JP3676392B2 - Dephosphorization method in oxidation ditch - Google Patents
Dephosphorization method in oxidation ditch Download PDFInfo
- Publication number
- JP3676392B2 JP3676392B2 JP11212894A JP11212894A JP3676392B2 JP 3676392 B2 JP3676392 B2 JP 3676392B2 JP 11212894 A JP11212894 A JP 11212894A JP 11212894 A JP11212894 A JP 11212894A JP 3676392 B2 JP3676392 B2 JP 3676392B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- tank
- aeration
- hours
- oxidation ditch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
【0001】
【産業上の利用分野】
本発明は小規模下水等の有機性排水のオキシデーションディッチ処理における脱リン方法に関する。
【0002】
【従来の技術】
小規模下水処理場においては、流入水量の時間変動が大きく、また下水処理場を管理する技術者が少ないことから、維持管理が容易で、負荷変動に強いオキシデーションディッチ法が近年普及しつつある。また大規模な下水処理場に用いられている標準活性汚泥法に比べ、処理時間や汚泥の滞留時間が長いため、脱窒が進みやすいという特長を持つ。
【0003】
【発明が解決しようとする課題】
しかし富栄養化のもう1つの指標である脱リンに対しては、曝気槽において嫌気好気運転を行う方法などが試みられているが、安定した脱リン性能が得られないという欠点があった。
【0004】
本発明の目的は、オキシデーションディッチにおいて安定した脱リン性能を得るための方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は上記目的を解決するためになしたもので、有機性排水のオキシデーションディッチ処理において、曝気槽の前段に流量調整槽を設け、沈澱槽で沈澱させた汚泥を流量調整槽に返送し、流入下水と混合して汚泥を1〜4時間完全嫌気状態にして脱リンを行った後、曝気槽に流入させて好気状態にすることにより生物学的に脱リンを行い、リンを含有する汚泥を曝気槽または沈澱槽から余剰汚泥として引き抜いて、汚泥濃縮貯留槽に導き、汚泥濃縮貯留槽において、2〜6時間の曝気・6〜12時間の静置・静置により汚泥が沈澱している状態での余剰汚泥の流入を繰り返し行いながら汚泥を濃縮するとともに濃縮汚泥の貯留量を増加させることを特徴とする。
【0006】
【作用】
曝気槽の前段に流量調整槽を設けて、沈澱槽で沈澱させた汚泥を流量調整層に返送し、流入下水と混合して汚泥を1〜4時間完全嫌気状態にして脱リンを行った後、曝気槽に流入させて好気状態にする。これにより、汚水中のリン酸を汚泥微生物の体内に吸収させ、リンを含有する汚泥を曝気槽または沈澱槽から汚泥濃縮貯留槽に引き抜き、2〜6時間の曝気・6〜12の静置・静置により汚泥が沈澱している状態での余剰汚泥の流入を繰り返し行いながら汚泥を濃縮するとともに濃縮汚泥の貯留量を増加させる。これにより、汚泥濃縮時の分離水に汚泥からリンが放出されて流量調整槽に戻るのを防止することができ、安定した脱リン性能を得ることができる。
【0007】
【実施例】
以下、本発明オキシデーションディッチにおける脱リン方法の一実施例を図により説明する。
図1は本発明の処理フローを示したもので、流入下水aは、通常地下深くに設けられたポンプ井1に流入する。ポンプ井1に設けた原水ポンプ2により下水を揚水し、沈砂槽3において下水中の砂分やスクリーン渣を除去した後、流量調整槽4へと流入させる。なお、砂分やスクリーン渣を除去する前処理の方法や位置は、処理の規模や立地条件により適宜選ばれる。
【0008】
流量調整槽4には撹拌機5と流調ポンプ6を設ける。流量調整槽4からは流調ポンプ6により曝気槽7に汚水を送水し、機械式曝気槽8により間欠的に曝気処理を行い、汚泥混合液として曝気槽7からオーバーフローさせ、沈澱槽9へと流入させる。
【0009】
曝気槽7の形状は図1に示したような長円形に限定されず、また曝気機8も図1に示したスクリュー形に限定されることなく、種々のものを用いることができる。
【0010】
沈澱槽9において固液分離された上澄水は、処理水bとして排出し、沈澱した汚泥cは返送汚泥ポンプ10により汚泥マス11を介して調整槽4へと返送dする。また汚泥の一部は汚泥マス11を介して余剰汚泥eとして汚泥濃縮貯留槽12に移送する。余剰汚泥eの引き抜き方法は、このように沈澱汚泥の一部を引き抜く方法以外に、曝気槽4の混合液を槽内に設けた汚泥ポンプ等により直接引き抜いて、汚泥濃縮貯留槽12に導く方法を用いることもできる。
