represents the U-phase normal-phase energization of three-phase alternating current (current energization as it is), “u” represents the U-phase reverse-phase energization (energization 180 degrees out of phase with the U-phase), and the electric coil “U” ] Is applied with a U phase at the beginning of the winding, whereas the electric coil "u" is applied with a U phase at the end of the winding.
It means that a phase is applied. Similarly, “V” indicates V-phase positive-phase energization of three-phase AC, “v” indicates V-phase negative-phase energization,
“W” indicates the W-phase positive-phase energization of the three-phase AC, and “w” indicates the W-phase reverse-phase energization. Terminals U11, V shown in FIG.
11 and W11 are power supply connection terminals of the electric coils 1Aa to 2Ca of the first linear motor LMF, and a terminal U1
2, V12 and W12 are power connection terminals of the electric coils 4Ab to 5Cb of the second linear motor LML.

【0024】図5の(b)には、電磁ブレ−キ4の電気
コイル結線及びそれにより形成される磁極を示す。電気
コイル4CF及び4CLには、直流電源20VDより直
流が供給され、鋳型内溶鋼に対し一定方向の磁界を与え
るが、電磁ブレ−キ4の配置構造から判る様に、鋳型長
辺に直交する方向(x)に均一な水平磁界を印加する。
FIG. 5B shows the electric coil connection of the electromagnetic brake 4 and the magnetic poles formed thereby. DC is supplied to the electric coils 4CF and 4CL from a DC power supply 20VD to apply a magnetic field in a certain direction to the molten steel in the mold, but as seen from the arrangement structure of the electromagnetic brake 4, a direction perpendicular to the long side of the mold is obtained. A uniform horizontal magnetic field is applied to (x).

【0025】図6に、第1リニアモ−タLMFの電気コ
イル1Aa〜2Caに3相交流を流す、第1組の第1電
源回路20F1の構成を示す。3相交流電源(3相電力
線)21には直流整流用のサイリスタブリッジ22A1
が接続されており、その出力(脈流)はインダクタ25
A1およびコンデンサ26A1で平滑化される。平滑化さ
れた直流電圧は3相交流形成用のパワ−トランジスタブ
リッジ27A1に印加され、これが出力する3相交流の
U相が、図5の(a)に示す電源接続端子U11に、V
相が電源接続端子V11に、またW相が電源接続端子W
11に印加される。
FIG. 6 shows a configuration of a first set of first power supply circuits 20F1 for supplying a three-phase alternating current to the electric coils 1Aa to 2Ca of the first linear motor LMF. The three-phase AC power supply (three-phase power line) 21 has a thyristor bridge 22A1 for DC rectification.
Is connected, and its output (pulsating flow) is
It is smoothed by A1 and the capacitor 26A1. The smoothed DC voltage is applied to a power transistor bridge 27A1 for forming a three-phase AC, and the U-phase of the three-phase AC output from the power transistor bridge 27A1 is connected to a power connection terminal U11 shown in FIG.
Phase to the power connection terminal V11 and W phase to the power connection terminal W
11 is applied.

【0026】第1リニアモ−タLMFの電気コイル1A
a〜2Caが、図2に点線矢印で示す推力を発生するコ
イル電圧指令値VdcA1が位相角α算出器24A1に与
えられ、位相角α算出器24A1が、指令値VdcA1に
対応する導通位相角α(サイリスタトリガ−位相角)を
算出し、これを表わす信号をゲ−トドライバ23A1に
与える。ゲ−トドライバ23A1は、各相のサイリスタ
を、各相のゼロクロス点から位相カウントを開始して位
相角αで導通トリガ−する。これにより、トランジスタ
ブリッジ27A1には、指令値VdcA1が示す直流電圧
が印加される。一方、3相信号発生器31A1は、周波
数指令値Fdcで指定された周波数(この実施例では50
Hz)の、定電圧3相交流信号を発生して、比較器29
A1に与える。比較器29A1にはまた、三角波発生器
30A1が3KHzの、定電圧三角波を与える。比較器
29A1は、U相信号が正レベルのときには、それが三
角波発生器30A1が与える三角波のレベル以上のとき
高レベルH(トランジスタオン)で、三角波のレベル未
満のとき低レベルL(トランジスタオフ)の信号を、U
相の正区間宛て(U相正電圧出力用トランジスタ宛て)
にゲ−トドライバ28A1に出力し、U相信号が負レベ
ルのときには、それが三角波発生器30A1が与える三
角波のレベル以下のとき高レベルHで、三角波のレベル
を越えるとき低レベルLの信号を、U相の負区間宛て
(U相負電圧出力用トランジスタ宛て)にゲ−トドライ
バ28A1に出力する。V相信号およびW相信号に関し
ても同様である。ゲ−トドライバ28A1は、これら各
相,正,負区間宛ての信号に対応してトランジスタブリ
ッジ27A1の各トランジスタをオン,オフ付勢する。
The electric coil 1A of the first linear motor LMF
a to 2Ca, a coil voltage command value VdcA1 for generating a thrust indicated by a dotted arrow in FIG. 2 is given to a phase angle α calculator 24A1, and the phase angle α calculator 24A1 outputs a conduction phase angle α corresponding to the command value VdcA1. (Thyristor trigger-phase angle) is calculated, and a signal representing this is supplied to the gate driver 23A1. The gate driver 23A1 starts the phase count of the thyristor of each phase from the zero cross point of each phase and triggers conduction at the phase angle α. As a result, the DC voltage indicated by the command value VdcA1 is applied to the transistor bridge 27A1. On the other hand, the three-phase signal generator 31A1 outputs the frequency specified by the frequency command value Fdc (50 in this embodiment).
Hz), and generates a constant-voltage three-phase AC signal,
Give to A1. A triangular wave generator 30A1 supplies a constant voltage triangular wave of 3 KHz to the comparator 29A1. When the U-phase signal is at a positive level, the comparator 29A1 is at a high level H (transistor on) when the level is equal to or higher than the level of the triangular wave provided by the triangular wave generator 30A1, and at a low level L (transistor off) when the level is lower than the level of the triangular wave. Signal of U
To the positive section of the phase (to the U-phase positive voltage output transistor)
When the U-phase signal is at a negative level, a high-level signal is output when the U-phase signal is below the level of the triangular wave provided by the triangular-wave generator 30A1, and when the U-phase signal exceeds the level of the triangular wave, a low-level signal is output. , To the U-phase negative section (to the U-phase negative voltage output transistor). The same applies to the V-phase signal and the W-phase signal. The gate driver 28A1 energizes each transistor of the transistor bridge 27A1 in response to the signals addressed to each phase, positive and negative sections.

