JPH08243587A - Method for circulating nitrified solution and carrier - Google Patents

Method for circulating nitrified solution and carrier

Info

Publication number
JPH08243587A
JPH08243587A JP7047271A JP4727195A JPH08243587A JP H08243587 A JPH08243587 A JP H08243587A JP 7047271 A JP7047271 A JP 7047271A JP 4727195 A JP4727195 A JP 4727195A JP H08243587 A JPH08243587 A JP H08243587A
Authority
JP
Japan
Prior art keywords
carrier
tank
nitrification
circulating
hopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7047271A
Other languages
Japanese (ja)
Other versions
JP3046741B2 (en
Inventor
Kiwamu Matsubara
極 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP7047271A priority Critical patent/JP3046741B2/en
Publication of JPH08243587A publication Critical patent/JPH08243587A/en
Application granted granted Critical
Publication of JP3046741B2 publication Critical patent/JP3046741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To provide a method for circulating nitrified soln. and carrier by which a power for circulating the nitrified soln. is reduced, DO is not brought into a denitrification tank, and the carrier concn. in the denitrification tank and nitrification tank is maintained constant at all times. CONSTITUTION: Baffle walls 5 and 6 are formed respectively close to the outlet end of a nitrification tank 2 and close to the inlet end of a settling tank 3. A hopper 8 is furnished on the bottom of the nitrification tank 2 between the baffle wall 5 and a partition wall 7 to settle a polymer gel carrier therein. The carrier settled in the hopper 8 is sucked by an air-lift pipe 9 and returned to the inlet end of a denitrification tank 1. Meanwhile, a part of a nitrified soln. is sucked by a suction pipe 12 formed between the baffle wall 6 of the settling tank 3 and the partition wall 7 and returned to the inlet end of the denitrification tank 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水やゴミ浸出水など
の窒素含有廃水を高分子ゲル担体を添加した硝化槽及び
脱窒槽において硝化液循環法によって処理する場合に用
いられる硝化液及び担体の循環方法に関するものであ
る。
FIELD OF THE INVENTION The present invention relates to a nitrification solution and a carrier used when treating a nitrogen-containing wastewater such as sewage or leachate of wastes by a nitrification solution circulation method in a nitrification tank and a denitrification tank to which a polymer gel carrier is added. It is about the circulation method of.

【0002】[0002]

【従来の技術】窒素含有廃水を担体を添加した脱窒槽及
び硝化槽において硝化液循環法によって処理するために
は、従来から図7に示すような硝化液及び担体の循環方
法が用いられている。この方法は、硝化槽2の流出端近
傍にエアリフト管4を設けておき、高分子ゲル担体を含
んだ硝化液をエアリフト管4を通じて脱窒槽1の流入端
へ循環させる方法である。これにより窒素含有廃水中の
窒素の硝化・脱窒を行わせるとともに、これらの反応を
担体に付着させた微生物により促進することができる。
2. Description of the Related Art In order to treat nitrogen-containing wastewater by a nitrification solution circulation method in a denitrification tank and a nitrification tank to which a carrier is added, conventionally, a nitrification solution and carrier circulation method as shown in FIG. 7 has been used. . In this method, an air lift pipe 4 is provided near the outflow end of the nitrification tank 2, and a nitrification solution containing a polymer gel carrier is circulated to the inflow end of the denitrification tank 1 through the air lift pipe 4. This makes it possible to perform nitrification / denitrification of nitrogen in the nitrogen-containing wastewater, and to accelerate these reactions by the microorganisms attached to the carrier.

