JPH08241721A - Alkaline dry battery - Google Patents

Alkaline dry battery

Info

Publication number
JPH08241721A
JPH08241721A JP4290195A JP4290195A JPH08241721A JP H08241721 A JPH08241721 A JP H08241721A JP 4290195 A JP4290195 A JP 4290195A JP 4290195 A JP4290195 A JP 4290195A JP H08241721 A JPH08241721 A JP H08241721A
Authority
JP
Japan
Prior art keywords
zinc
plate
negative electrode
battery
dry battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4290195A
Other languages
Japanese (ja)
Inventor
Takafumi Fujiwara
隆文 藤原
Koji Yoshizawa
浩司 芳澤
Akira Miura
晃 三浦
Shigeo Kobayashi
茂雄 小林
Jun Nunome
潤 布目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4290195A priority Critical patent/JPH08241721A/en
Publication of JPH08241721A publication Critical patent/JPH08241721A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To improve the discharge characteristic from low load to high load by forming a negative electrode by use of a zinc plate or a zinc plate having a specified hole in an alkaline dry battery. CONSTITUTION: In an alkaline dry battery, an electrode plate group formed by superposing a positive electrode plate 1 on a negative electrode 2 through a separator 2, and spirally winding them so that the positive electrode plate 1 is situated on the most outer circumference is constituted, and this is inserted to a battery case 4. A zinc plate is used as the negative electrode plate 3. The zinc plate has a number of holes, the porosity is set to about 5-70%, preferably, 20-70%, and either one of expand metal zinc plate and punching metal zinc plate is used. As the positive electrode plate 1, a metal oxide such as manganese dioxide is used. Thus, an alkaline storage battery excellent in high load discharge characteristic and having a negative electrode having a large discharge capacity can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は亜鉛を負極とするアルカ
リ乾電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline dry battery having zinc as a negative electrode.

【0002】[0002]

【従来の技術】従来、亜鉛を負極とする乾電池としては
マンガン乾電池、アルカリマンガン電池等が一般的に知
られている。マンガン乾電池の構造は缶状に成型した亜
鉛を負極とし、これにセパレータを介して内側に正極合
剤を詰め込む構造となっている。一方、アルカリマンガ
ン電池の構造はマンガン乾電池と反対で外側に正極合剤
ペレットを配置し、セパレータを介して内側にゲル状粉
末亜鉛を詰めこむ構造となっている。これはいわゆるイ
ンサイドアウト型と呼ばれる構造である。アルカリマン
ガン電池はマンガン乾電池に比べて高負荷連続放電性能
に優れているが、これはマンガン乾電池の電解液が塩化
亜鉛や塩化アンモニウムなどの中性水溶液を用いている
のに対し、アルカリマンガン電池では強アルカリ性の水
酸化カリウム水溶液を用いているのでイオンの伝導性が
向上すること、また負極が粉末亜鉛、アルカリ電解液、
ポリアクリル酸ソーダ等を混合したゲル状負極であるの
で亜鉛粒子間の電解液の拡散が負極全体で均一かつ有利
に起こることによると考えられている。
2. Description of the Related Art Conventionally, manganese dry batteries, alkaline manganese batteries and the like have been generally known as dry batteries having zinc as a negative electrode. The structure of the manganese dry battery has a structure in which can-shaped zinc is used as the negative electrode, and the positive electrode mixture is packed inside this via a separator. On the other hand, the structure of the alkaline manganese battery is opposite to that of the manganese dry battery, in which the positive electrode material mixture pellets are arranged on the outside and the gel-like powder zinc is packed inside via the separator. This is a so-called inside-out type structure. Alkaline manganese batteries are superior to manganese dry batteries in high-load continuous discharge performance.This is because alkaline manganese batteries use neutral aqueous solutions such as zinc chloride and ammonium chloride, while alkaline manganese batteries do not. Since a strong alkaline aqueous potassium hydroxide solution is used, the conductivity of ions is improved, and the negative electrode is powdered zinc, alkaline electrolyte,
Since it is a gelled negative electrode mixed with sodium polyacrylate or the like, it is considered that the diffusion of the electrolytic solution between the zinc particles occurs uniformly and advantageously throughout the negative electrode.