【0027】これにより、電源接続端子U11には、3
相交流のU相電圧が出力され、電源接続端子V11に同
様なV相電圧が出力され、また電源接続端子W11に同
様なW相電圧が出力され、これらの電圧の上ピ−ク/下
ピ−ク間レベルはコイル電圧指令値VdcA1で定まる。
この3相電圧の周波数はこの実施例では周波数指令値F
dcにより50Hzである。すなわち、コイル電圧指令値
VdcA1で指定されたピ−ク電圧値(推力)の50Hz
の3相交流電圧が、図3および図5の(a)に示す第1
リニアモ−タLMFの電気コイル1Aa〜2Caに印加
される。
Thus, the power supply connection terminal U11 has 3
A U-phase voltage of phase alternating current is output, a similar V-phase voltage is output to a power supply connection terminal V11, and a similar W-phase voltage is output to a power supply connection terminal W11. The level between -k is determined by the coil voltage command value VdcA1.
In this embodiment, the frequency of the three-phase voltage is a frequency command value F
It is 50 Hz by dc. That is, 50 Hz of the peak voltage value (thrust) specified by the coil voltage command value VdcA1
3 and the first three-phase AC voltage shown in FIG.
It is applied to the electric coils 1Aa to 2Ca of the linear motor LMF.

【0028】図7に、第2リニアモ−タの電気コイル4
Ab〜5Cbに3相交流を流す、第1組の第1電源回路
20L2の構成を示す。この電源回路20L2の構成
は、上述の20F1と同一であるが、コイル電圧指令値
(VdcB2)が異なる。
FIG. 7 shows the electric coil 4 of the second linear motor.
The structure of the 1st set 1st power supply circuit 20L2 which flows three-phase alternating current to Ab-5Cb is shown. The configuration of the power supply circuit 20L2 is the same as that of the above-described 20F1, but the coil voltage command value (VdcB2) is different.

【0029】すなわち、第2リニアモ−タLMLの電気
コイル4Ab〜5Cbが図2に点線矢印で示す推力を発
生するコイル電圧指令値VdcB2が、位相角α算出器2
4B2に与えられる。これらのコイル電圧指令値Vdc
A1(図6)およびコイル電圧指令値VdcB2(図
7)は、図9に示すコンピュ−タ43が、各電源回路2
0F1および20L2に与える。
That is, the coil voltage command value VdcB2 at which the electric coils 4Ab to 5Cb of the second linear motor LML generate a thrust indicated by the dotted arrow in FIG.
4B2. These coil voltage command values Vdc
A1 (FIG. 6) and the coil voltage command value VdcB2 (FIG. 7) are output from the computer 43 shown in FIG.
Give to 0F1 and 20L2.

【0030】図8に、電磁ブレ−キ4の電気コイル4C
F,4CLに直流を流す第2組の電源回路20VDの構
成を示す。3相交流電源(3相電力線)21には直流整
流用のサイリスタブリッジ22D1が接続されており、
その出力(脈流)はインダクタ25D1およびコンデン
サ26D1で平滑化される。平滑化された直流電圧は図
5の(b)に示す電磁ブレ−キの端子4P,4Mに印加
される。
FIG. 8 shows an electric coil 4C of the electromagnetic brake 4.
5 shows a configuration of a second set of power supply circuits 20VD for supplying a direct current to F and 4CL. A thyristor bridge 22D1 for DC rectification is connected to the three-phase AC power supply (three-phase power line) 21,
The output (pulsating current) is smoothed by the inductor 25D1 and the capacitor 26D1. The smoothed DC voltage is applied to the terminals 4P and 4M of the electromagnetic brake shown in FIG.

【0031】電磁ブレ−キ4の電気コイル4CF,4C
Lが、溶鋼下降流を抑制する制動力を発生する為のコイ
ル電圧指令値VdcD3は、位相角α算出器24D1に与
えられ、位相角α算出器24D1が、指令値VdcD3に
対応する導通位相角α(サイリスタトリガ−位相角)を
算出し、これを表わす信号をゲ−トドライバ23D1に
与える。ゲ−トドライバ23D1は、各相のサイリスタ
を、各相のゼロクロス点から位相カウントを開始して位
相角αで導通トリガ−する。これにより、電源回路20
VDの端子VDには、指令値VdcD3が示す直流電圧が
出力される。このコイル電圧指令値VdcD3は、図9に
示すコンピュ−タ43から与えられる。図9に、図2に
示す鋳型短片6Lおよび6Rの背部を示す。これらの短
片6L,6Rには、熱電対S31〜S3nおよびS41
〜S4nが、それぞれ鋳片引抜き方向(高さ方向;上下
方向)に各一列で等間隔に配列され、それぞれの熱電対
は、裏当てステンレス板を貫通し銅板のやや内部の(溶
鋼に接する表面部の)温度を検出する。すなわち信号処
理回路41A及び41Bが熱電対が検出する温度を表わ
すアナログ信号(検出信号)を発生してアナログゲ−ト
42に与える。
Electric coils 4CF, 4C of electromagnetic brake 4
L is a coil voltage command value VdcD3 for generating a braking force for suppressing the downflow of molten steel is given to a phase angle α calculator 24D1, and the phase angle α calculator 24D1 determines a conduction phase angle corresponding to the command value VdcD3. .alpha. (thyristor trigger-phase angle) is calculated, and a signal representing this is supplied to gate driver 23D1. The gate driver 23D1 starts the phase count of the thyristor of each phase from the zero cross point of each phase and triggers conduction at the phase angle α. Thereby, the power supply circuit 20
The DC voltage indicated by the command value VdcD3 is output to the terminal VD of VD. This coil voltage command value VdcD3 is provided from a computer 43 shown in FIG. FIG. 9 shows the backs of the mold short pieces 6L and 6R shown in FIG. These short pieces 6L, 6R include thermocouples S31 to S3n and S41.
To S4n are arranged at regular intervals in a row in the slab drawing direction (height direction; vertical direction), and each thermocouple penetrates the backing stainless steel plate and is slightly inside the copper plate (the surface in contact with the molten steel). Part) temperature. That is, the signal processing circuits 41A and 41B generate an analog signal (detection signal) representing the temperature detected by the thermocouple and supply the analog signal to the analog gate 42.