【0003】ところがこの従来方法は、担体と硝化液と
を一つの系で、しかも槽内の担体濃度とほぼ同一の担体
濃度で循環させる方法であるから、循環量が少ないと硝
化槽の流出端付近に担体が溜まると同時に、脱窒槽及び
硝化槽内の担体濃度が除々に低下してしまう欠点があっ
た。また、担体濃度を一定に維持するために循環量を増
加させると循環のための動力が嵩むばかりか、エアリフ
ト時の空気溶け込みによってDO(溶存酸素濃度)が増
加し、脱窒槽1の脱窒性能が低下する欠点があった。更
にこのときに担体循環に制限されて、硝化液循環量の制
御が困難となるという問題もあった。
However, this conventional method is a method in which the carrier and the nitrification solution are circulated in a single system and at a carrier concentration substantially the same as the carrier concentration in the tank, so if the circulation amount is small, the outflow end of the nitrification tank At the same time as the carrier accumulates in the vicinity, the carrier concentration in the denitrification tank and the nitrification tank gradually decreases. Moreover, if the circulation amount is increased to maintain the carrier concentration constant, not only the power for circulation increases, but also the DO (dissolved oxygen concentration) increases due to the dissolution of air during the air lift, and the denitrification performance of the denitrification tank 1 is increased. There was a drawback that it decreased. Further, at this time, there is a problem that it is difficult to control the circulation amount of the nitrification liquid because the carrier circulation is limited.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、硝化液循環のための動力を削減す
ることができ、脱窒槽の脱窒性能を低下させることがな
く、担体が硝化槽の流出端付近に溜まることをなくして
脱窒槽及び硝化槽内の担体濃度を常に均一に維持するこ
とができるようにした硝化液及び担体の循環方法を提供
するためになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and can reduce the power for circulating the nitrifying solution without deteriorating the denitrification performance of the denitrification tank. What was made to provide a method for circulating a nitrification solution and a carrier, which makes it possible to always maintain a uniform carrier concentration in the denitrification tank and the nitrification tank without accumulating the carrier near the outflow end of the nitrification tank. Is.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、硝化槽の流出端近傍とその後段
の沈殿槽の流入端近傍にそれぞれ阻流壁を設け、硝化槽
の阻流壁と隔壁との間の底部に設けたホッパーの内部に
高分子ゲル担体を沈降させ、ホッパー内に沈降した高分
子ゲル担体をエアリフト管により吸引して脱窒槽の流入
端へ返送するとともに、沈殿槽の阻流壁と隔壁との間に
設けた硝化液吸引管により、硝化槽から沈殿槽へ流入し
た硝化液の一部を吸引して脱窒槽の流入端へ返送するこ
とを特徴とするものである。
DISCLOSURE OF THE INVENTION The present invention, which has been made to solve the above-mentioned problems, provides a blocking wall in the vicinity of the outflow end of a nitrification tank and in the vicinity of the inflow end of a subsequent settling tank. While the polymer gel carrier is settled inside the hopper provided at the bottom between the baffle wall and the partition wall, the polymer gel carrier settled in the hopper is sucked by the air lift pipe and returned to the inflow end of the denitrification tank. The nitrification solution suction pipe provided between the baffle wall and the partition wall of the precipitation tank sucks a part of the nitrification solution flowing from the nitrification tank into the precipitation tank and returns it to the inflow end of the denitrification tank. To do.

【0006】[0006]

【作用】本発明によれば、硝化液と担体とを独立の循環
手段により循環させるようにしたので、従来のように担
体循環のために過剰量の硝化液を循環させる必要がなく
なり、硝化液循環のための動力を削減することができ
る。またホッパーの内部に沈降させて濃縮した担体を循
環させるため、担体が硝化槽の流出端付近に溜まること
をなくして脱窒槽及び硝化槽内の担体濃度を常に均一に
維持することができる。しかも高濃度の担体を循環させ
るためにエアリフト時の溶け込みDOの脱窒槽への持込
み量を減少させ、脱窒槽の脱窒性能の低下を防止するこ
とができる。
According to the present invention, since the nitrification solution and the carrier are circulated by independent circulation means, it is not necessary to circulate an excessive amount of nitrification solution for carrier circulation as in the conventional case, and the nitrification solution is circulated. Power for circulation can be reduced. Further, since the carrier that has been settled and concentrated is circulated inside the hopper, the carrier is not accumulated near the outflow end of the nitrification tank, and the carrier concentration in the denitrification tank and the nitrification tank can be always kept uniform. Moreover, since the high-concentration carrier is circulated, it is possible to reduce the carry-in amount of the melted DO into the denitrification tank at the time of the air lift and prevent the denitrification performance of the denitrification tank from being deteriorated.