【0003】[0003]

【発明が解決しようとする課題】近年、ヘッドホンステ
レオやCDプレーヤー、液晶小型テレビ等の高負荷放電
を必要とするポータブル機器が普及しているが、これら
の電源として既存の乾電池を用いた場合、高負荷放電に
優れているといわれるアルカリマンガン電池でも放電容
量は満足なものとはいえない。これはアルカリマンガン
電池はマンガン乾電池と比べ前記のような高負荷放電性
能に優れた構造ではあるが、インサイドアウト型と呼ば
れる電池構造であるため、正負極の電極面積に限界があ
り、高負荷放電時に電極に負荷がかかり過ぎ正負極の利
用率が低下するからである。
In recent years, portable devices such as headphone stereos, CD players, and liquid crystal compact televisions that require high load discharge have become widespread. When existing dry batteries are used as the power source for these devices, Even with alkaline manganese batteries, which are said to excel in high load discharge, the discharge capacity is not satisfactory. This is a structure in which the alkaline manganese battery is superior to the above-mentioned high load discharge performance compared to the manganese dry battery, but since it is a battery structure called inside-out type, there is a limit in the electrode area of the positive and negative electrodes, This is because the electrode is sometimes overloaded and the utilization rate of the positive and negative electrodes is reduced.

【0004】また、アルカリマンガン電池のゲル状負極
の体積当たりの亜鉛の含有量は2.03g/cm3で亜
鉛金属単体の体積密度7.13g/cm3に比べてかな
り小さい値であり、体積当たりの亜鉛の占める割合は2
8%で負極充填容量は亜鉛金属単体を用いる場合に比べ
てかなり低いものとなる。しかし、マンガン乾電池の構
成のような金属亜鉛単体を負極に用いることは、負極充
填容量の面では有利であるが、電解液の拡散などの反応
性の面では不利となる。
[0004] The content of zinc per volume of the gelled negative electrode of an alkaline manganese battery is considerably smaller than the volume density 7.13 g / cm 3 of zinc metal alone at 2.03 g / cm 3, the volume Percentage of zinc is 2
At 8%, the negative electrode filling capacity is considerably lower than that in the case of using zinc metal alone. However, it is advantageous to use a metallic zinc simple substance for the negative electrode as in the structure of a manganese dry battery in terms of the negative electrode filling capacity, but it is disadvantageous in terms of reactivity such as diffusion of the electrolytic solution.

【0005】本発明はこのような課題を解決するもの
で、高負荷放電特性に優れ、かつ放電容量の大きい負極
を備えたアルカリ乾電池を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an alkaline dry battery provided with a negative electrode having excellent high load discharge characteristics and a large discharge capacity.

【0006】[0006]

【課題を解決するための手段】これらの課題を解決する
ために本発明のアルカリ乾電池は、亜鉛からなる負極板
と、金属酸化物からなる正極板をセパレータを介して渦
巻き状に巻回した構造のアルカリ乾電池であり、負極板
は亜鉛板からなるものである。さらに亜鉛負極板は多数
の空孔を持ち、気孔率が5%〜70%、好ましくは20
%〜70%とし、エキスパンドメタル亜鉛板またはパン
チングメタル亜鉛板のいずれかを用いる。また、金属酸
化物は二酸化マンガンとする。
In order to solve these problems, the alkaline dry battery of the present invention has a structure in which a negative electrode plate made of zinc and a positive electrode plate made of metal oxide are spirally wound with a separator interposed therebetween. In the alkaline dry battery, the negative electrode plate is a zinc plate. Furthermore, the zinc negative electrode plate has a large number of pores and has a porosity of 5% to 70%, preferably 20%.
% To 70%, and either an expanded metal zinc plate or a punched metal zinc plate is used. The metal oxide is manganese dioxide.

【0007】[0007]

【作用】長尺状の亜鉛負極板をセパレータを介して正極
板と共に渦巻き状に巻回して構成することにより、正負
極板の電極面積はインサイドアウト型のアルカリマンガ
ン電池に比べ大幅に増大するので、高負荷での放電性能
の向上が期待できる。また、正極板と負極板が大面積で
対向するため、負極板として亜鉛金属単体を用いた場合
でも正負極間の電解液の拡散が均一かつ有利に起こり、
ゲル状の亜鉛負極を用いた場合と同様の効果が得られ
る。つまり亜鉛金属単体を負極板として用いることによ
り負極充填容量を向上させることができ、かつ長尺状の
電極板を渦巻き構造にすることで電極面積が増大し、電
解液の拡散が均一かつ有利におこるので高負荷での放電
性能を向上させることができる。
[Function] Since the long zinc negative electrode plate is spirally wound with the positive electrode plate through the separator, the electrode area of the positive and negative electrode plates is significantly increased as compared with the inside-out type alkaline manganese battery. It can be expected that the discharge performance will be improved under high load. Further, since the positive electrode plate and the negative electrode plate are opposed to each other in a large area, even when using a zinc metal simple substance as the negative electrode plate, the diffusion of the electrolyte solution between the positive and negative electrodes occurs uniformly and advantageously,
The same effect as when using a gelled zinc negative electrode is obtained. That is, by using zinc metal alone as the negative electrode plate, the negative electrode filling capacity can be improved, and by making the long electrode plate a spiral structure, the electrode area increases, and the diffusion of the electrolyte solution is uniform and advantageous. Since this occurs, the discharge performance under high load can be improved.

【0008】また、亜鉛板に多数の空孔を施すことによ
り、空孔を介して電解液の拡散が均一かつ有利に起こ
り、亜鉛の利用率を向上させることが期待できる。しか
し、空孔を増やすことが体積当たりの亜鉛の充填量を減
らし、放電容量を低下させることにつながる。このため
空孔を施した亜鉛板を用いるには気孔率の上限値をゲル
状亜鉛粉末の体積当たりの亜鉛の占める割合約30%に
相当する気孔率70%以内にしなければ放電容量での優
位性が得られないことになる。
Further, by providing a large number of holes in the zinc plate, it is expected that the electrolyte solution uniformly and advantageously diffuses through the holes to improve the zinc utilization rate. However, increasing the number of holes reduces the filling amount of zinc per volume and leads to a decrease in discharge capacity. For this reason, when using a zinc plate with holes, the upper limit of the porosity must be within 70%, which is equivalent to about 30% of the zinc content in the gel-like zinc powder, and is superior in discharge capacity. You will not be able to get sex.

【0009】[0009]

【実施例】【Example】

(実施例1)以下、図面とともに本発明を具体的な実施
例に添って説明する。
(Embodiment 1) The present invention will be described below with reference to specific embodiments with reference to the drawings.

【0010】図1に本発明の構造を適用したアルカリ乾
電池の構造断面図を示す。図中1は正極板であり、二酸
化マンガンとカーボンブラックとフッ素樹脂を混合・混
練してシート状に成型し、これをニッケルエキスパンド
メタル集電体に圧着したものであり、2はセロハンとポ
リプロピレン製不織布を張り合わせたセパレータ、3は
金属亜鉛の負極板である。これら正極板1をセパレータ
3を介して負極板2と重ね合わせて最外周に正極板がく
るように渦巻き状に巻回した電極板群を構成し、絶縁用
樹脂板5を底部に入れた電池ケース4に挿入し、電池ケ
ースの内壁と最外周の正極板が接触することで集電をと
る。一方、負極板から負極集電用リード7を引き負極端
子板6と溶接し集電をとる。最後にアルカリ電解液を注
液し電池をナイロン製封口樹脂8で封口し本発明のアル
カリ乾電池とする。
FIG. 1 is a structural sectional view of an alkaline dry battery to which the structure of the present invention is applied. In the figure, 1 is a positive electrode plate, which is formed by mixing and kneading manganese dioxide, carbon black and fluororesin into a sheet, and press-bonding this to a nickel expanded metal current collector, and 2 is made of cellophane and polypropylene. A separator 3 made of laminated non-woven fabric is a negative electrode plate made of metallic zinc. A battery in which the positive electrode plate 1 is superposed on the negative electrode plate 2 via the separator 3 and spirally wound so that the positive electrode plate comes to the outermost periphery, and the insulating resin plate 5 is placed at the bottom. The battery pack is inserted into the case 4, and the inner wall of the battery case contacts the outermost positive electrode plate to collect current. On the other hand, the negative electrode current collecting lead 7 is pulled from the negative electrode plate and welded to the negative electrode terminal plate 6 to collect current. Finally, an alkaline electrolyte is injected and the battery is sealed with a nylon sealing resin 8 to obtain the alkaline dry battery of the present invention.

【0011】以上のような構成で作製した本発明の単三
サイズのアルカリ乾電池Aを電流値1A、500mA、
100mA、10mAの連続定電流で放電を行った。な
お負極板には厚み100μmの亜鉛箔を用いた。また、
比較例として従来の単三サイズのアルカリマンガン電池
Bも同様に放電を行った。その結果を図2に示す。図2
は横軸に負荷電流、縦軸に電池電圧0.9Vまでの放電
容量を示す電池の負荷特性図であり、図中Aは本発明の
アルカリ乾電池、Bは従来のアルカリマンガン電池であ
る。
The AA size alkaline dry battery A of the present invention produced by the above-mentioned constitution is used for the current value 1A, 500mA,
Discharge was performed with a continuous constant current of 100 mA and 10 mA. A 100 μm thick zinc foil was used for the negative electrode plate. Also,
As a comparative example, a conventional AA size alkaline manganese battery B was also discharged in the same manner. The result is shown in FIG. Figure 2
Is a load characteristic diagram of the battery, in which the horizontal axis represents the load current and the vertical axis represents the discharge capacity up to a battery voltage of 0.9 V, where A is the alkaline dry battery of the present invention and B is the conventional alkaline manganese battery.

【0012】この図からわかるように、100mA以上
の高負荷の放電では負荷電流値が大きくなるにつれ電池
Aと電池Bの放電容量の差が徐々に大きくなることがわ
かる。これは、電池Bでは電極面積が小さいため高負荷
になるにつれて電極にかかる負荷の増加の割合が大きく
なり電池の分極が増大し、その結果、放電容量が低下す
る。しかし、電池Aでは電極面積が大きいため電極にか
かる負荷の増加の割合が少なくてすみ電池の分極が余り
起こらないので放電容量の低下が起こりにくいと考えら
れる。また、渦巻き状の巻き回した構造にすることで負
極の電解液の拡散が均一かつ有利に起こり、金属単体の
亜鉛板を用いた場合でもゲル状亜鉛粉末と同様の効果が
得られるので、高負荷での放電性能を向上させることが
できたと考えられる。
As can be seen from this figure, the difference between the discharge capacities of battery A and battery B gradually increases as the load current value increases at high load discharge of 100 mA or more. This is because in the battery B, since the electrode area is small, as the load becomes higher, the rate of increase of the load applied to the electrode increases, the polarization of the battery increases, and as a result, the discharge capacity decreases. However, in the battery A, since the electrode area is large, the rate of increase in the load applied to the electrodes is small, and the polarization of the battery rarely occurs. Therefore, it is considered that the discharge capacity is less likely to decrease. In addition, the spirally wound structure causes the electrolyte of the negative electrode to uniformly and advantageously diffuse, and even when a zinc plate of a simple metal is used, the same effect as that of the gel zinc powder can be obtained. It is considered that the discharge performance under load could be improved.

【0013】さらに、100mA以下の低負荷での放電
容量も電池Aは電池Bよりも若干ではあるが向上してお
り、これは亜鉛金属単体を負極として用いることにより
負極充填容量を向上させることができたためと考えられ
る。
Further, the discharge capacity under a low load of 100 mA or less is also slightly improved in Battery A as compared to Battery B. This can improve the negative electrode filling capacity by using zinc metal alone as the negative electrode. Probably because it was possible.

【0014】(実施例2)次に亜鉛板の気孔率を変えて
実施例1と同様の本発明のアルカリ乾電池を作製し、1
Aでの定電流放電を行った。その結果を図3に示す。亜
鉛板は気孔率0%が実施例1で用いた厚み100μmの
亜鉛箔であり、気孔率5%〜90%は厚み100μmの
亜鉛箔をエキスパンド加工により該気孔率になるように
調整したものである。
(Example 2) Next, an alkaline dry battery of the present invention similar to that of Example 1 was prepared by changing the porosity of the zinc plate.
A constant current discharge at A was performed. The result is shown in FIG. The zinc plate is the zinc foil having a porosity of 0% used in Example 1 and a thickness of 100 μm, and the porosities of 5% to 90% are prepared by expanding a zinc foil having a thickness of 100 μm to the porosity. is there.

【0015】この図からわかるように、気孔率0%であ
る空孔のない亜鉛箔に比べ気孔率5%の亜鉛板は負極の
利用率が10%以上向上する。しかし、気孔率5%〜2
0%では気孔率の増加にともなう負極利用率の向上は小
さく、20%以上ではほとんど負極利用率に変化は見ら
れない。これは亜鉛板に空孔を施すことにより、空孔を
介して負極の電解液の拡散が有利に進行し、高負荷放電
である1Aでの放電時の負極の利用率が向上したものと
考えられ、特に5%以上の気孔率であると効果は大き
い。しかし、空孔を増やすことは体積当たりの亜鉛の充
填量を減らすことになるので放電容量の低下にもつなが
る。このため空孔を施した亜鉛板を用いるには気孔率の
上限値をゲル状亜鉛粉末の体積当たりの亜鉛の占める割
合約30%に相当する気孔率70%以内にしなければ実
施例1の低負荷での放電における電池Aの電池Bに対す
る放電容量での優位性が得られないことになる。よって
亜鉛板の気孔率は5%〜70%、好ましくは20%〜7
0%にするのが良い。
As can be seen from this figure, the zinc plate having a porosity of 5% improves the utilization factor of the negative electrode by 10% or more as compared with the zinc foil having no porosity of 0%. However, the porosity is 5% to 2
At 0%, the improvement of the negative electrode utilization rate with the increase of the porosity is small, and at 20% or more, there is almost no change in the negative electrode utilization rate. It is considered that this is because by forming holes in the zinc plate, the diffusion of the electrolyte solution of the negative electrode progresses through the holes, and the utilization rate of the negative electrode during discharge at 1 A, which is a high load discharge, is improved. In particular, the effect is great when the porosity is 5% or more. However, increasing the number of pores reduces the filling amount of zinc per volume, which also leads to a decrease in discharge capacity. For this reason, in order to use a zinc plate with holes, the upper limit of the porosity must be within 70%, which is equivalent to about 30% of the zinc content in the gel zinc powder, and the low porosity of Example 1. It is not possible to obtain the superiority in the discharge capacity of the battery A over the battery B in discharging under load. Therefore, the porosity of the zinc plate is 5% to 70%, preferably 20% to 7
It is better to set it to 0%.

【0016】なお負極亜鉛板に関しては、実施例2では
エキスパンドメタル亜鉛板を用いたが、パンチングメタ
ル亜鉛板でも同様な効果が得られた。
With respect to the negative electrode zinc plate, the expanded metal zinc plate was used in Example 2, but the same effect was obtained with the punched metal zinc plate.

【0017】[0017]

【発明の効果】以上の説明で明らかなように、本発明の
ように亜鉛板をセパレータを介して正極と共に渦巻き状
に巻回することにより電極面積が大きくなり、かつ電解
液の拡散性が良くなり、また亜鉛板を用いることにより
負極充填量も向上するため、低負荷から高負荷までの放
電性能に優れたアルカリ乾電池を供給することができ
る。さらに気孔率5%〜70%、好ましくは20%〜7
0%亜鉛板を用いれば高負荷放電性能がさらに向上す
る。
As is apparent from the above description, by spirally winding the zinc plate together with the positive electrode via the separator as in the present invention, the electrode area is increased and the diffusibility of the electrolytic solution is improved. Moreover, since the negative electrode filling amount is improved by using the zinc plate, it is possible to supply an alkaline dry battery excellent in discharge performance from low load to high load. Further, the porosity is 5% to 70%, preferably 20% to 7
If a 0% zinc plate is used, the high load discharge performance is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるアルカリ乾電池の構造断面図FIG. 1 is a structural cross-sectional view of an alkaline dry battery according to the present invention.

【図2】本発明によるアルカリ乾電池と従来のアルカリ
マンガン電池との放電負荷特性の比較を示す図
FIG. 2 is a diagram showing a comparison of discharge load characteristics between an alkaline dry battery according to the present invention and a conventional alkaline manganese battery.

