JPH08240666A - X-ray detection apparatus - Google Patents

X-ray detection apparatus

Info

Publication number
JPH08240666A
JPH08240666A JP7045226A JP4522695A JPH08240666A JP H08240666 A JPH08240666 A JP H08240666A JP 7045226 A JP7045226 A JP 7045226A JP 4522695 A JP4522695 A JP 4522695A JP H08240666 A JPH08240666 A JP H08240666A
Authority
JP
Japan
Prior art keywords
ray
absorption film
signal processing
rays
spatial distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7045226A
Other languages
Japanese (ja)
Inventor
Hitoshi Shimizu
清水  仁
Kazuteru Tsuchida
一輝 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7045226A priority Critical patent/JPH08240666A/en
Publication of JPH08240666A publication Critical patent/JPH08240666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE: To provide an X-ray detection apparatus by which the spatial distribution of X-ray energy can be measured in real time. CONSTITUTION: An X-ray detection apparatus is constituted of an X-ray detection part 1 which detects the spatial distribution of X-rays, of an absorption film 2 whose transmittance depends on X-ray energy in order to adjust the energy distribution of the X-rays to be detected, of a signal processing part 3 which processes a signal detected by the X-ray detection part 1, of a control part 4 which controls the absorption film 2 and the signal processing part 3 and of a monitor 5 which outputs the signal processed by the signal processing part 3. In the signal processing part 3, the difference between the spatial distribution of the intensity of X-rays in a present absorption film and the spatial distribution of the intensity of X-rays in an immediately preceding absorption film is found by means of a control signal 11 from the control part 4. An output result from the signal processing part 3 is observed by the monitor 5, and the spatial distribution of the X-ray energy corresponding to the difference in a transmittance between the two absorption films is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線を検出するX線検出
装置に係り、特に、照射したX線エネルギーの空間分布
を測定するのに好適なX線検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray detecting apparatus for detecting X-rays, and more particularly to an X-ray detecting apparatus suitable for measuring a spatial distribution of irradiated X-ray energy.

【0002】[0002]

【従来の技術】従来のX線検出器では、X線の強度分布
を測定する場合、X線のエネルギーに比例した信号強度
を出力するX線検出器を複数個設置し、個々のX線検出
器出力値の信号強度を測定することによってエネルギー
分布を計測し、それぞれのX線検出器を同様な信号処理
をすることにより、X線エネルギーの空間分布を求めて
いた。したがって、X線検出器の信号処理が複雑にな
り、X線エネルギー分布が時間変化する場合、特に時間
的に早く変化する場合には、対応できなくなる問題があ
る。
2. Description of the Related Art In conventional X-ray detectors, when measuring the intensity distribution of X-rays, a plurality of X-ray detectors that output a signal intensity proportional to the energy of X-rays are installed to detect individual X-rays. The energy distribution was measured by measuring the signal intensity of the instrument output value, and the X-ray energy spatial distribution was obtained by performing similar signal processing on each X-ray detector. Therefore, the signal processing of the X-ray detector becomes complicated, and there is a problem that it cannot be dealt with when the X-ray energy distribution changes with time, particularly when it changes with time.

【0003】また、X線検出器の前面にX線の吸収率が
わかっている吸収膜を設置し、この吸収膜をいくつか用
意し、吸収膜の交換によって、X線エネルギー分布を測
定する。この方法では、X線の空間分布を測定する場合
には、X線検出器の信号処理がX線検出器の数だけ必要
になるため信号処理が複雑となる。さらに、X線のエネ
ルギー分布が時間変化する場合、特に時間的に早く変化
する場合には高速な信号処理が必要になるという問題が
ある。
Further, an absorption film whose X-ray absorption rate is known is installed on the front surface of the X-ray detector, several absorption films are prepared, and the X-ray energy distribution is measured by exchanging the absorption films. In this method, when measuring the spatial distribution of X-rays, the signal processing of the X-ray detectors is required because the number of X-ray detectors is the same as that of the X-ray detectors. Further, there is a problem that high-speed signal processing is required when the energy distribution of the X-ray changes with time, particularly when it changes with time.