【0007】[0007]

【実施例】以下に本発明を図示の実施例によって更に詳
細に説明する。図1は本発明の実施例のフローシートで
あり、1は脱窒槽、2は硝化槽、3はその後段の沈殿槽
である。脱窒槽1と硝化槽2の内部の処理液中には、微
生物を付着させた高分子ゲル担体が添加されている。硝
化槽2の流出端近傍と沈殿槽3の流入端近傍には、それ
ぞれ阻流壁5、6が設けられている。そして図2、図3
に示されるように、硝化槽2の阻流壁5と隔壁7との間
の底部に、複数個のホッパー8が設けられている。
The present invention will be described below in more detail with reference to the illustrated embodiments. FIG. 1 is a flow sheet of an embodiment of the present invention, in which 1 is a denitrification tank, 2 is a nitrification tank, and 3 is a subsequent settling tank. A polymer gel carrier to which microorganisms are attached is added to the treatment liquid inside the denitrification tank 1 and the nitrification tank 2. Barrier walls 5 and 6 are provided near the outflow end of the nitrification tank 2 and near the inflow end of the precipitation tank 3, respectively. 2 and 3
As shown in, a plurality of hoppers 8 are provided at the bottom of the nitrification tank 2 between the baffle wall 5 and the partition wall 7.

【0008】各ホッパー8の直上には、エアリフト管9
が設けられている。エアリフト管9の下端に設けられた
散気手段10からエアリフト管9の内部に空気が供給さ
れ、その浮力によりホッパー8内の高分子ゲル担体を吸
引して担体流路11を通じて脱窒槽1の流入端へ返送す
る。また、沈殿槽3の阻流壁6と隔壁7との間の水面付
近には硝化液吸引管12が設けられており、硝化槽2から
沈殿槽3へ流入した硝化液の一部を吸引して脱窒槽1の
流入端へ返送する。なお、硝化液の循環量はインバータ
制御機構付きのポンプ13により制御することが好まし
い。
Immediately above each hopper 8 is an air lift pipe 9
Is provided. Air is supplied to the inside of the air lift pipe 9 from the air diffuser 10 provided at the lower end of the air lift pipe 9, and the buoyant force sucks the polymer gel carrier in the hopper 8 to flow into the denitrification tank 1 through the carrier channel 11. Send it back to the end. Further, a nitrification solution suction pipe 12 is provided near the water surface between the baffle wall 6 and the partition wall 7 of the settling tank 3 and sucks a part of the nitrification solution flowing from the nitrification tank 2 into the settling tank 3. And returns it to the inflow end of the denitrification tank 1. The circulation amount of nitrification liquid is preferably controlled by a pump 13 having an inverter control mechanism.

【0009】次に本発明の工程を順次説明する。まず窒
素含有廃水は、沈殿槽3からの返送汚泥、硝化槽2から
の硝化液及び高分子ゲル担体とともに脱窒槽1の流入端
に供給される。ここでは、硝化液中に含まれる亜硝酸性
窒素(NO2-N) と硝酸性窒素(NO3-N) とが、窒素含有廃水
中の有機物(BOD) を水素供与体として窒素ガスに変換さ
れ、脱窒される。この反応は活性汚泥中の脱窒菌によっ
ても行われるが、高分子ゲル担体の表面または内部に高
密度に生息する脱窒菌により、速やかに行われる。
Next, the steps of the present invention will be sequentially described. First, the nitrogen-containing wastewater is supplied to the inflow end of the denitrification tank 1 together with the returned sludge from the settling tank 3, the nitrification liquid from the nitrification tank 2 and the polymer gel carrier. Here, nitrite nitrogen (NO 2 -N) and nitrate nitrogen (NO 3 -N) contained in the nitrification solution convert organic matter (BOD) in nitrogen-containing wastewater into nitrogen gas as a hydrogen donor. And denitrified. This reaction is also carried out by the denitrifying bacteria in the activated sludge, but is rapidly carried out by the denitrifying bacteria which inhabit the surface or the inside of the polymer gel carrier at a high density.