【0032】コンピュ−タ43は、アナログゲ−ト42
の出力を制御して、熱電対S31〜S3nおよびS41
〜S4nの検出信号を順次にA/D変換して読込み、高
温値抽出処理44により、熱電対S31〜S3nの検出
温度の中の最高温度値Tm1L1および次に高い温度値
Tm2L1を抽出し、かつ、熱電対S41〜S4nの検
出温度の中の最高温度値Tm1R1および次に高い温度
値Tm2R1を抽出する。そして、短片6Lの代表温度 (Tm1L1−Tm2L1)×0.7+Tm2L1 を算出し、短片6Rの代表温度 (Tm1R1−Tm2R1)×0.7+Tm2R1 を算出する。
The computer 43 includes an analog gate 42.
Of the thermocouples S31 to S3n and S41
To S4n are sequentially A / D converted and read, and the highest temperature value Tm1L1 and the next highest temperature value Tm2L1 among the detected temperatures of the thermocouples S31 to S3n are extracted by the high temperature value extraction processing 44, and , The highest temperature value Tm1R1 and the next highest temperature value Tm2R1 among the detected temperatures of the thermocouples S41 to S4n. Then, the representative temperature (Tm1L1-Tm2L1) × 0.7 + Tm2L1 of the short piece 6L is calculated, and the representative temperature (Tm1R1-Tm2R1) × 0.7 + Tm2R1 of the short piece 6R is calculated.

【0033】そして、溶鋼表層流の流速制御のために両
者の差すなわち短片6R,6L間の代表温度差 (Tm1R1-Tm2R1)×0.7+Tm2R1−(Tm1L1-Tm2L1)×0.7−Tm2
L1 を算出して、VdcA1=(代表温度差×A)+B(A及
びBは係数)を算出し、かつ、VdcB2=−(代表温度
差×A)+Bを算出する。なお、代表温度差が負値であ
る(短片6Lの方が温度が高い)ときには、VdcA1=
−(代表温度差の絶対値×A)+Bを算出し、かつVdc
B2=(代表温度差の絶対値×A)+Bとなる。
For controlling the flow velocity of the surface layer flow of the molten steel, the difference between the two, ie, the representative temperature difference between the short pieces 6R and 6L (Tm1R1-Tm2R1) × 0.7 + Tm2R1− (Tm1L1-Tm2L1) × 0.7−Tm2
By calculating L1, VdcA1 = (representative temperature difference × A) + B (A and B are coefficients) and VdcB2 = − (representative temperature difference × A) + B are calculated. When the representative temperature difference is a negative value (the temperature of the short piece 6L is higher), VdcA1 =
-(Absolute value of representative temperature difference x A) + B is calculated and Vdc
B2 = (absolute value of representative temperature difference × A) + B.

【0034】VdcA1は、短片6R側の電気コイル1A
a〜2Ca(第1リニアモ−タLMF;図2)に対する
電流レベル(推力)指令値であり、VdcB2は短片6L
側の電気コイル4Ab〜5Cb(第2リニアモ−タLM
L;図2)に対する電流レベル(推力)指令値である。
これらの指令値は、代表温度差が正値(図13の(a)
のに示すような不平衡流により短片6Rの方が温度が
高い)ときには第1リニアモ−タLMFの電気コイル1
Aa〜2Caに流す3相交流電流レベルを大きくして強
い推力(図11の(b)の点線矢印)をかけ、第2リニ
アモ−タLMLの電気コイル4Ab〜5Cbに流す3相
交流電流レベルを小さくして推力を弱くし、逆に、代表
温度差が負値(短片6Lの方が温度が高い)ときには第
2リニアモ−タLMLの電気コイル4Ab〜5Cbに流
す3相交流電流レベルを大きくして強い推力(図11の
(c)の点線矢印)をかけ、第1リニアモ−タLMFの
電気コイル1Aa〜2Caに流す3相交流電流レベルを
小さくして推力を弱くすることを意味する。
VdcA1 is the electric coil 1A on the short piece 6R side.
a to 2Ca (first linear motor LMF; FIG. 2) are current level (thrust) command values, and VdcB2 is a short piece 6L.
Side electric coils 4Ab to 5Cb (second linear motor LM
L; a current level (thrust) command value for FIG. 2).
These command values are such that the representative temperature difference is a positive value ((a) in FIG. 13).
When the temperature of the short piece 6R is higher due to the unbalanced flow as shown in FIG. 1), the electric coil 1 of the first linear motor LMF
The three-phase AC current level flowing through Aa to 2Ca is increased to apply a strong thrust (dotted arrow in FIG. 11B), and the three-phase AC current level flowing through the electric coils 4Ab to 5Cb of the second linear motor LML is reduced. Conversely, when the representative temperature difference is a negative value (the temperature of the short piece 6L is higher), the three-phase AC current level flowing through the electric coils 4Ab to 5Cb of the second linear motor LML is increased. This means that a strong thrust (dotted arrow in FIG. 11C) is applied to reduce the three-phase AC current level flowing through the electric coils 1Aa to 2Ca of the first linear motor LMF to weaken the thrust.

【0035】溶鋼下降流の流速制御のためには、両者の
和、すなわち短辺6L,6Rの代表温度和 (Tm1L1-Tm2L1)×0.7+Tm2L1+(Tm1R1-Tm2R1)×0.7+Tm2
R1 を算出して、VdcD3=代表温度和×Cを算出する(C
は係数)。VdcD3が大、すなわち何れか、あるいは両
方の短片温度が高いことは溶鋼下降流(突出流)の流速
が早いことを意味し、介在物の浮上に要する時間が不十
分となる。そこで電磁ブレ−キ4の電気コイル4CF及
び4CRに流す直流電流レベルを大きくして下降流に加
える制動力を強くし、下降流の下降速度を制限(下降流
の均一化)して介在物の浮上を促進する。なお、溶鋼に
加わる制動力は、溶鋼流速が高いほど高い制動力となる
ので、高速の下降流ほど強く制動力が働いて速度低下が
大きく、下降流の流速が均一化し、直流電流レベルを大
きくすることによりこの均一化と流速抑制が強く作用す
る。
In order to control the flow velocity of the downflow of molten steel, the sum of the two, that is, the sum of the representative temperatures of the short sides 6L and 6R (Tm1L1-Tm2L1) × 0.7 + Tm2L1 + (Tm1R1-Tm2R1) × 0.7 + Tm2
R1 is calculated, and VdcD3 = representative temperature sum × C is calculated (C
Is a coefficient). If VdcD3 is large, that is, one or both of the short piece temperatures are high, it means that the flow velocity of the molten steel descending flow (protruding flow) is high, and the time required for floating the inclusions becomes insufficient. Therefore, the level of the direct current flowing through the electric coils 4CF and 4CR of the electromagnetic brake 4 is increased to increase the braking force applied to the descending flow, and the descending speed of the descending flow is limited (the descending flow is made uniform) to remove the inclusions. Promote ascent. Since the braking force applied to the molten steel is higher as the flow velocity of the molten steel is higher, the higher the descending flow, the stronger the braking force acts, and the lowering of the velocity is large, the flow velocity of the descending flow is uniform, and the DC current level is increased. By doing so, the uniformization and the suppression of the flow velocity act strongly.