【0011】
次に汚泥濃縮貯留槽12の構造の一例を図2に示す。図2において24は汚泥流入管、21は曝気槽7と同様のスクリュー形曝気機であり、フロート22に固定され、支柱23によって水位変動に追従して上下する構造となっている。曝気方法はこのような機械式に限定されるものではなく、ブロワーと散気管を用いる方法なども適用できるが、曝気を間欠的に行うため、曝気を停止したときに散気口が閉塞し難い構造とする必要がある。
【0012】
また余剰汚泥を静置し、濃縮したとき、大部分の汚泥は沈澱するが、一部の汚泥は気泡が付着して浮上したりスカム化するため、沈澱汚泥と水面の浮上汚泥との間に中間水を生じる。そこで分離水排水管25を、図2のように浮上汚泥の下部から引き抜けるように配置する。これにより中間水は分離水fとして越流マス26へと流出し、流量調整槽4へと返送される。
【0013】
次に本発明の動作・作用を説明する。
本発明の方法では、沈澱槽で沈澱させた汚泥を流量調整槽4に返送して、撹拌機5により流入下水と混合することにより、汚泥を完全嫌気の状態に保つ。このとき、返送汚泥の微生物体内に蓄積されていたポリリンが溶解性のリン酸の形で体外に排出され、水中のリン濃度が一時的に上昇する。生物脱リンのメカニズムにおいては、このような微生物からのリン放出の過程が重要であり、効果的に脱リンを行うために、完全嫌気の状態が1〜4時間となるように調整槽の最低水位における容量を設定する。次にリン放出した汚泥は流調ポンプ6により曝気槽7に送水し、曝気槽8の運転時に好気状態になったときに、水中のリン酸が汚泥微生物の体内に取り込まれ、ポリリンとして蓄積されるが、このときに取り込まれるリンの量は調整槽において放出された量よりも多く、従って流入下水中に存在していたリン酸が、汚泥微生物に取り込まれたことになる。
【0014】
なお、曝気槽は曝気機の運転台数や回転数を制御することにより連続運転を行ってもよいが、間歇曝気を行って硝化・脱窒を促進させる方が、より好ましい。曝気停止時には嫌気状態になるが、このとき調整槽同様、無酸素状態にはなるものの、好気時における硝化反応により硝酸性窒素のように化学結合した酸素が存在し、完全嫌気状態とはならないため、汚泥からのリン放出は生じない。
【0015】
次に沈澱槽または曝気槽から引き抜いた余剰汚泥は、汚泥濃縮貯留槽12に導かれる。余剰汚泥流入後2〜6時間曝気を行って好気状態にする。その後、6〜12時間静置させて汚泥を沈降濃縮させる。静置時間が短すぎると汚泥の濃縮が不十分となるが、逆に長すぎると汚泥の完全嫌気状態となり、汚泥中に吸収されたリンが汚泥微生物の体外に放出されるため、リンが放出されない限界内でできるだけ長時間静置させる必要がある。
【0016】
汚泥が濃縮された状態で余剰汚泥を汚泥流入管24から流入させることにより、分離水fを排出させるが、このとき沈澱している汚泥ができるだけ巻き上がらないように、汚泥濃縮貯留槽の底部から小さい流入速度で流入させる必要がある。このように汚泥濃縮貯留槽では曝気・静置・余剰汚泥流入を繰り返し行うことにより、汚泥中に吸収されたリンが放出するのを防止しながら、徐々に濃縮汚泥の貯留量を増加させていく。
【0017】
小規模下水処理場では、処理場内に脱水設備や焼却設備を設けていない場合が多く、1週間程度貯留した汚泥をバキューム車等により搬出して、別の処理場で脱水等の処理を行う場合が多いが、脱水処理までの時間が24時間以上になると、汚泥がリンが脱離水へと放出される恐れがある。従って汚泥搬出後、できるだけ早期に脱水処理を行うことが望ましく。移動式脱水車がこれに適した方式として利用することができる。また処理場内に脱水設備を有する場合にも、毎日脱水処理を行わない場合には、本発明の方法を用いて生物脱リンを行うと共に、汚泥からのリン放出を防ぎながら汚泥を濃縮貯留しておき、曝気処理を行った後、できるだけ早急に脱水処理を行うことが好ましい。
【0018】
【発明の効果】
本発明によれば、従来安定した脱リン性能を得ることが難しかったオキシデーションディッチ処理において、曝気槽の前段に流量調整槽を設けて、沈澱槽で沈澱させた汚泥を流量調整層に返送し、流入下水と混合して汚泥を1〜4時間完全嫌気状態にして脱リンを行った後、曝気槽に流入させて好気状態にすることにより、汚水中のリン酸を汚泥微生物の体内に吸収させ、リンを含有する汚泥を曝気槽または沈澱槽から汚泥濃縮貯留槽に引き抜き、2〜6時間の曝気・6〜12時間の静置・静置により汚泥が沈澱している状態での余剰汚泥の流入を繰り返し行いながら汚泥を濃縮するとともに濃縮汚泥の貯留量を増加させる。これにより、汚泥濃縮時の分離水に汚泥からリンが放出されて流量調整槽に戻るのを防止することができ、安定した脱リン性能を得られるという効果を有する。
【図面の簡単な説明】
【図1】 本発明オキシデーションディッチにおける脱リン方法の一実施例を示す処理フローである。
【図2】 本発明による汚泥濃縮貯留槽を示す断面図である。