【0010】脱窒槽1を出た混合液は高分子ゲル担体と
ともに硝化槽2に入る。硝化槽2では脱窒槽1で利用さ
れた残余の有機物(BOD) が酸化分解されるとともに、ア
ンモニア性窒素(NH4-N) と有機性窒素とが亜硝酸性窒素
(NO2-N) や硝酸性窒素(NO3-N) に酸化される。ここでも
活性汚泥中の亜硝酸菌または硝酸菌でも反応は進むが、
高分子ゲル担体の表面または内部に高密度に生息する亜
硝菌と硝酸菌により、反応が促進される。
The mixed liquid leaving the denitrification tank 1 enters the nitrification tank 2 together with the polymer gel carrier. In the nitrification tank 2, the residual organic matter (BOD) used in the denitrification tank 1 is oxidatively decomposed, and ammonia nitrogen (NH 4 -N) and organic nitrogen are converted into nitrite nitrogen.
It is oxidized to (NO 2 -N) and nitrate nitrogen (NO 3 -N). Again, the reaction proceeds with nitrite bacteria or nitric acid bacteria in the activated sludge,
The reaction is promoted by the Nitrous bacterium and the nitric acid bacterium which inhabit the surface or the inside of the polymer gel carrier with high density.

【0011】硝化槽2の流出端に達した混合液は、硝化
槽2の阻流壁5を通過する。そして活性汚泥と水とは硝
化槽2と沈殿槽3との隔壁7の上部の越流堰に向かって
上昇していくが、高分子ゲル担体は沈降してその底部に
設けられたホッパー8の内部に溜まる。ホッパー8は逆
四角錐状あるいは逆円錐状のもので、高分子ゲル担体の
安息角以上の傾斜を有するものとしてブリッジ形成を防
止しておくことがことが好ましい。図4はホッパー8の
傾斜角と返送される高分子ゲル担体の濃度との関係を示
したグラフである。またホッパー8の内表面を銅板で被
覆して生物膜の発生を防止しておくことが好ましい。
The mixed liquid reaching the outflow end of the nitrification tank 2 passes through the baffle wall 5 of the nitrification tank 2. Then, the activated sludge and water rise toward the overflow weir at the upper part of the partition 7 between the nitrification tank 2 and the precipitation tank 3, but the polymer gel carrier settles down and the hopper 8 of the hopper 8 provided at the bottom thereof. Collect inside. The hopper 8 is in the shape of an inverted quadrangular pyramid or an inverted cone, and preferably has a slope greater than the repose angle of the polymer gel carrier to prevent bridge formation. FIG. 4 is a graph showing the relationship between the inclination angle of the hopper 8 and the concentration of the returned polymer gel carrier. Further, it is preferable to coat the inner surface of the hopper 8 with a copper plate to prevent the generation of biofilm.

【0012】阻流壁5と隔壁7との間隔は、混合液の上
昇流速が5〜80cm/minであり、かつ各ホッパー8が略正
方形または正円となるように選ぶ。例えば、混合液量が
10m3/min、槽幅が10mの場合にはホッパー8を5個とし
て間隔を2mとしたり、ホッパー8を3個として間隔を
3.3 mとすればよい。なお、混合液の上昇流速が5cm/m
in未満であると活性汚泥が沈降し易くなり、80cm/minを
越えると高分子ゲル担体が浮上するおそれがあるので好
ましくない。
The distance between the baffle wall 5 and the partition wall 7 is selected so that the rising velocity of the mixed solution is 5 to 80 cm / min and each hopper 8 is a substantially square or a perfect circle. For example,
When the tank width is 10 m 3 / min and the tank width is 10 m, the distance is 2 m with 5 hoppers 8 or the distance is 3 with 3 hoppers 8.
It should be 3.3 m. The rising velocity of the mixed solution is 5 cm / m.
If it is less than in, the activated sludge tends to settle, and if it exceeds 80 cm / min, the polymer gel carrier may float, which is not preferable.