【0036】以上により、例えば図10の(a)に示す
突出流,がノズル30に関して実質上対称である
と、短片6Rと6Lの温度は実質上同じとなり、表層流
が図10の(b)の実線矢印,および図2の実線矢
印で示すようにノズル30に関して対称となり、この場
合にはVdcA1=VdcB2となって、短片6R側の電気
コイル1Aa〜2Caと短片6L側の電気コイル4Ab
〜5Cbの通電レベルが実質上等しく、第1リニアモ−
タLMFと第2リニアモ−タLMLは、図2及び図10
の(b)の点線矢印で示すように、実質上等しい強さ
の、方向が逆の推力を溶鋼に与える。これにより、溶鋼
の実際の表層流は、図2に2点鎖線で示す差分となり、
図10の(b)に2点鎖線で示す流速分布が均一化した
循環流をもたらす。これにより、気泡の浮上が促進さ
れ、溶鋼中へのパウダ巻き込みがなくなり、表層付近の
鋳型内面がきれいにぬぐわれて溶鋼の滞留がなくなる。
すなわち溶鋼の温度分布が均一化し溶鋼の焼付きが抑制
される。
As described above, for example, when the protruding flow shown in FIG. 10A is substantially symmetrical with respect to the nozzle 30, the temperatures of the short pieces 6R and 6L become substantially the same, and the surface flow becomes the same as that of FIG. 2 and the solid arrow in FIG. 2, the nozzle 30 is symmetrical. In this case, VdcA1 = VdcB2, and the electric coils 1Aa to 2Ca on the short piece 6R side and the electric coil 4Ab on the short piece 6L side
To 5Cb are substantially equal, and the first linear motor
The motor LMF and the second linear motor LML are shown in FIGS.
As shown by the dotted arrow in (b), a thrust having substantially the same strength and opposite directions is applied to the molten steel. Thereby, the actual surface flow of the molten steel becomes a difference indicated by a two-dot chain line in FIG.
The flow velocity distribution shown by the two-dot chain line in FIG. Thereby, the floating of bubbles is promoted, the powder is not entrained in the molten steel, the inner surface of the mold near the surface layer is wiped clean, and the stagnation of the molten steel is eliminated.
That is, the temperature distribution of the molten steel is made uniform, and seizure of the molten steel is suppressed.

【0037】図13の(a)に示すように、短片6Rに
向う突出流が強く、短片6Lに向う突出流が弱くな
ると、短片6Rの温度が上昇し短片6Lの温度が低下
し、表層流は図13の(b)に実線矢印,で示すよ
うにノズル30と短片6Rの間の表層流が強く、ノズ
ル30と短片6Lの間の表層流が弱くなり、この場合
にはVdcA1>VdcB2となって、短片6R側の電気コ
イル1Aa〜2Caの通電レベルが高く、短片6L側の
電気コイル4Ab〜5Cbの通電レベルが低くなり、第
1リニアモ−タLMFは強い推力を、第2リニアモ−タ
LMLは弱い推力を溶鋼に与える。これにより、図11
の(b)に点線矢印で示すように、第1リニアモ−タL
MFは強い推力を、第2リニアモ−タLMLは弱い推力
を溶鋼に与える。
As shown in FIG. 13 (a), when the protruding flow toward the short piece 6R is strong and the protruding flow toward the short piece 6L is weak, the temperature of the short piece 6R increases and the temperature of the short piece 6L decreases. As shown by solid arrows in FIG. 13B, the surface flow between the nozzle 30 and the short piece 6R is strong and the surface flow between the nozzle 30 and the short piece 6L is weak. In this case, VdcA1> VdcB2. The energization level of the electric coils 1Aa to 2Ca on the short piece 6R side is high, and the energization level of the electric coils 4Ab to 5Cb on the short piece 6L side is low. The first linear motor LMF has a strong thrust and the second linear motor has a strong thrust. LML gives weak thrust to molten steel. As a result, FIG.
(B), the first linear motor L
The MF gives strong thrust to the second linear motor LML and the second linear motor LML gives weak thrust to the molten steel.

【0038】これにより、図10の(b)に2点鎖線で
示す循環流をもたらす。この場合には、この循環流は高
温の短片6R側で高速、低温の短片6L側で低速である
が、ル−プを描く循環流であるので渦流を生じない。短
片6R側の高温溶鋼を低温の短片6L側に搬送し、温度
差を低減する。この循環流により気泡の浮上が促進さ
れ、溶鋼中へのパウダ巻き込みがなくなり、表層付近の
鋳型内面がきれいにぬぐわれて溶鋼の滞留がなくなる。
すなわち溶鋼の温度分布が均一化し溶鋼の焼付きが抑制
される。
As a result, a circulating flow shown by a two-dot chain line in FIG. In this case, the circulating flow has a high speed on the high-temperature short piece 6R side and a low-speed on the low-temperature short piece 6L side. The high temperature molten steel on the short piece 6R side is conveyed to the low temperature short piece 6L side to reduce the temperature difference. Due to this circulation flow, the floating of bubbles is promoted, powder is not entrained in the molten steel, the inner surface of the mold near the surface layer is wiped cleanly, and the stagnation of the molten steel is eliminated.
That is, the temperature distribution of the molten steel is made uniform, and seizure of the molten steel is suppressed.

【0039】逆に短片6Rに向う突出流が弱く、短片
6Lに向う突出流が強くなると、短片6Rの温度が低
下し短片6Lの温度が上昇し、表層流はノズル30と短
片6Rの間の表層流が弱く、ノズル30と短片6Lの
間の表層流が強くなり、この場合にはVdcA1<Vdc
B2となって、短片6R側の電気コイル1Aa〜2Ca
の通電レベルが低く、短片6L側の電気コイル4Ab〜
5Cbの通電レベルが高くなり、第1リニアモ−タLM
Fは弱い推力を、第2リニアモ−タLMLは強い推力を
溶鋼に与える。これにより、図11の(c)に点線矢印
で示すように、第1リニアモ−タLMFは弱い推力を、
第2リニアモ−タLMLは強い推力を溶鋼に与える。
Conversely, when the protruding flow toward the short piece 6R is weak and the protruding flow toward the short piece 6L is strong, the temperature of the short piece 6R is reduced and the temperature of the short piece 6L is increased, and the surface flow is generated between the nozzle 30 and the short piece 6R. The surface flow is weak, and the surface flow between the nozzle 30 and the short piece 6L becomes strong, in this case, VdcA1 <Vdc
B2, the electric coils 1Aa to 2Ca on the short piece 6R side
Of the electric coil 4Ab ~ of the short piece 6L side
The 5Cb energization level increases, and the first linear motor LM
F gives a weak thrust and the second linear motor LML gives a strong thrust to the molten steel. As a result, the first linear motor LMF exerts a weak thrust, as indicated by a dotted arrow in FIG.
The second linear motor LML gives a strong thrust to the molten steel.