【0004】これまでの、X線の2次元分布を検出する
X線検出器を使用するX線検出装置としては、特開昭63
−210651号公報に記載のように試料を通過したX線の2
次元像を測定するX線検出装置がある。この従来技術で
は、試料を通過したX線を光に変換してイメージインテ
ンシファイア等の撮像管で検出し、画像メモリに格納す
る。検出したX線像より最適な試料位置を検出し、最適
な試料位置に設定するように、位置決めなどの調整をす
る構造になっている。この方法では、試料内に複数の材
質が使用されている場合、試料の位置を正確に検出する
ためには、使用する材質総てに通過しないようなエネル
ギーのX線を使用する必要がある。このため、試料中の
材料が変わるたびにX線エネルギーを調整する必要があ
る。また、それぞれの材質毎の設定位置を求めるには、
強度のX線通過率が複数ある場合、正しい試料の位置を
測定するのに問題がある。
A conventional X-ray detecting apparatus using an X-ray detector for detecting a two-dimensional distribution of X-rays is disclosed in Japanese Patent Laid-Open No.
No. 2 of X-rays that have passed through the sample as described in JP-A-210651.
There is an X-ray detection device that measures a three-dimensional image. In this conventional technique, X-rays that have passed through a sample are converted into light, detected by an image pickup tube such as an image intensifier, and stored in an image memory. The structure is such that the optimum sample position is detected from the detected X-ray image, and adjustments such as positioning are performed so as to set the optimum sample position. In this method, when a plurality of materials are used in the sample, in order to accurately detect the position of the sample, it is necessary to use X-rays having energy that does not pass through all the materials used. Therefore, it is necessary to adjust the X-ray energy every time the material in the sample changes. Also, to obtain the set position for each material,
If there are multiple intensities of X-ray transmission, there is a problem in determining the correct sample position.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、実時
間でX線のエネルギーの空間分布を計測できるX線検出
装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an X-ray detector capable of measuring the spatial distribution of X-ray energy in real time.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、X線を吸収する吸収膜と、該吸収膜のX
線吸収特性を制御する制御手段と、前記吸収膜を通過し
たX線を検出する検出器と、該検出器によるX線の検出
信号を用いてX線エネルギーの空間分布を求める信号処
理手段とを備える。
In order to achieve the above object, the present invention provides an absorption film for absorbing X-rays, and an X-ray absorption film for the absorption film.
Control means for controlling the line absorption characteristics, a detector for detecting the X-rays that have passed through the absorption film, and signal processing means for obtaining the spatial distribution of the X-ray energy by using the detection signal of the X-rays by the detector. Prepare

【0007】[0007]

【作用】図2を用いて本発明の作用を説明する。図2
は、X線検出器の前面にX線の吸収膜としてベリリウム
膜を設置した場合における、吸収膜の膜厚をパラメータ
にしたX線エネルギーに対する吸収膜の通過率を計算し
たものである。
The operation of the present invention will be described with reference to FIG. Figure 2
Is a calculation of the transmittance of the absorption film for X-ray energy with the thickness of the absorption film as a parameter when a beryllium film is installed as the X-ray absorption film on the front surface of the X-ray detector.

【0008】吸収膜の膜厚が予めわかっている場合、吸
収膜のX線に対する通過率は、数1で与えられる。
When the thickness of the absorption film is known in advance, the X-ray transmission rate of the absorption film is given by the equation 1.

【0009】[0009]

【数1】 T(E)=exp{−μ(E)D} …(数1) ここで、T(E)はエネルギーEを持つX線の通過率,
μは吸収膜の全吸収係数,Dは吸収膜の膜厚である。
## EQU00001 ## T (E) = exp {-. Mu. (E) D} (Equation 1) where T (E) is the passage rate of X-rays having energy E,
μ is the total absorption coefficient of the absorption film, and D is the thickness of the absorption film.