【0013】ホッパー8の内部に溜まった高分子ゲル担
体は、エアリフト管9の下端に設けられた散気手段10か
ら吹き出す空気の浮力によってエアリフト管9を通って
硝化槽2の水面よりも高く持ち上げられ、担体流路11を
通じて脱窒槽1の流入端へ返送される。また、硝化槽2
から沈殿槽3へ入った硝化液はその一部が沈殿槽3の阻
流壁6と隔壁7との間に設けた硝化液吸引管12により吸
引され、脱窒槽1の流入端へ返送される。
The polymer gel carrier accumulated in the hopper 8 is lifted above the water surface of the nitrification tank 2 through the air lift tube 9 by the buoyancy of air blown out from the air diffusing means 10 provided at the lower end of the air lift tube 9. And is returned to the inflow end of the denitrification tank 1 through the carrier flow path 11. Also, nitrification tank 2
A part of the nitrification solution that has entered the precipitation tank 3 from the above is sucked by a nitrification solution suction pipe 12 provided between the baffle wall 6 and the partition wall 7 of the precipitation tank 3, and is returned to the inflow end of the denitrification tank 1. .

【0014】本発明においては、高分子ゲル担体を含ん
だ担体含有液の循環量の制御は、散気手段10からの空気
量を調節することによって行う。図5に示すように、空
気量の増加に伴って担体含有液の吐出量は増加するが、
ある時点からは空気量を増加しても吐出量は増加しなく
なる。また担体濃度も空気量の少ない段階では反応槽
(脱窒槽1と硝化槽2)の担体濃度よりも低いが、空気
量の増加とともに担体濃度は増加し、反応槽の担体濃度
よりも2〜3倍に濃縮された状態での循環が可能とな
る。しかしある濃度を境に吐出量の増加とは逆に担体濃
度は減少するが、これはホッパー8における担体濃縮速
度よりも吐出速度が上回ってくるためである。
In the present invention, the circulation amount of the carrier-containing liquid containing the polymer gel carrier is controlled by adjusting the amount of air from the air diffusing means 10. As shown in FIG. 5, the discharge amount of the carrier-containing liquid increases as the air amount increases,
From a certain point in time, even if the air amount is increased, the discharge amount does not increase. Also, the carrier concentration is lower than the carrier concentration in the reaction tank (denitrification tank 1 and nitrification tank 2) in the stage where the amount of air is small, but the carrier concentration increases as the amount of air increases, and is 2 to 3 times higher than the carrier concentration in the reaction tank. It is possible to circulate in a double concentrated state. However, the carrier concentration decreases contrary to the increase in the discharge amount at a certain concentration, which is because the discharge speed becomes higher than the carrier concentration speed in the hopper 8.

【0015】図6は図5の結果を担体移送量に換算した
ものと、担体損耗率について空気量との関係を示したグ
ラフである。この例の場合、担体移送量は空気量の増加
とともに増加するが、空気吹き込み率が3m3/ m3・min
を越えるあたりから空気量を増加させても担体移送量は
増加しなくなる。また、このときの担体損耗率は、空気
吹き込み率が3m3/ m3・min を越えると急激に増加する
ようになるが、これは空気量の増加による気泡のホール
ドアップ率が上昇しない反面、空気量増加によるエネル
ギがエアリフト管9内の乱流形成に働いて担体管の接触
が高まり、担体損耗率を高めるためである。従ってエア
リフト管9の空気吹き込み率には適正値が存在し、この
例の場合には1.5 〜3.0m3/ m3 ・min であるが、この値
は管径、管長等によって変化する。
FIG. 6 is a graph showing the relationship between the carrier transfer amount of the results of FIG. 5 and the carrier wear rate and the air amount. In the case of this example, the carrier transfer amount increases with the increase of the air amount, but the air blowing rate is 3 m 3 / m 3 · min.
Even if the amount of air is increased from around the point where the amount exceeds, the amount of carrier transfer does not increase. Further, the carrier wear rate at this time rapidly increases when the air blowing rate exceeds 3 m 3 / m 3 · min, but this is due to the fact that the holdup rate of bubbles does not increase due to the increase of the air amount, This is because the energy due to the increase in the amount of air acts on the formation of a turbulent flow in the air lift pipe 9 to increase the contact of the carrier pipes and to increase the carrier wear rate. Therefore there is a proper value in the air blowing rate of the air-lift pipe 9, but in the case of this example is 1.5 ~3.0m 3 / m 3 · min , this value will vary the tube diameter, the tube length and the like.