【0040】これにより、図10の(b)に2点鎖線で
示す循環流をもたらす。この場合には、この循環流は低
温の短片6R側で低速、高温の短片6L側で高速である
が、ル−プを描く循環流であるので渦流を生じない。短
片6L側の高温溶鋼を低温の短片6R側に搬送し、温度
差を低減する。この循環流により気泡の浮上が促進さ
れ、溶鋼中へのパウダ巻き込みがなくなり、表層付近の
鋳型内面がきれいにぬぐわれて溶鋼の滞留がなくなる。
すなわち溶鋼の温度分布が均一化し溶鋼の焼付きが抑制
される。
As a result, a circulating flow shown by a two-dot chain line in FIG. In this case, the circulating flow has a low speed on the low temperature short piece 6R side and a high speed on the high temperature short piece 6L side. The high-temperature molten steel on the short piece 6L side is conveyed to the low-temperature short piece 6R side to reduce the temperature difference. Due to this circulation flow, the floating of bubbles is promoted, powder is not entrained in the molten steel, the inner surface of the mold near the surface layer is wiped cleanly, and the stagnation of the molten steel is eliminated.
That is, the temperature distribution of the molten steel is made uniform, and seizure of the molten steel is suppressed.

【0041】又、図10の(a)に示す流出口19から
下方向に向かう溶鋼流,が共に強いときには、鋳型
両短片の温度がより高温となり、両短片が検出した代表
温度和が上昇するので電源回路20VDへの電圧指令値
VdcD3が上昇し、電磁ブレ−キ4に印加する直流電
圧が高くなる。この結果鋳型内の溶鋼下降流に対する電
磁ブレ−キ4の制動力が大きくなり、溶鋼下降速度が低
下する。図13の(a)に示す流出口19から下方向に
向かう溶鋼流の方が溶鋼流より強いときには、鋳型
短片6Rの温度がより高温となり、両短片が検出した代
表温度和が上昇するので電源回路20VDへの電圧指令
値VdcD3が上昇し、電磁ブレ−キ4に印加する直流
電圧が高くなる。この結果鋳型内の溶鋼下降流に対する
電磁ブレ−キ4の制動力が大きくなり、溶鋼下降速度が
低下する。溶鋼流の方が溶鋼流より強い場合には鋳
型短片6Lの温度がより高温となり、両短片が検出した
代表温度和が上昇するので電源回路20VDへの電圧指
令値VdcD3が上昇し、電磁ブレ−キ4に印加する直
流電圧が高くなる。この結果鋳型内の溶鋼下降流に対す
る電磁ブレ−キ4の制動力が大きくなり、溶鋼下降速度
が低下する。すなわち突出した下降流を防ぎ、介在物の
メニスカスへの浮上に要する時間を確保し、内部品質の
向上した製品を製造することが出来る。
When the flow of molten steel flowing downward from the outlet 19 shown in FIG. 10A is strong, the temperature of the two short pieces of the mold becomes higher, and the representative temperature sum detected by the two short pieces increases. Therefore, the voltage command value VdcD3 to the power supply circuit 20VD increases, and the DC voltage applied to the electromagnetic brake 4 increases. As a result, the braking force of the electromagnetic brake 4 against the molten steel descending flow in the mold increases, and the molten steel descending speed decreases. When the molten steel flow going downward from the outlet 19 shown in FIG. 13A is stronger than the molten steel flow, the temperature of the mold short piece 6R becomes higher, and the sum of the representative temperatures detected by the two short pieces rises. The voltage command value VdcD3 to the circuit 20VD increases, and the DC voltage applied to the electromagnetic brake 4 increases. As a result, the braking force of the electromagnetic brake 4 against the molten steel descending flow in the mold increases, and the molten steel descending speed decreases. When the molten steel flow is stronger than the molten steel flow, the temperature of the mold short piece 6L becomes higher and the representative temperature sum detected by both short pieces increases, so that the voltage command value VdcD3 to the power supply circuit 20VD increases, and The DC voltage applied to the key 4 increases. As a result, the braking force of the electromagnetic brake 4 against the molten steel descending flow in the mold increases, and the molten steel descending speed decreases. That is, a protruding downward flow is prevented, the time required for floating the inclusions to the meniscus is secured, and a product with improved internal quality can be manufactured.

【0042】上述の実施例では、短片6R,6Lの温度
を熱電対で検出して注入ノズル30からの鋳型内への突
出流の強さ対応に表層流及び下降流の強さ(流速)を検
出し、これに対して安定した循環流、あるいは下降流を
生成するための電磁推力を第1リニアモ−タLMF、第
2リニアモ−タLML、及び電磁ブレ−キ4で溶鋼に与
えるようにしているが、例えば、流速センサで図2のV
spaの位置の表層流VsaおよびVspbの位置の表層流Vs
b、あるいは図10の(a)のVvsa位置の下降速度Vva
およびVvsb位置の下降速度Vvbを検出し、電流レベル
指度値VdcA1,VdcB2及びVdcD3を、それぞれ制
御するようにしてもよい。
In the above-described embodiment, the temperature of the short pieces 6R and 6L is detected by a thermocouple, and the strength (flow velocity) of the surface flow and the descending flow is determined in accordance with the strength of the protruding flow from the injection nozzle 30 into the mold. Electromagnetic thrust for detecting and generating a stable circulating flow or descending flow is applied to molten steel by the first linear motor LMF, the second linear motor LML, and the electromagnetic brake 4. However, for example, using a flow rate sensor as shown in FIG.
Surface flow Vsa at the position of spa and surface flow Vs at the position of Vspb
b, or the lowering speed Vva of the Vvsa position in FIG.
And the lowering speed Vvb of the Vvsb position may be detected, and the current level index values VdcA1, VdcB2, and VdcD3 may be respectively controlled.