【0010】吸収膜の膜厚Dを100μmにして測定し
た場合と、Dを1000μmにして測定した場合との差
を求めると、図2に示す「A」の部分でのエネルギー分
布が求まる。同様に、吸収膜の膜厚Dを1000μmに
して測定した場合と、Dを5000μmにして測定した
場合との差を求めると、図2に示す「B」の部分でのエ
ネルギー分布が求まる。
When the difference between the case where the film thickness D of the absorbing film is 100 μm and the case where D is 1000 μm is obtained, the energy distribution at the portion “A” shown in FIG. 2 is obtained. Similarly, when the difference between the case where the thickness D of the absorption film is set to 1000 μm and the case where D is 5000 μm is obtained, the energy distribution in the portion “B” shown in FIG. 2 is obtained.

【0011】同様にして、次々に吸収膜の膜厚Dを変え
ることにより、X線エネルギー分布を測定でき、しか
も、測定したいX線エネルギーにあわせて吸収膜の膜厚
を調整することによって、必要なX線のエネルギー分布
を実時間で測定することができる。
Similarly, the X-ray energy distribution can be measured by changing the film thickness D of the absorption film one after another, and further, by adjusting the film thickness of the absorption film in accordance with the X-ray energy to be measured, it is necessary. The energy distribution of various X-rays can be measured in real time.

【0012】[0012]

【実施例】以下、本発明によるX線検出装置の一実施例
を図1を用いて説明する。本X線検出装置は、X線の空
間分布を検出するX線検出部1と、検出するX線のエネ
ルギー分布を調整するためのX線エネルギーに依存した
通過率を持つ吸収膜2と、X線検出部1で検出した信号
を処理する信号処理部3と、吸収膜2および信号処理部
3を制御する制御部4と、信号処理部3で処理した信号
を出力するモニタ5より構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the X-ray detector according to the present invention will be described below with reference to FIG. The present X-ray detection apparatus includes an X-ray detection unit 1 that detects a spatial distribution of X-rays, an absorption film 2 that has a transmittance that depends on X-ray energy for adjusting the energy distribution of the detected X-rays, and an X-ray detection unit. The signal processing unit 3 processes the signal detected by the line detection unit 1, the control unit 4 controls the absorption film 2 and the signal processing unit 3, and the monitor 5 outputs the signal processed by the signal processing unit 3. .

【0013】X線検出部1は、入射したX線を光に変換
するマイクロチャンネルプレート6およびマイクロチャ
ンネルプレート6に電圧を供給する高圧電源7と、マイ
クロチャンネルプレート6で変換した光を計測するCC
Dカメラ8と、CCDカメラ8を駆動するCCDドライ
バ9より構成される。X線検出器に入射するX線は、制
御部4からの制御信号10で規定される吸収膜2の特性
で定まったX線のエネルギー依存性を持つ通過率で通過
したX線となる。X線検出器では、入射したX線に比例
した光をマイクロチャンネルプレート6で放出し、この
光をCCDカメラ8で測定する。このため、CCDカメ
ラ8で測定した光は、X線強度に比例した量になる。C
CDカメラ8で測定したX線強度の空間分布を用いて、
信号処理部3でX線のエネルギー分布を求める。この
際、信号処理部3では、制御部4からの制御信号11に
より、現在の吸収膜でのX線強度の空間分布と、直前の
吸収膜でのX線強度の空間分布との差を求める。信号処
理部3での出力結果をモニタ5で観察することによっ
て、2つの吸収膜の通過率の差に相当するX線エネルギ
ーの空間分布を計測する。
The X-ray detection unit 1 converts the incident X-rays into light, a microchannel plate 6, a high-voltage power supply 7 for supplying a voltage to the microchannel plate 6, and a CC for measuring the light converted by the microchannel plate 6.
It is composed of a D camera 8 and a CCD driver 9 for driving the CCD camera 8. The X-rays that enter the X-ray detector become X-rays that pass with a pass rate that has the energy dependence of the X-rays that is determined by the characteristics of the absorption film 2 defined by the control signal 10 from the control unit 4. In the X-ray detector, light proportional to the incident X-ray is emitted from the microchannel plate 6, and this light is measured by the CCD camera 8. Therefore, the light measured by the CCD camera 8 has an amount proportional to the X-ray intensity. C
Using the spatial distribution of X-ray intensity measured by the CD camera 8,
The signal processing unit 3 obtains an X-ray energy distribution. At this time, the signal processing unit 3 obtains the difference between the spatial distribution of the X-ray intensity at the current absorption film and the spatial distribution of the X-ray intensity at the immediately previous absorption film by the control signal 11 from the control unit 4. . By observing the output result of the signal processing unit 3 on the monitor 5, the spatial distribution of the X-ray energy corresponding to the difference in the transmittance between the two absorption films is measured.

【0014】本実施例によれば、吸収膜を交換する時間
と信号処理に必要な時間の合計の時間内で、X線エネル
ギーの空間分布を測定することができる。
According to this embodiment, it is possible to measure the spatial distribution of X-ray energy within the total time of exchanging the absorption film and the time required for signal processing.

【0015】信号処理部3の一実施例を図3に示す。X
線検出部1で検出したX線強度の空間分布をA/D変換
部12で変換した後、2つに分割する。分割した一方の
信号16aは直接引算部14に入力し、他方の信号16
bは遅延部13により信号16aに対して所定時間の時
間遅れのある信号17として引算部14に入力する。引
算部14では16aと17の信号の差をもとめ、D/A
変換部15により特定なエネルギー分布でのX線強度の
空間分布を出力する。ここで、遅延部13では、設定す
る遅延時間を制御部4からの制御信号11で設定する。
An embodiment of the signal processing unit 3 is shown in FIG. X
The X-ray intensity spatial distribution detected by the line detection unit 1 is converted by the A / D conversion unit 12 and then divided into two. One of the divided signals 16a is directly input to the subtraction unit 14, and the other signal 16a is input.
b is input to the subtraction unit 14 as a signal 17 having a predetermined time delay with respect to the signal 16a by the delay unit 13. The subtraction unit 14 finds the difference between the signals of 16a and 17 and calculates the D / A
The conversion unit 15 outputs the X-ray intensity spatial distribution with a specific energy distribution. Here, the delay unit 13 sets the delay time to be set by the control signal 11 from the control unit 4.

【0016】遅延部13での遅延時間の設定方法を図4
を用いて説明する。図4は、CCDからの信号をA/D
変換した後、2つに分けた状態を示す。図4に示す最少
の1つの箱は、CCDからの一画素毎のデータを表す。
すなわち、CCDの画素数をN個、1つのデータの保持
時間をTとすると、両者の積が1つの吸収膜で測定した
X線強度の空間分布を表すことになる。そこで、遅延時
間をN×Tになるように設定すると、CCD信号AとC
CD信号Bとの差を求めると、同じ場所で測定したCC
D出力の差を計算することができる。
The method of setting the delay time in the delay unit 13 is shown in FIG.
Will be explained. Figure 4 shows the A / D signal from the CCD.
After conversion, the state of being divided into two is shown. The smallest box shown in FIG. 4 represents the data for each pixel from the CCD.
That is, assuming that the number of pixels of the CCD is N and the retention time of one data is T, the product of the two represents the spatial distribution of the X-ray intensity measured by one absorption film. Therefore, if the delay time is set to be N × T, CCD signals A and C are set.
When the difference from the CD signal B is calculated, CC measured at the same place
The difference in D output can be calculated.

【0017】本方法によれば、逐次計算した引算部14
の出力で、現在のX線強度の空間分布と直前に設定して
あった吸収膜でのX線強度の空間分布の差を出力するこ
とができる。
According to this method, the subtraction unit 14 that sequentially calculates
Can output the difference between the current spatial distribution of the X-ray intensity and the spatial distribution of the X-ray intensity at the absorption film set immediately before.

【0018】次に、吸収膜の一実施例を図5を用いて説
明する。2つ以上の吸収膜(2a,2b,2c)が吸収
膜ステイ20上に取り付けられ、吸収膜ステイ20は回
転駆動部18により回転軸21を中心に回転する構造で
ある。一方、回転駆動部18は、制御部4からの制御信
号10によって回転量を制御する構造である。また、吸
収膜に照射したX線はコリメータ19によって、一つの
吸収膜だけを通過するようにしてある。この構造による
と、制御部4の制御信号10によって、吸収膜を通過す
るX線を制御できる。そこで、制御部4からの制御信号
10として、1つの吸収膜から次の吸収膜へ膜を変更す
る時間を信号処理部3の遅延時間と等しくなるように制
御する。
Next, an embodiment of the absorption film will be described with reference to FIG. Two or more absorption films (2a, 2b, 2c) are attached on the absorption film stay 20, and the absorption film stay 20 has a structure in which the rotation driving unit 18 rotates about a rotation shaft 21. On the other hand, the rotation drive unit 18 has a structure that controls the rotation amount by the control signal 10 from the control unit 4. The X-rays applied to the absorption film are made to pass through only one absorption film by the collimator 19. According to this structure, the control signal 10 of the control unit 4 can control the X-ray passing through the absorption film. Therefore, as the control signal 10 from the control unit 4, the time for changing the film from one absorption film to the next absorption film is controlled to be equal to the delay time of the signal processing unit 3.

【0019】本実施例によれば、吸収膜を変更する時間
毎に、計測するX線のエネルギー分布の空間分布を測定
することができる。
According to this embodiment, the spatial distribution of the energy distribution of the X-ray to be measured can be measured every time the absorbing film is changed.

【0020】[0020]

【発明の効果】本発明によると、吸収膜の変更時間と信
号処理に要する時間とを調整することにより、X線のエ
ネルギー分布の空間分布をほぼ実時間で測定することが
できる。
According to the present invention, the spatial distribution of the X-ray energy distribution can be measured in substantially real time by adjusting the changing time of the absorption film and the time required for signal processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるX線検出装置の一実施例を示す
図。
FIG. 1 is a diagram showing an embodiment of an X-ray detection device according to the present invention.

【図2】吸収膜のX線通過率のX線エネルギー依存性を
示す図。
FIG. 2 is a diagram showing the X-ray energy dependence of the X-ray transmittance of the absorption film.

【図3】図1の信号処理部の一実施例を示す図。FIG. 3 is a diagram showing an embodiment of the signal processing unit of FIG.

【図4】図3の遅延部での遅延時間の設定方法の説明
図。
FIG. 4 is an explanatory diagram of a delay time setting method in the delay unit of FIG.

【図5】図1の吸収膜の一実施例を示す図。FIG. 5 is a diagram showing an embodiment of the absorption film of FIG.

【符号の説明】[Explanation of symbols]

1…X線検出部、2…吸収膜、3…信号処理部、4…制
御部、5…モニタ、6…マイクロチャンネルプレート、
7…高圧電源、8…CCDカメラ、9…CCDドライ
バ、12…A/D変換部、13…遅延部、14…引算
部、15…D/A変換部、18…回転駆動部、19…コ
リメータ、20…吸収膜ステイ。
DESCRIPTION OF SYMBOLS 1 ... X-ray detection part, 2 ... Absorption film, 3 ... Signal processing part, 4 ... Control part, 5 ... Monitor, 6 ... Microchannel plate,
7 ... High-voltage power supply, 8 ... CCD camera, 9 ... CCD driver, 12 ... A / D conversion section, 13 ... Delay section, 14 ... Subtraction section, 15 ... D / A conversion section, 18 ... Rotation drive section, 19 ... Collimator, 20 ... Absorption film stay.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】X線を吸収する吸収膜と、該吸収膜のX線
吸収特性を制御する制御手段と、前記吸収膜を通過した
X線を検出する検出器と、該検出器によるX線の検出信
号を用いてX線エネルギーの空間分布を求める信号処理
手段とを備えたことを特徴とするX線検出装置。
1. An absorption film that absorbs X-rays, a control means that controls the X-ray absorption characteristics of the absorption film, a detector that detects X-rays that have passed through the absorption film, and an X-ray by the detector. And a signal processing means for obtaining a spatial distribution of X-ray energy by using the detection signal of 1.
【請求項2】請求項1において、前記信号処理手段によ
る信号処理と、前記制御手段による制御を同期とって行
うことを特徴とするX線検出装置。
2. The X-ray detection apparatus according to claim 1, wherein the signal processing by the signal processing means and the control by the control means are performed in synchronization with each other.
【請求項3】請求項1において、前記信号処理手段は、
前記検出器によるX線の検出信号と、該検出信号を所定
時間遅延した信号との差からX線エネルギーの空間分布
を求めることを特徴とするX線検出装置。
3. The signal processing means according to claim 1,
An X-ray detection device, wherein a spatial distribution of X-ray energy is obtained from a difference between an X-ray detection signal from the detector and a signal obtained by delaying the detection signal by a predetermined time.
JP7045226A 1995-03-06 1995-03-06 X-ray detection apparatus Pending JPH08240666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7045226A JPH08240666A (en) 1995-03-06 1995-03-06 X-ray detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7045226A JPH08240666A (en) 1995-03-06 1995-03-06 X-ray detection apparatus

Publications (1)

Publication Number Publication Date
JPH08240666A true JPH08240666A (en) 1996-09-17

Family

ID=12713360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7045226A Pending JPH08240666A (en) 1995-03-06 1995-03-06 X-ray detection apparatus

Country Status (1)

Country Link
JP (1) JPH08240666A (en)

Similar Documents

Publication Publication Date Title
JP2722362B2 (en) Method and apparatus for measuring particle or defect size information
US4426718A (en) X-Ray diffraction apparatus
JPH10274518A (en) Method and device for measuring thickness of thin layer by fluorescent x-ray
EP3161437B1 (en) Measuring polarisation
US5828720A (en) Exposure automatics for an X-ray apparatus
Doi et al. Measurements of optical and noise properties of screen-film systems in radiography
JP3258889B2 (en) Optical axis adjustment method in scattering particle size distribution analyzer
JPH07171142A (en) Radiodiagnostic device
JP3081002B2 (en) Test object inspection device by gamma or X-ray
JPH05217689A (en) Method and device for x-ray photographing
JPH04334861A (en) Electron spectroscopic image measuring method
US4741009A (en) X-ray diagnostic apparatus for analyzing scattered X-rays by using X-ray shield member
JPH08240666A (en) X-ray detection apparatus
JP3204036B2 (en) X-ray device and K-edge filter
JP2005140567A (en) Surface analyzer
US20090086911A1 (en) Inspection tool for radiographic systems
JP3308629B2 (en) X-ray line sensor fluoroscope
JP2968460B2 (en) X-ray analysis method
JPH11244275A (en) X-ray ct scanner
JP2003207467A (en) X-ray analyzer
JP2725401B2 (en) Ash meter
JPH03230670A (en) Picture reader and bone measuring device
JPH02266249A (en) Method for measuring x-ray diffraction of crystal plane
JPH03148056A (en) Total-reflection x-ray fluorescence analysis apparatus
JPH0346546A (en) X-ray inspecting device