【0016】本発明においても、硝化液の循環等につい
ては高分子ゲル担体を含まない通常の硝化液循環と同様
に制御するが、このときの硝化液循環率は次式によって
計算する。 R=〔(1−α)Qg+αβQg+Qn〕/Qs
In the present invention, the circulation of the nitrification solution is controlled in the same manner as the normal circulation of the nitrification solution without the polymer gel carrier, and the circulation rate of the nitrification solution at this time is calculated by the following equation. R = [(1-α) Qg + αβQg + Qn] / Qs

【0017】ここでRは硝化液循環率(%)、Qsは下
水処理量(m3/Hr)、Qgは担体含有液量(m3/Hr)、Qn
は混合液(硝化液)循環量(m3/Hr)、αは担体体積基準
濃度(−)、βは担体空隙率(−)である。
Here, R is the nitrification liquid circulation rate (%), Qs is the sewage treatment amount (m 3 / Hr), Qg is the carrier-containing liquid amount (m 3 / Hr), and Qn.
Is the circulating amount of mixed solution (nitrification liquid) (m 3 / Hr), α is the carrier volume standard concentration (−), and β is the carrier porosity (−).

【0018】以上のように、エアリフト管9の空気吹き
込み率を適正に選べば、反応槽(脱窒槽1と硝化槽2)
の高分子ゲル濃度の2〜3倍の濃度の担体含有液で循環
されることとなり、反応槽内の担体濃度を一定に保つに
必要な担体含有液の循環率は、硝化液(混合液)循環率
100 %を例にとると67〜100 %で足りることとなる。こ
の担体含有液内には担体空隙率分を無視すれば48〜80%
の混合液が存在し、設定硝化液循環率に対する差分52〜
20%だけをポンプ13により循環すればよい。なお、沈殿
槽3へ入った混合液は固液分離され、上澄水は処理液と
して放流され、汚泥の一部は余剰汚泥として引き抜かれ
るが、残部は返送汚泥として脱窒槽1へ返送される。次
に実施例における具体的な数値を表1に示す。
As described above, the reaction tank (denitrification tank 1 and nitrification tank 2) can be obtained by properly selecting the air blowing rate of the air lift pipe 9.
The circulation rate of the carrier-containing liquid required to keep the carrier concentration in the reaction tank constant is 2 to 3 times as high as the polymer gel concentration of the nitrification liquid (mixed liquid). Circulation rate
Taking 100% as an example, 67-100% is sufficient. If the carrier porosity is neglected in this carrier-containing liquid, 48-80%
There is a mixed solution of, and the difference with respect to the set nitrification solution circulation rate is 52 ~
Only 20% needs to be circulated by the pump 13. The mixed liquid that has entered the settling tank 3 is subjected to solid-liquid separation, the supernatant water is discharged as a treatment liquid, and a part of the sludge is withdrawn as excess sludge, but the rest is returned to the denitrification tank 1 as return sludge. Next, Table 1 shows specific numerical values in Examples.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】上記の実施例に示したように、本発明は
担体含有液(担体+混合液)の循環率と混合液の循環率
の合計100 %で従来法と同等の窒素(T-N) の処理水質を
得ることができる。従って循環率を350 %としていた従
来法に比較して、循環に要する動力を30%とすることが
できる。また本発明によれば、高分子ゲル担体の損耗率
を従来の1/4.5 程度にまで減少させることができる。更
に本発明によれば脱窒槽におけるDOをほぼ0にすること
ができるので、安定した脱窒が可能になる等の多くの優
れた効果を得ることができる。
As shown in the above embodiments, according to the present invention, the total circulation rate of the carrier-containing liquid (carrier + mixed liquid) and the circulation ratio of the mixed liquid are 100%, and the nitrogen (TN) equivalent to that in the conventional method is obtained. The treated water quality can be obtained. Therefore, compared with the conventional method in which the circulation rate is 350%, the power required for circulation can be 30%. Further, according to the present invention, the wear rate of the polymer gel carrier can be reduced to about 1 / 4.5 of that of the conventional one. Further, according to the present invention, since the DO in the denitrification tank can be made almost zero, many excellent effects such as stable denitrification can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフローシートである。FIG. 1 is a flow sheet of the present invention.

【図2】要部の平面図である。FIG. 2 is a plan view of a main part.

【図3】要部の垂直断面図である。FIG. 3 is a vertical sectional view of a main part.

【図4】ホッパーの傾斜角度と担体含有液中の担体濃度
との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the inclination angle of the hopper and the carrier concentration in the carrier-containing liquid.

【図5】エアリフト管空気吹込率と担体濃度及び吐出量
との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the air blowing rate of the air lift tube and the carrier concentration and discharge amount.

【図6】エアリフト管空気吹込率と担体移送量及び担体
損耗率との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between an air blowing rate of an air lift pipe, a carrier transfer amount, and a carrier wear rate.

【図7】従来法(担体添加硝化液循環法)のフローシー
トである。
FIG. 7 is a flow sheet of a conventional method (carrier addition nitrification solution circulation method).

【符号の説明】[Explanation of symbols]

1 脱窒槽、2 硝化槽、3 沈殿槽、4 従来のエア
リフト管、5 硝化槽側の阻流壁、6 沈殿槽側の阻流
壁、7 隔壁、8 ホッパー、9 エアリフト管、10
散気装置、11 担体流路、12 硝化液吸引管、13 イン
バータ制御機構付きのポンプ
1 denitrification tank, 2 nitrification tank, 3 precipitation tank, 4 conventional air lift pipe, 5 nitrification tank side baffle wall, 6 precipitation tank side baffle wall, 7 partition wall, 8 hopper, 9 air lift pipe, 10
Air diffuser, 11 carrier channels, 12 nitrification liquid suction tube, 13 pump with inverter control mechanism

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 硝化槽の流出端近傍とその後段の沈殿槽
の流入端近傍にそれぞれ阻流壁を設け、硝化槽の阻流壁
と隔壁との間の底部に設けたホッパーの内部に高分子ゲ
ル担体を沈降させ、ホッパー内に沈降した高分子ゲル担
体をエアリフト管により吸引して脱窒槽の流入端へ返送
するとともに、沈殿槽の阻流壁と隔壁との間に設けた硝
化液吸引管により、硝化槽から沈殿槽へ流入した硝化液
の一部を吸引して脱窒槽の流入端へ返送することを特徴
とする硝化液及び担体の循環方法。
1. A baffle wall is provided in the vicinity of the outflow end of the nitrification tank and in the vicinity of the inflow end of the subsequent settling tank respectively, and a high level is provided inside a hopper provided at the bottom between the baffle wall and the partition wall of the nitrification tank. The molecular gel carrier is allowed to settle, and the polymer gel carrier that has settled in the hopper is sucked by an air lift pipe and returned to the inflow end of the denitrification tank. A method for circulating a nitrification liquid and a carrier, wherein a part of the nitrification liquid flowing from the nitrification tank to the precipitation tank is sucked by a pipe and returned to the inflow end of the denitrification tank.
【請求項2】 高分子ゲル担体の安息角以上の傾斜を有
するホッパーを使用する請求項1に記載の硝化液及び担
体の循環方法。
2. The method for circulating a nitrification solution and a carrier according to claim 1, wherein a hopper having an inclination equal to or more than the repose angle of the polymer gel carrier is used.
【請求項3】 内表面が銅板で被覆されたホッパーを使
用する請求項1又は2に記載の硝化液及び担体の循環方
法。
3. The method for circulating a nitrification solution and a carrier according to claim 1, wherein a hopper having an inner surface coated with a copper plate is used.
【請求項4】 エアリフト管への空気吹き込み量により
高分子ゲル担体の循環量を制御する請求項1に記載の硝
化液及び担体の循環方法。
4. The method for circulating the nitrification liquid and the carrier according to claim 1, wherein the circulation amount of the polymer gel carrier is controlled by the amount of air blown into the air lift pipe.
【請求項5】 硝化液吸引管による硝化液の循環量をイ
ンバータ制御機構付きのポンプにより制御する請求項1
に記載の硝化液及び担体の循環方法。
5. A pump having an inverter control mechanism controls the amount of circulation of the nitrification liquid through the nitrification liquid suction pipe.
The method for circulating the nitrification liquid and the carrier according to item 1.
JP7047271A 1995-03-07 1995-03-07 Nitrification liquid and carrier circulation method Expired - Lifetime JP3046741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7047271A JP3046741B2 (en) 1995-03-07 1995-03-07 Nitrification liquid and carrier circulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7047271A JP3046741B2 (en) 1995-03-07 1995-03-07 Nitrification liquid and carrier circulation method

Publications (2)

Publication Number Publication Date
JPH08243587A true JPH08243587A (en) 1996-09-24
JP3046741B2 JP3046741B2 (en) 2000-05-29

Family

ID=12770638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7047271A Expired - Lifetime JP3046741B2 (en) 1995-03-07 1995-03-07 Nitrification liquid and carrier circulation method

Country Status (1)

Country Link
JP (1) JP3046741B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072512A1 (en) * 2002-02-28 2003-09-04 Samsung Engineering Co., Ltd. Wastewater treatment apparatus and method for removing nitrogen and phosphorus
KR100850183B1 (en) * 2007-07-05 2008-08-04 한국수자원공사 Low energy and compact type high efficiency water treatment facility using recycle of high density sludge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072512A1 (en) * 2002-02-28 2003-09-04 Samsung Engineering Co., Ltd. Wastewater treatment apparatus and method for removing nitrogen and phosphorus
CN1305782C (en) * 2002-02-28 2007-03-21 三星工程株式会社 Wastewater treatment apparatus and method for removing nitrogen and phosphorus
US7195712B2 (en) 2002-02-28 2007-03-27 Samsung Electronics Co., Ltd. Wastewater treatment apparatus and method for removing nitrogen and phosphorus
KR100850183B1 (en) * 2007-07-05 2008-08-04 한국수자원공사 Low energy and compact type high efficiency water treatment facility using recycle of high density sludge

Also Published As

Publication number Publication date
JP3046741B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JP5698025B2 (en) Waste water treatment apparatus and waste water treatment method
JP2020006341A (en) Sewage treatment method and apparatus
US6767462B2 (en) Apparatus and method for purifying wastewater using back overflowed sludge
US20090071900A1 (en) Submerged Fixed Film Anoxic Bioreactor
JP3451849B2 (en) Wastewater treatment method and apparatus
US6773596B2 (en) Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
JPH08243587A (en) Method for circulating nitrified solution and carrier
JPH0233438B2 (en)
JPH1085788A (en) Nitrification and denitrification method
JP3150530B2 (en) Biological nitrogen removal equipment
JPH0780494A (en) Controlling method for operation of activated sludge circulation modification method
JP2002177986A (en) Biological denitrification equipment
JP3331887B2 (en) Carrier expansion phase wastewater treatment equipment
JPH11290882A (en) Nitrogen removing apparatus
JPH1094796A (en) Treatment of waste water and device therefor
JP2759308B2 (en) Method and apparatus for treating organic wastewater
KR20000021219A (en) Biological layer on carrier with stationary phase for separating solid-liquid and for eliminating nitrogen and phosphorous and a method for disposing sewage and waste water
JP5883697B2 (en) Waste water treatment apparatus and waste water treatment method
JPH10296251A (en) Method for regulating sludge in sewage treatment tank
KR100433096B1 (en) Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
JP3676392B2 (en) Dephosphorization method in oxidation ditch
JP2000279992A (en) Waste water treatment and apparatus therefor
JP2000279993A (en) Waste water treatment and apparatus therefor
JP2980534B2 (en) Carrier circulation method
KR200220344Y1 (en) Air separation / removal in feed water and feed water mixing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000303