【符号の説明】
a 流入汚泥
b 処理水
c 汚泥
d 余剰汚泥
1 ポンプ井
2 原水ポンプ
3 沈砂槽
4 流量調整槽
5 撹拌機
6 流調ポンプ
7 曝気槽
8 曝気機
9 沈殿槽
10 返送汚泥ポンプ
11 汚泥マス
12 汚泥濃縮貯留槽[0001]
[Industrial application fields]
The present invention relates to a dephosphorization method in oxidation ditch treatment of organic wastewater such as small-scale sewage.
[0002]
[Prior art]
In small-scale sewage treatment plants, the time variation of the influent water volume is large, and since there are few engineers managing the sewage treatment plant, the oxidation ditch method, which is easy to maintain and resists load fluctuations, is becoming popular in recent years. . Compared to the standard activated sludge method used in large-scale sewage treatment plants, the treatment time and sludge retention time are longer, which makes denitrification easier.
[0003]
[Problems to be solved by the invention]
However, for dephosphorization, which is another indicator of eutrophication, methods such as anaerobic aerobic operation in an aeration tank have been tried, but there was a disadvantage that stable dephosphorization performance could not be obtained. .
[0004]
An object of the present invention is to provide a method for obtaining stable dephosphorization performance in an oxidation ditch.
[0005]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned object, and in the oxidation ditch treatment of organic waste water, a flow rate adjusting tank is provided in front of the aeration tank, and sludge precipitated in the settling tank is returned to the flow rate adjusting tank. After mixing with inflowing sewage and making sludge completely anaerobic for 1 to 4 hours, dephosphorization is performed by flowing into an aeration tank and making it aerobic to contain phosphorus The sludge is extracted as excess sludge from the aeration tank or the sedimentation tank and led to the sludge concentration storage tank. In the sludge concentration storage tank, the sludge is precipitated by aeration for 2 to 6 hours, standing for 6 to 12 hours, and standing. increasing the storage amount of concentrated sludge with concentrating sludge while repeating the flow of excess sludge in it are conditions characterized by Rukoto.