【0043】また、上述の実施例では、1対のリニアモ
−タLMF,LMLを用いたが、本発明の第2実施例で
は、これを2対として、図12の(b)に示すように配
置してもよい。この場合、第1対のリニアモ−タLMF
1,LML1は、上述の実施例のLMF,LMLと同様
に通電レベルを制御するが、第2対のリニアモ−タLM
F2,LML2は、図12の(b)に点線矢印で示すよ
うに、第1対のものとは推力方向を逆とし、しかも、検
出温度に対する通電レベルの増減は第1対のものと同様
とするが、推力方向が、ノズル注入流により生ずる表層
流の方向と同方向であるので、推力値(通電レベル)は
第1対のものよりは小さく設定する。この第2実施例に
よれば、リニアモ−タの推力による、表層循環流(図1
0の(b)の2点鎖線矢印)の流速を、第1実施例の場
合よりもより強くすることができる。
In the above-described embodiment, a pair of linear motors LMF and LML is used. In the second embodiment of the present invention, two pairs are used as shown in FIG. It may be arranged. In this case, the first pair of linear motors LMF
1 and LML1 control the power supply level in the same manner as the LMF and LML of the above-described embodiment, but the second pair of linear motors LM
F2, LML2, as indicated by the dotted arrow in FIG. 12B, reverse the thrust direction to that of the first pair, and furthermore, the increase and decrease of the energization level with respect to the detected temperature are the same as those of the first pair. However, since the thrust direction is the same as the direction of the surface flow generated by the nozzle injection flow, the thrust value (power supply level) is set smaller than that of the first pair. According to the second embodiment, the surface circulation flow (FIG.
The flow rate of 0 (b) shown by a two-dot chain line) can be made higher than in the first embodiment.

【0044】したがって表層域での溶鋼温度のより一層
の均一化を実現することができる。なお、表層域の流速
を高くするのに伴って、下降流が部分的に強くなるの
で、電磁ブレ−キ4の通電レベルも高くする。
Therefore, the temperature of the molten steel in the surface layer can be made more uniform. Since the descending flow partially increases as the flow velocity in the surface layer increases, the energizing level of the electromagnetic brake 4 is also increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例の制御対象の連続鋳造鋳
型の断面を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a section of a continuous casting mold to be controlled according to a first embodiment of the present invention.

【図2】 図1の鋳型及びリニアモ−タ部分の構成を示
す平面図である。
FIG. 2 is a plan view showing a configuration of a mold and a linear motor portion of FIG.

【図3】 (a)は図2に示すリニアモ−タLMFの2
A−2A線拡大横断面図であり、(b)は図2に示すリ
ニアモ−タLMLの2B−2B線拡大横断面図である。
FIG. 3 (a) shows a linear motor LMF 2 shown in FIG.
FIG. 3 is an enlarged cross-sectional view taken along line A-2A, and FIG. 2 (b) is an enlarged cross-sectional view taken along line 2B-2B of the linear motor LML shown in FIG.

【図4】 図1に示す電磁ブレ−キ4を水平に破断した
拡大横断面図である。
FIG. 4 is an enlarged cross-sectional view of the electromagnetic brake 4 shown in FIG.

【図5】 図2及び図3に示す電気コイルの結線を示す
電気回路図である。
FIG. 5 is an electric circuit diagram showing connection of the electric coils shown in FIGS. 2 and 3.

【図6】 図2に示す第1組のリニアモ−タLMFの電
気コイルに3相交流電圧を印加する第1組の第1電源回
路を示す電気回路図である。
FIG. 6 is an electric circuit diagram showing a first set of first power supply circuits for applying a three-phase AC voltage to electric coils of the first set of linear motors LMF shown in FIG. 2;

【図7】 図2に示す第2組のリニアモ−タLMLの電
気コイルに3相交流を印加する第1組の第2電源回路を
示す電気回路図である。
FIG. 7 is an electric circuit diagram showing a first set of second power supply circuits for applying a three-phase alternating current to electric coils of a second set of linear motors LML shown in FIG. 2;

【図8】 図4に示す電磁ブレ−キ4の電気コイルに直
流電圧を印加する第2組の電源回路を示す電気回路図で
ある。
8 is an electric circuit diagram showing a second set of power supply circuits for applying a DC voltage to the electric coil of the electromagnetic brake 4 shown in FIG.

【図9】 図2に示す鋳造鋳型の短片6L,6Rの背部
とそれらに備わった熱電対に接続された電気回路、及び
コンピュ−タ43の出力を示すブロック図である。
9 is a block diagram showing the backs of the short pieces 6L and 6R of the casting mold shown in FIG. 2, the electric circuit connected to the thermocouples provided on them, and the output of the computer 43.

【図10】 (a)は鋳型内溶鋼の断面図、(b)は鋳
型内溶鋼のメニスカスにおける表層流を示す平面図であ
る。
10A is a cross-sectional view of molten steel in a mold, and FIG. 10B is a plan view showing a surface layer flow in a meniscus of the molten steel in the mold.

【図11】 (a)は鋳型内溶鋼の上面を示す平面図、
(b)および(c)はリニアモ−タLMF,LMLによ
り鋳型内溶鋼に誘起される表層流(点線矢印)を示す平
面図である。
FIG. 11 (a) is a plan view showing the upper surface of molten steel in a mold,
(B) and (c) are plan views showing surface flows (dotted arrows) induced in the molten steel in the mold by the linear motors LMF and LML.

【図12】 (a)は、鋳型内溶鋼のメニスカスにおけ
る、注湯ノズルからの溶鋼注入により生ずる表層流を示
す平面図、(b)は本発明の第2実施例で生起しようと
する表層流を点線矢印で示す平面図、(c)は注湯ノズ
ルからの溶鋼注入により生ずる表層流と第2実施例のリ
ニアモ−タの推力により生ずる表層流とのベルトル和を
実線矢印で示す平面図である。
FIG. 12 (a) is a plan view showing a surface flow caused by injection of molten steel from a pouring nozzle in a meniscus of molten steel in a mold, and FIG. 12 (b) is a surface flow to be generated in a second embodiment of the present invention. Is a plan view indicated by a dotted arrow, and (c) is a plan view indicated by a solid line arrow indicating the Bertle sum of the surface flow generated by the injection of molten steel from the pouring nozzle and the surface flow generated by the thrust of the linear motor of the second embodiment. is there.

【図13】 (a)は鋳型内溶鋼の断面図、(b)は鋳
型内溶鋼のメニスカスにおける表層流(溶鋼注入による
もの)と、従来のリニアモ−タの配置を示す平面図であ
る。
FIG. 13A is a cross-sectional view of molten steel in a mold, and FIG. 13B is a plan view showing a surface flow (by molten steel injection) in a meniscus of the molten steel in the mold and an arrangement of a conventional linear motor.

【符号の説明】[Explanation of symbols]

1:鋳型の内壁 4:電磁ブレ−キ 10:第1リニアモ−タ・コア 20:第2リニアモ
−タ・コア 19:流出口 30:注入ノズル 43:コンピュ−タ 1Aa〜2Ca:第1リニアモ−タの電気コイル 4Ab〜5Cb:第2リニアモ−タの電気コイル 1F,1L,3L,3R:銅板 2F,2L,4L,4R:非磁性ステンレス板 4AF,4AL:電磁ブレ−キ・コア 4BF,4BL:電磁ブレ−キ・ヨ−ク 4CF,4CL:電磁ブレ−キ・コイル 5F,5L:長片 6R,6L:短片 20F1,20L2,20VD:電源回路 3RF,3RL,LMF,LML:リニアモ−タ MM:溶鋼 PW:パウダ SB:鋳片 S31〜S3n,S41〜S4n:
熱電対 U11,V11,W11/U12,V12,W12,4P,4M:電源接続端子
1: inner wall of mold 4: electromagnetic brake 10: first linear motor core 20: second linear motor core 19: outlet 30: injection nozzle 43: computer 1Aa to 2Ca: first linear motor Electric coils 4Ab to 5Cb: electric coils of the second linear motor 1F, 1L, 3L, 3R: copper plates 2F, 2L, 4L, 4R: non-magnetic stainless steel plates 4AF, 4AL: electromagnetic brake cores 4BF, 4BL : Electromagnetic brake / yoke 4CF, 4CL: Electromagnetic brake coil 5F, 5L: Long piece 6R, 6L: Short piece 20F1, 20L2, 20VD: Power supply circuit 3RF, 3RL, LMF, LML: Linear motor MM : Molten steel PW: Powder SB: Cast slab S31 ~ S3n, S41 ~ S4n:
Thermocouple U11, V11, W11 / U12, V12, W12, 4P, 4M: Power supply connection terminal

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−290214(JP,A) 特開 平7−256412(JP,A) 特開 平7−246445(JP,A) 特開 平7−241649(JP,A) 特開 昭61−140355(JP,A) 特開 平3−258442(JP,A) 特開 平1−228645(JP,A) 特開 平8−197196(JP,A) 特開 平8−243698(JP,A) 特開 平8−108257(JP,A) 特開 平7−246444(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/115 B22D 11/04 311 B22D 11/16 B22D 11/16 104 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-290214 (JP, A) JP-A-7-256412 (JP, A) JP-A-7-246445 (JP, A) JP-A-7-290 241649 (JP, A) JP-A-61-140355 (JP, A) JP-A-3-258442 (JP, A) JP-A-1-228645 (JP, A) JP-A 8-197196 (JP, A) JP-A-8-243698 (JP, A) JP-A-8-108257 (JP, A) JP-A-7-246444 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/115 B22D 11/04 311 B22D 11/16 B22D 11/16 104