【図3】本発明によるアルカリ乾電池の1Aの定電流放
電における亜鉛板の気孔率と負極利用率の関係を示す図
FIG. 3 is a diagram showing a relationship between a porosity of a zinc plate and a negative electrode utilization rate in a constant current discharge of 1 A of an alkaline dry battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極板 2 セパレータ 3 負極板 4 電池ケース 5 絶縁用樹脂板 6 負極端子板 7 負極集電用リード 8 ナイロン製封口樹脂 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Separator 3 Negative electrode plate 4 Battery case 5 Insulating resin plate 6 Negative electrode terminal plate 7 Negative electrode current collecting lead 8 Nylon sealing resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 茂雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 布目 潤 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Kobayashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) In Jun Jun Nume, 1006 Kadoma, Kadoma City, Osaka

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】亜鉛からなる負極板と、金属酸化物からな
る正極板とをセパレータを介して渦巻き状に巻回し構成
するアルカリ乾電池であり、前記負極板が亜鉛板からな
ることを特徴とするアルカリ乾電池。
1. An alkaline dry battery in which a negative electrode plate made of zinc and a positive electrode plate made of metal oxide are spirally wound with a separator in between, and the negative electrode plate is made of a zinc plate. Alkaline battery.
【請求項2】前記亜鉛板が多数の空孔を持つ請求項1記
載のアルカリ乾電池。
2. The alkaline dry battery according to claim 1, wherein the zinc plate has a large number of holes.
【請求項3】前記亜鉛板の気孔率が5%〜70%である
請求項1記載のアルカリ乾電池。
3. The alkaline dry battery according to claim 1, wherein the zinc plate has a porosity of 5% to 70%.
【請求項4】前記亜鉛板の気孔率が20%〜70%であ
る請求項1記載のアルカリ乾電池。
4. The alkaline dry battery according to claim 1, wherein the zinc plate has a porosity of 20% to 70%.
【請求項5】前記亜鉛板が、エキスパンドメタル亜鉛板
またはパンチングメタル亜鉛板である請求項1記載のア
ルカリ乾電池。
5. The alkaline dry battery according to claim 1, wherein the zinc plate is an expanded metal zinc plate or a punching metal zinc plate.
【請求項6】前記金属酸化物は二酸化マンガンである請
求項1記載のアルカリ乾電池。
6. The alkaline dry battery according to claim 1, wherein the metal oxide is manganese dioxide.
JP4290195A 1995-03-02 1995-03-02 Alkaline dry battery Pending JPH08241721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290195A JPH08241721A (en) 1995-03-02 1995-03-02 Alkaline dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290195A JPH08241721A (en) 1995-03-02 1995-03-02 Alkaline dry battery

Publications (1)

Publication Number Publication Date
JPH08241721A true JPH08241721A (en) 1996-09-17

Family

ID=12648941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290195A Pending JPH08241721A (en) 1995-03-02 1995-03-02 Alkaline dry battery

Country Status (1)

Country Link
JP (1) JPH08241721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500418A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Electrochemical cell balance
JP2002500417A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Porous alkaline zinc / manganese oxide battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500418A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Electrochemical cell balance
JP2002500417A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Porous alkaline zinc / manganese oxide battery

Similar Documents

Publication Publication Date Title
US5262255A (en) Negative electrode for non-aqueous electrolyte secondary battery
US3655450A (en) Battery electrode and method of making the same
JP2003526877A (en) Rechargeable nickel zinc battery
JP2017183193A (en) Nickel-metal hydride storage battery
US3716411A (en) Rechargeable alkaline manganese cell
US3484295A (en) Battery having a positive electrode in which the principal active material is isolated from the electrolyte by a secondary active material
US3476610A (en) Battery having two positive active materials
JP3632386B2 (en) Organic electrolyte battery
JP3287367B2 (en) Sealed nickel zinc battery
JP2002501286A (en) Zinc-based electrochemical battery
JPH08241721A (en) Alkaline dry battery
JPH04206468A (en) Sealed alkali-zinc storage battery
JP3309463B2 (en) Cylindrical nickel-metal hydride storage battery
JP3209071B2 (en) Alkaline storage battery
JPH0631646Y2 (en) Flat type battery
JP2812943B2 (en) Organic electrolyte battery
JPH0582158A (en) Sealed rectangular alkaline storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2874529B2 (en) Lithium battery
JPS60170172A (en) Rechargeable electrochemical device
JP3004241B2 (en) Hydrogen battery
JPH08273662A (en) Alkaline battery
JPS5852616Y2 (en) battery
JPH043403Y2 (en)
JPH01272049A (en) Lithium secondary battery