[0006]
[Action]
After the flow adjustment tank is provided in the front stage of the aeration tank, the sludge precipitated in the settling tank is returned to the flow adjustment layer and mixed with the inflowing sewage to make the sludge completely anaerobic for 1 to 4 hours and then dephosphorized. Then, let it flow into the aeration tank to make it aerobic. As a result, the phosphoric acid in the sewage is absorbed by the sludge microorganisms, and the sludge containing phosphorus is extracted from the aeration tank or the sedimentation tank into the sludge concentration storage tank, and then aerated for 2 to 6 hours. The sludge is concentrated while repeating the inflow of excess sludge in a state where the sludge is settled by standing, and the storage amount of the concentrated sludge is increased. As a result, it is possible to prevent phosphorus from being released from the sludge into the separated water at the time of sludge concentration and return to the flow rate adjustment tank, and a stable dephosphorization performance can be obtained.
[0007]
【Example】
Hereinafter, an embodiment of the dephosphorization method in the oxidation ditch of the present invention will be described with reference to the drawings.
FIG. 1 shows the processing flow of the present invention. Inflow sewage a flows into a pump well 1 that is usually provided deep underground. Sewage is pumped up by the
[0008]
The flow rate adjusting tank 4 is provided with a stirrer 5 and a flow control pump 6. From the flow rate adjusting tank 4, the sewage is fed to the aeration tank 7 by the flow control pump 6, intermittently aerated by the
[0009]
The shape of the aeration tank 7 is not limited to an oval shape as shown in FIG. 1, and the
[0010]
The supernatant water separated from the solid and liquid in the
[0011]
Next, an example of the structure of the sludge
[0012]
When excess sludge is allowed to stand and concentrate, most of the sludge settles, but some of the sludge floats and scums due to bubbles adhering to it. This produces intermediate water. Therefore, the separated
[0013]
Next, the operation and action of the present invention will be described.
In the method of the present invention, the sludge precipitated in the settling tank is returned to the flow rate adjusting tank 4 and mixed with the inflow sewage by the stirrer 5 to keep the sludge in a completely anaerobic state. At this time, polyphosphorus accumulated in the microorganism body of the returned sludge is discharged out of the body in the form of soluble phosphoric acid, and the phosphorus concentration in the water temporarily rises. In the mechanism of biological dephosphorization, the process of releasing phosphorus from such microorganisms is important, and in order to perform dephosphorization effectively, the minimum of the adjustment tank is set so that the complete anaerobic state is 1 to 4 hours. Set the volume at the water level. Next, the phosphorus released sludge is fed to the aeration tank 7 by the flow control pump 6, and when the
[0014]
The aeration tank may be continuously operated by controlling the number of aerators operated and the number of revolutions, but it is more preferable to promote nitrification and denitrification by intermittent aeration. At the time of aeration stop, it becomes anaerobic, but at this time it is oxygen-free as in the adjustment tank, but there is oxygen chemically bound like nitrate nitrogen due to nitrification reaction during aerobic, and it does not become completely anaerobic Therefore, phosphorus release from sludge does not occur.
[0015]
Next, the excess sludge extracted from the sedimentation tank or the aeration tank is guided to the sludge
[0016]
The surplus sludge is allowed to flow from the
[0017]
In small-scale sewage treatment plants, there are many cases where dewatering facilities and incineration facilities are not installed in the treatment plant, and when sludge stored for about one week is carried out by a vacuum vehicle, etc., and processing such as dehydration is performed at another treatment plant However, if the time until the dehydration process is 24 hours or more, there is a risk that the sludge will release phosphorus into the desorbed water. Therefore, it is desirable to perform the dehydration process as soon as possible after the sludge is carried out. A mobile dewatering vehicle can be used as a method suitable for this. In addition, even when dewatering facilities are provided in the treatment plant, if dewatering treatment is not performed every day, biological dephosphorization is performed using the method of the present invention, and sludge is concentrated and stored while preventing phosphorus release from the sludge. In addition, it is preferable to perform the dehydration treatment as soon as possible after the aeration treatment.