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶融金属を取り囲む、4辺形の各辺をなす
4つの鋳型片の、第1長片に沿って複数個のスロットが
分布し、第1長片と第1短片の近くの溶融金属上表面に
対向配置した第1組の電磁石コアとこれを励磁するため
に各スロットに挿入された複数個の電気コイルの組合せ
でなる第1組の電磁石;前記鋳型片の、第2長片に沿っ
て複数個のスロットが分布し、第2長片と第2短片の近
くの溶融金属上表面に対向配置した第2組の電磁石コア
とこれを励磁するために各スロットに挿入された複数個
の電気コイルの組合せでなる第2組の電磁石;第1組の
電磁石が第1長片に沿う方向の推力を溶融金属上表面に
与え、第2組の電磁石が第2長片に沿う方向の推力を溶
融金属上表面に与えるための位相差がある交流電圧を第
1組および第2組の電磁石の電気コイルのそれぞれに印
加する第1組の通電手段;および、 前記鋳型片の、メニスカス下方において、溶融金属を間
に置いて対向する少くとも1対の磁極とこれを励磁する
ための電気コイルの組合でなる第3組の電磁石、およ
び、該電気コイルに溶融金属に制動力を加えるための電
流を通電する第2組の通電手段;を備える溶融金属の流
動制御装置。
A plurality of slots are distributed along a first long piece of four mold pieces on each side of a quadrilateral surrounding a molten metal, wherein a plurality of slots are distributed near the first long piece and the first short piece. A first set of electromagnets comprising a combination of a first set of electromagnet cores disposed opposite to the upper surface of the molten metal and a plurality of electric coils inserted into respective slots to excite the cores; A plurality of slots are distributed along the strip, and a second set of electromagnet cores disposed opposite to the upper surface of the molten metal near the second long piece and the second short piece, and inserted into each slot to excite the core. A second set of electromagnets composed of a combination of a plurality of electric coils; the first set of electromagnets provides a thrust in a direction along the first long piece to the upper surface of the molten metal, and the second set of electromagnets along the second long piece. AC voltages having a phase difference for applying a thrust in the directional direction to the upper surface of the molten metal are applied to the first set and the second set. A first set of energizing means for applying to each of the electric coils of the electromagnet; and at least one pair of opposed magnetic poles with a molten metal interposed therebetween under the meniscus of the mold piece, and electricity for exciting the magnetic poles. A molten metal flow control device, comprising: a third set of electromagnets formed of a combination of coils; and a second set of energizing means for applying a current to the electric coils to apply a braking force to the molten metal.
【請求項2】溶融金属を取り囲む、4辺形の各辺をなす
4つの鋳型片の、第1長片に沿って複数個のスロットが
分布し、第1長片と第1短片の近くの溶融金属上表面に
対向配置した第1電磁石コアとこれを励磁するために各
スロットに挿入された複数個の電気コイルの組合せでな
る第1電磁石;第1電磁石コアが第1長片に沿う方向の
推力を溶融金属上表面に与えるための位相差がある交流
電圧を第1電磁石の電気コイルのそれぞに印加する第1
通電手段;前記鋳型片の、第2長片に沿って複数個のス
ロットが分布し、第2長片と第2短片の近くの溶融金属
上表面に対向配置した第2電磁石コアとこれを励磁する
ために各スロットに挿入された複数個の電気コイルの組
合せでなる第2電磁石;第2電磁石コアが第2長片に沿
う方向の推力を溶融金属上表面に与えるための位相差が
ある交流電圧を第2電磁石の電気コイルのそれぞに印加
する第2通電手段;および、 前記鋳型片の、メニスカス下方において、溶融金属を間
に置いて対向する少くとも1対の磁極とこれを励磁する
ための電気コイルの組合でなる第3電磁石、および、該
電気コイルに溶融金属に制動力を加えるための電流を通
電する第3通電手段;を備える溶融金属の流動制御装
置。
2. A plurality of slots distributed along a first long piece of four mold pieces on each side of a quadrilateral surrounding a molten metal, wherein a plurality of slots are distributed near the first long piece and the first short piece. A first electromagnet composed of a combination of a first electromagnet core opposed to the upper surface of the molten metal and a plurality of electric coils inserted into each slot to excite the first electromagnet core; a direction in which the first electromagnet core is along the first long piece Applying an AC voltage having a phase difference for applying the thrust to the upper surface of the molten metal to each of the electric coils of the first electromagnet.
Energizing means; a second electromagnet core having a plurality of slots distributed along the second long piece of the mold piece and disposed opposite to the upper surface of the molten metal near the second long piece and the second short piece, and exciting the second electromagnet core A second electromagnet composed of a combination of a plurality of electric coils inserted into each slot to perform the operation; an alternating current having a phase difference so that the second electromagnet core gives a thrust in a direction along the second long piece to the upper surface of the molten metal. Second energizing means for applying a voltage to each of the electric coils of the second electromagnet; and at least one pair of magnetic poles opposed to each other with a molten metal interposed below the meniscus of the mold piece. A flow control device for molten metal, comprising: a third electromagnet formed by a combination of electric coils for applying a current to apply a braking force to the molten metal to the electric coil;
【請求項3】注入ノズルから鋳型片で囲まれた溶融金属
への新たな溶融金属の注入により生ずる、鋳型片で囲ま
れた溶融金属の、第1および第2電磁石コア直下の溶融
金属流の強さを測定する手段;および、第1電磁石コア
直下の該溶融金属流が第2電磁石コア直下のそれより強
いときには第1および第2通電手段を介して第1電磁石
の電気コイルの電流レベルを上げ第2電磁石の電気コイ
ルの電流レベルを下げ、その逆のときには第1電磁石の
電気コイルの電流レベルを下げ第2電磁石の電気コイル
の電流レベルを上げ、また第1および/又は第2電磁石
コア直下の溶融金属流が強いときには第3通電手段を介
して第3電磁石の電気コイルの電流レベルを上げる推力
制御手段;を更に備える、請求項2記載の溶融金属の流
動制御装置。
3. The flow of molten metal of the molten metal surrounded by the mold pieces, directly below the first and second electromagnet cores, resulting from the injection of new molten metal from the injection nozzle into the molten metal surrounded by the mold pieces. Means for measuring the strength; and when the flow of molten metal directly below the first electromagnet core is stronger than that immediately below the second electromagnet core, the current level of the electric coil of the first electromagnet is increased via the first and second energizing means. Raise the current level of the electric coil of the second electromagnet, and vice versa, decrease the current level of the electric coil of the first electromagnet, raise the current level of the electric coil of the second electromagnet, and increase the first and / or second electromagnet core 3. The molten metal flow control device according to claim 2, further comprising: thrust control means for increasing the current level of the electric coil of the third electromagnet via the third energizing means when the molten metal flow immediately below is strong.
【請求項4】測定手段は、第1および第2短片の温度を
検出する温度センサであり;推力制御手段は、第1短片
の方が第2短片より高温のときには第1電磁石の電気コ
イルの電流レベルを上げ第2電磁石の電気コイルの電流
レベルを下げ、その逆のときには第1電磁石の電気コイ
ルの電流レベルを下げ第2電磁石の電気コイルの電流レ
ベルを上げ、また第1および/又は第2短片が高温のと
きには第3電磁石の電気コイルの電流レベルを上げ、そ
の逆のときには第3電磁石の電気コイルの電流レベルを
下げる;請求項3記載の溶融金属の流動制御装置。
4. The measuring means is a temperature sensor for detecting the temperature of the first and second short pieces; the thrust control means is configured to detect the temperature of the electric coil of the first electromagnet when the first short piece is higher in temperature than the second short piece. Increasing the current level and decreasing the current level of the electric coil of the second electromagnet, and vice versa, decreasing the current level of the electric coil of the first electromagnet and increasing the current level of the electric coil of the second electromagnet; The molten metal flow control device according to claim 3, wherein the current level of the electric coil of the third electromagnet is increased when the two short pieces are at a high temperature, and the current level of the electric coil of the third electromagnet is decreased when the two short pieces are hot.
【請求項5】各短片の温度センサは、鋳片引抜き方向に
分布した複数個の温度検出素子を含み;推力制御手段
は、それらが検出した温度の高いものを摘出し、それを
各短片の代表温度とする、請求項4記載の溶融金属の流
動制御装置。
5. The temperature sensor of each short piece includes a plurality of temperature detecting elements distributed in the direction of drawing the slab; the thrust control means picks out the high temperature detected by them and outputs it to each short piece. The molten metal flow control device according to claim 4, wherein the temperature is a representative temperature.
JP07318823A 1995-12-07 1995-12-07 Flow controller for molten metal Expired - Fee Related JP3124217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07318823A JP3124217B2 (en) 1995-12-07 1995-12-07 Flow controller for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07318823A JP3124217B2 (en) 1995-12-07 1995-12-07 Flow controller for molten metal

Publications (2)

Publication Number Publication Date
JPH09155515A JPH09155515A (en) 1997-06-17
JP3124217B2 true JP3124217B2 (en) 2001-01-15

Family

ID=18103359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07318823A Expired - Fee Related JP3124217B2 (en) 1995-12-07 1995-12-07 Flow controller for molten metal

Country Status (1)

Country Link
JP (1) JP3124217B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162550B (en) * 2011-12-09 2016-01-20 北京有色金属研究总院 A kind for the treatment of apparatus and method of casting use metal bath
CN110076305B (en) * 2019-05-29 2021-02-26 东北大学 Electromagnetic semi-continuous casting method for non-ferrous metal and alloy thereof

Also Published As

Publication number Publication date
JPH09155515A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
WO1995024285A1 (en) Continuous casting method and apparatus
JPH10305353A (en) Continuous molding of steel
JP3124217B2 (en) Flow controller for molten metal
JP3700396B2 (en) Steel continuous casting equipment
JP3510101B2 (en) Flow controller for molten metal
JPH07100223B2 (en) Electromagnetic coil device for continuous casting mold
JP3273107B2 (en) Flow controller for molten metal
JP3089176B2 (en) Flow controller for molten metal
JP3006991B2 (en) Continuous casting equipment
JP3293746B2 (en) Flow controller for molten metal
JP3533042B2 (en) Flow controller for molten metal
JP3041182B2 (en) Flow controller for molten metal
JP3124214B2 (en) Flow controller for molten metal
JPH105949A (en) Molten metal flow control device
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
JPH11123511A (en) Electromagnetic stirring method and electromagnetic strring device
JP2626861B2 (en) Flow control device for molten steel in continuous casting mold
JPH07246445A (en) Device for controlling flow of molten metal
JPH105948A (en) Molten metal flow control device
JP3273105B2 (en) Flow controller for molten metal
JP3533047B2 (en) Flow controller for molten metal
JP3145021B2 (en) Flow controller for molten metal
JP3520158B2 (en) Continuous casting device with endless rotating body
JPH11170005A (en) Continuos casting equipment by endless rotary body
JP3545540B2 (en) Flow controller for molten metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001003

LAPS Cancellation because of no payment of annual fees