[0018]
【The invention's effect】
According to the present invention, in the oxidation ditch process, which has conventionally been difficult to obtain stable dephosphorization performance, a flow rate adjusting tank is provided in front of the aeration tank, and sludge precipitated in the settling tank is returned to the flow rate adjusting layer. After mixing with the inflowing sewage and making the sludge completely anaerobic for 1 to 4 hours and dephosphorizing it, the phosphoric acid in the sewage is put into the body of the sludge microorganisms by flowing into the aeration tank and making it aerobic. Absorb and remove the sludge containing phosphorus from the aeration tank or sedimentation tank into the sludge concentration storage tank , and surplus in the state where the sludge is precipitated by aeration for 2 to 6 hours, standing for 6 to 12 hours and standing Concentrate sludge and increase the amount of concentrated sludge while repeatedly injecting sludge. Thereby, it can prevent that phosphorus is discharge | released from sludge to the separation water at the time of sludge concentration , and it returns to a flow control tank, and has the effect that stable dephosphorization performance can be obtained.
[Brief description of the drawings]
FIG. 1 is a process flow showing one embodiment of a dephosphorization method in the oxidation ditch of the present invention.
FIG. 2 is a sectional view showing a sludge concentration storage tank according to the present invention.
[Explanation of symbols]
a inflow sludge b treated water c sludge d surplus sludge 1 pump well 2
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11212894A JP3676392B2 (en) | 1994-04-26 | 1994-04-26 | Dephosphorization method in oxidation ditch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11212894A JP3676392B2 (en) | 1994-04-26 | 1994-04-26 | Dephosphorization method in oxidation ditch |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07290086A JPH07290086A (en) | 1995-11-07 |
JP3676392B2 true JP3676392B2 (en) | 2005-07-27 |
Family
ID=14578904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11212894A Expired - Fee Related JP3676392B2 (en) | 1994-04-26 | 1994-04-26 | Dephosphorization method in oxidation ditch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3676392B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008036517A (en) * | 2006-08-04 | 2008-02-21 | Kochi Univ | Wastewater treatment apparatus and method |
JP5079285B2 (en) * | 2006-08-31 | 2012-11-21 | 株式会社ハウステック | Wastewater septic tank |
-
1994
- 1994-04-26 JP JP11212894A patent/JP3676392B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07290086A (en) | 1995-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2002301606B2 (en) | Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same | |
EP1966094B1 (en) | Apparatus for treatmenting of sewage using semi-batch and method thereof | |
CN106565017B (en) | A kind of bicirculating denitrogenation dephosphorizing waste water treatment system and its method | |
CN104944689A (en) | Device for treating high ammonia-nitrogen wastewater and method thereof | |
JP3214707B2 (en) | Wastewater treatment method using intermittent discharge type long aeration process | |
CN109502919A (en) | A kind of processing method of domestic sewage in rural areas | |
KR100428047B1 (en) | A Waste Water Purifier Using Overflow Sediment and Method | |
EP2049443B1 (en) | A method and apparatus for simultaneous clarification and endogenous post denitrification | |
JPH0137988B2 (en) | ||
JP5900098B2 (en) | Nitrogen and phosphorus removal apparatus and method | |
JP5743448B2 (en) | Sewage treatment equipment | |
JP3676392B2 (en) | Dephosphorization method in oxidation ditch | |
CN116813082A (en) | Integrated sedimentation built-in double-mixed liquid reflux dephosphorization and denitrification device and treatment method | |
JP3588047B2 (en) | Biological phosphorus removal method in oxidation ditch | |
KR100377947B1 (en) | Aqua-composting BNR Device and Method for Clearing Wastewater Employing the Same | |
KR100540764B1 (en) | Advanced wastewater treatment method using reactor-regulated raw water storage tank | |
KR100340098B1 (en) | An elevated disposal process for the leakage water of reclaimed land | |
CN105417694A (en) | Wastewater back deep bio-denitrification treatment device and treatment method thereof | |
CN219010111U (en) | Pure biological membrane and high-efficient solid-liquid separation sewage treatment system | |
JPH0576894A (en) | Treatment of waste water | |
KR100460286B1 (en) | Sequencing Batch Reactor System changing the function by time and space | |
CN221565943U (en) | Sewage treatment upgrading and reforming system | |
JP3634403B2 (en) | Denitrification and dephosphorization methods in oxidation ditch | |
KR200417756Y1 (en) | An Apparatus for Advanced Wastewater Treatment Using the Intermittent Aeration and Direct Dehydration of Excess Sludge in Oxidation-Ditch | |
JP2023121014A (en) | Water treatment method and water treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040907 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050428 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080513 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080513 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090513 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |