JPH08240302A - Controller for temperature of bed in furnace - Google Patents

Controller for temperature of bed in furnace

Info

Publication number
JPH08240302A
JPH08240302A JP4403795A JP4403795A JPH08240302A JP H08240302 A JPH08240302 A JP H08240302A JP 4403795 A JP4403795 A JP 4403795A JP 4403795 A JP4403795 A JP 4403795A JP H08240302 A JPH08240302 A JP H08240302A
Authority
JP
Japan
Prior art keywords
temperature
output
fuel
outputs
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4403795A
Other languages
Japanese (ja)
Inventor
Ryuzo Hirakawa
隆三 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4403795A priority Critical patent/JPH08240302A/en
Publication of JPH08240302A publication Critical patent/JPH08240302A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE: To maintain temperature in each section, at a preset value, by a method wherein output of a temperature-presetting device is subtracted from outputs of temperature sensors at the sections by subtracters, rotating speed- correcting signals each are generated so that outputs of the subtracters can be made equal to zero through function generators, and each rotating speed of fuel feeders is regulated. CONSTITUTION: In a pressurized fluidized-bed boiler, outputs of temperature sensors 1, 2 at an evaporator-bed part and a superheater-bed part are delivered to a subtracter 4 for average temperature through an average-operating device 3, and a deviation from an output of a temperature-presetting device 27 is found. This deviation signal is delivered to a PI controller 10 through a PI controller 5, an adder 7 and a subtracter 8, and its output is respectively delivered to adders 25, 26 through multipliers 13, 14, as rotating speed control signals 13s, 14s of rotary feeders 02, 03. A fuel-requiring signal 6s is inputted to the adder 7, and outputs of presetting devices 11, 12 are respectively inputted to the multipliers 13, 14. On the other hand, outputs of tachometers 19, 20 for the rotary feeders 02, 03 are delivered to the subtracter 8 through the adder 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加圧流動床ボイラに適用
される炉内ベッド温度制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace bed temperature control device applied to a pressurized fluidized bed boiler.

【0002】[0002]

【従来の技術】従来の加圧流動床ボイラの系統図を図3
に示す。石炭粉砕機よりホッパ01に投入される。ホッ
パ01の出口は燃料フィーダ(ロータリフィーダまたわ
ロータリバルブ)02を経て分配器04へつながれる。
同様にロータリフィーダ03を経て分配器05へつなが
れる。また分配器04、05には搬送用空気ラインがつ
ながれている。分配器04の出口は燃料搬送管06によ
り流動床ボイラ火炉本体08のベッド部が区分された、
一方の蒸発器ベッドゾーンにつながれる。同様に分配器
05の出口は燃料搬送管07により、他方の過熱器ベッ
ドゾーンにつながれる。
2. Description of the Related Art A system diagram of a conventional pressurized fluidized bed boiler is shown in FIG.
Shown in It is put into the hopper 01 from the coal crusher. The outlet of the hopper 01 is connected to a distributor 04 via a fuel feeder (rotary feeder or rotary valve) 02.
Similarly, it is connected to the distributor 05 via the rotary feeder 03. Further, a distributor air line is connected to the distributors 04 and 05. At the outlet of the distributor 04, the bed portion of the fluidized bed boiler furnace body 08 is divided by the fuel transfer pipe 06,
Connected to one evaporator bed zone. Similarly, the outlet of the distributor 05 is connected to the other superheater bed zone by a fuel carrying pipe 07.

【0003】次に炉内ベッド温度制御装置を図4に示
す。
FIG. 4 shows a bed temperature control device in the furnace.

【0004】温度センサ1、2の出力は平均演算器3、
平均温度減算器4、PIコントローラ5、加算器7、減
算器8、PIコントローラ10へ順次送られる。PIコ
ントローラ10の出力は掛算器13を経てロータリフィ
ーダ02の操作器15へ送られる。同様にPIコントロ
ーラ10の出力は掛算器14を経てロータリフィーダ0
3の操作器16へ送られる。また温度設定器21の出力
は減算器4へ送られる。燃料要求信号6sは加算器7へ
送られる。ロータリフィーダ02の回転数計19の出力
は加算器9を経て減算器8へ送られる。同様にロータリ
フィーダ03の回転数計20の出力は加算器9へ送られ
る。設定器11の出力は掛算器13へ、設定器12の出
力は掛算器14へ送られる。
The outputs of the temperature sensors 1 and 2 are the average calculator 3,
The temperature is sequentially sent to the average temperature subtractor 4, the PI controller 5, the adder 7, the subtractor 8, and the PI controller 10. The output of the PI controller 10 is sent to the operation device 15 of the rotary feeder 02 via the multiplier 13. Similarly, the output of the PI controller 10 passes through the multiplier 14 and the rotary feeder 0.
3 is sent to the operation device 16. The output of the temperature setting device 21 is sent to the subtractor 4. The fuel request signal 6s is sent to the adder 7. The output of the revolution counter 19 of the rotary feeder 02 is sent to the subtractor 8 via the adder 9. Similarly, the output of the revolution counter 20 of the rotary feeder 03 is sent to the adder 9. The output of the setter 11 is sent to the multiplier 13, and the output of the setter 12 is sent to the multiplier 14.

【0005】以上において、熱電対の温度センサ1およ
び2により蒸発器及び過熱器のベッド温度が計測され
る。この温度信号は平均演算器3で平均され、減算器
(比較器)4にて温度設定器21からの規定温度信号と
比較され、比例積分(PI)コントローラ5にて平均ベ
ッド温度が規定温度信号と一致するよう、信号が演算出
力される。
In the above, the bed temperatures of the evaporator and the superheater are measured by the thermocouple temperature sensors 1 and 2. This temperature signal is averaged by the averaging unit 3, the subtractor (comparator) 4 compares it with the specified temperature signal from the temperature setting unit 21, and the proportional-integral (PI) controller 5 calculates the average bed temperature as the specified temperature signal. The signal is arithmetically output so as to match with.

【0006】一方、ボイラ負荷(発生蒸気量)に見合う
燃料要求信号6sに、ベッド温度を規定値に保つための
PIコントローラ5の修正信号が加算器7で加えられ、
ロータリフィーダ(バルブ)02、03の回転数(燃料
量)要求信号となる。この信号は信号比較器8で、ロー
タリバルブの回転数計19、20の出力を加算器9で加
算した信号と比較され、比例積分(PI)コントローラ
10にて燃料要求に見合う回転数となるよう演算され、
調節信号となる。この信号は掛算器13、14及び設定
器11、12で構成される補正器(ロータリバルブ、搬
送管などの固定したゲインの差を補正する)を経て、ロ
ータリバルブの回転数を変える回転数制御信号13s、
14sとなり、操作器15、16へ送られる。この信号
によりロータリバルブは回転数が変化し、燃料を増減さ
せ、ボイラの負荷(燃料要求信号6s)に応じかつ、ベ
ッド温度を規定値に保つための燃料をボイラに供給す
る。
On the other hand, a correction signal from the PI controller 5 for keeping the bed temperature at a specified value is added by the adder 7 to the fuel request signal 6s corresponding to the boiler load (amount of generated steam),
It becomes a rotation speed (fuel amount) request signal of the rotary feeders (valves) 02 and 03. This signal is compared in the signal comparator 8 with the signal obtained by adding the outputs of the rotary valve revolution speed meters 19 and 20 in the adder 9 so that the proportional-integral (PI) controller 10 makes the revolution speed suitable for the fuel demand. Is calculated,
It becomes a control signal. This signal passes through a corrector (corrects the fixed gain difference of the rotary valve, the carrier pipe, etc.) composed of multipliers 13 and 14 and setters 11 and 12, and controls the rotation speed of the rotary valve. Signal 13s,
It becomes 14 s and is sent to the operation devices 15 and 16. The rotation speed of the rotary valve is changed by this signal, the fuel is increased or decreased, and fuel is supplied to the boiler according to the load of the boiler (fuel request signal 6s) and for keeping the bed temperature at a specified value.

【0007】[0007]

【発明が解決しようとする課題】加圧流動床ボイラで
は、炉内ベッド温度を規定値で制御し、且つ温度分布も
均一にすることにより、燃料のアグロメの防止や、炉内
脱硫効果を上げる必要がある。
In the pressurized fluidized bed boiler, by controlling the bed temperature in the furnace at a specified value and making the temperature distribution uniform, the agglomeration of the fuel is prevented and the desulfurization effect in the furnace is improved. There is a need.

【0008】上記従来のベッド温度制御装置は、炉内へ
の燃料搬送を均等とすべく各燃料フィーダ(ロータリバ
ルブ)からの供給量(回転数)を制御している。しか
し、燃料フィーダ(ロータリバルブ)の供給は燃料粉体
のかさ密度の違いにより、実燃料供給量に差違が生じる
問題があり、結果としてベッド温度のアンバランス(均
一でない)が発生する問題があった。
The above-mentioned conventional bed temperature control device controls the supply amount (rotation speed) from each fuel feeder (rotary valve) so as to make the fuel transfer into the furnace uniform. However, the supply of the fuel feeder (rotary valve) has a problem that the difference in the bulk density of the fuel powder causes a difference in the actual fuel supply amount, resulting in an imbalance (non-uniformity) in the bed temperature. It was

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention employs the following means to solve the above-mentioned problems.

【0010】すなわち、炉内ベッド温度制御装置とし
て、炉内のベッド部分が複数に区分されている流動床ボ
イラ火炉本体と、上記各区分へ粉体燃料をそれぞれ供給
する燃料フィーダと、上記各区分に設けられた温度セン
サと、同温度センサの出力を受ける平均演算器と、温度
設定器と、上記平均演算器および温度設定器の出力を受
ける平均温度減算器と、上記燃料フィーダの回転数計
と、上記平均温度減算器および回転数計の出力ならびに
燃料要求信号を受け上記各燃料フィーダへ回転数制御信
号を送る回転数制御手段とを有する炉内ベッド温度制御
装置において、上記温度センサおよび温度設定器の出力
を受ける減算器と、同減算器の出力を受け回転数補正信
号を出力する関数発生器と、同関数発生器の出力を受け
上記回転数制御信号に加算する加算器とを設けた。
That is, as a bed temperature control device in the furnace, a fluidized bed boiler furnace main body in which the bed portion in the furnace is divided into a plurality, a fuel feeder for supplying powdered fuel to each of the above sections, and each of the above sections Temperature sensor, an average calculator for receiving the output of the temperature sensor, a temperature setter, an average temperature subtractor for receiving the outputs of the average calculator and the temperature setter, and a tachometer for the fuel feeder. And a rotation speed control means for transmitting a rotation speed control signal to each of the fuel feeders, which receives the output of the average temperature subtractor and the rotation speed meter and a fuel request signal, and the temperature sensor and the temperature. A subtracter that receives the output of the setter, a function generator that receives the output of the subtractor and outputs a rotation speed correction signal, and a rotation speed control signal that receives the output of the function generator It provided an adder calculated for.

【0011】[0011]

【作用】上記発明において、各区分の温度センサの出力
から温度設定器の出力が各減算器で減算出力される。そ
して各関数発生器に送られ、減算器の出力がゼロになる
よう回転数補正信号が発生される。この信号が各加算器
で回転数制御信号に加算され、補正された回転数制御信
号にとなり、それぞれの燃料フィーダへ送られる。この
補正された回転数制御信号により燃料フィーダは回転が
調節され、各区分の温度が温度設定器の出力に維持され
る。
In the above invention, the output of the temperature setter is subtracted from the output of the temperature sensor of each section and output. Then, it is sent to each function generator and a rotation speed correction signal is generated so that the output of the subtractor becomes zero. This signal is added to the rotation speed control signal by each adder to become a corrected rotation speed control signal, which is sent to each fuel feeder. The rotation of the fuel feeder is adjusted by the corrected rotation speed control signal, and the temperature of each section is maintained at the output of the temperature setter.

【0012】このようにしてベッド部分の各区分の温度
が均一化される。
In this way, the temperature of each section of the bed is made uniform.

【0013】[0013]

【実施例】上記本発明の一実施例を図1、図2により説
明する。なお、従来例で説明した部分は、同一の番号を
つけ説明を省略し、この発明に関する部分を主体に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIGS. It should be noted that the parts described in the conventional example are denoted by the same reference numerals and the description thereof is omitted, and the parts relating to the present invention will be mainly described.

【0014】蒸発器ベッド部(ゾーン)の温度センサ1
と過熱器ベッド部の温度センサ2の出力は、平均演算器
3を経て平均温度減算器4へ送られる。温度設定器21
の出力は減算器4へ送られる。
Temperature sensor 1 in the evaporator bed (zone)
The output of the temperature sensor 2 in the superheater bed is sent to the average temperature subtractor 4 via the average calculator 3. Temperature setter 21
Is output to the subtractor 4.

【0015】減算器4の出力はPIコントローラ5、加
算器7、減算器8を順次経て、PIコントローラ10へ
送られる。PIコントローラ10の出力は掛算器13を
経てロータリフィーダ02の回転数制御信号13sとな
り加算器25へ送られる。同様にPIコントローラ10
の出力は掛算器14を経てロータリフィーダ03の回転
数制御信号14sとなり加算器26へ送られる。
The output of the subtracter 4 is sent to the PI controller 10 through the PI controller 5, the adder 7 and the subtractor 8 in that order. The output of the PI controller 10 passes through the multiplier 13 and becomes the rotation speed control signal 13s of the rotary feeder 02, which is sent to the adder 25. Similarly, the PI controller 10
Is output to the adder 26 through the multiplier 14 as a rotation speed control signal 14s for the rotary feeder 03.

【0016】また加算器7には燃料要求信号6sが入力
される。さらに掛算器13と14には設定器11と12
の出力がそれぞれ入力されている。ロータリフィーダ0
2の回転数計19の出力は加算器7を経て減算器8へ送
られる。同様にロータリフィーダ03の回転数計20の
出力は加算器9へ送られる。
Further, the fuel request signal 6s is inputted to the adder 7. Further, the multipliers 13 and 14 have setting devices 11 and 12, respectively.
The output of each is input. Rotary feeder 0
The output of the tachometer 19 of 2 is sent to the subtracter 8 via the adder 7. Similarly, the output of the revolution counter 20 of the rotary feeder 03 is sent to the adder 9.

【0017】以上でPIコントローラ5、加算器7、減
算器8、PIコントローラ10、掛算器13、14、設
定器11、12が回転数制御手段である。
As described above, the PI controller 5, the adder 7, the subtractor 8, the PI controller 10, the multipliers 13 and 14, and the setters 11 and 12 are the rotation speed control means.

【0018】温度センサ1と2の出力はそれぞれ減算器
21と22へ送られる。温度設定器21の出力は減算器
21と22へそれぞれ送られる。また減算器21の出力
は関数発生器23、加算器25を経てロータリフィーダ
02の操作器15へ送られる。同様に減算器22の出力
は関数発生器24、加算器26を経てロータリフィーダ
03の操作器16へ送られる。
The outputs of the temperature sensors 1 and 2 are sent to subtractors 21 and 22, respectively. The output of the temperature setter 21 is sent to the subtracters 21 and 22, respectively. The output of the subtractor 21 is sent to the operation unit 15 of the rotary feeder 02 via the function generator 23 and the adder 25. Similarly, the output of the subtractor 22 is sent to the operation unit 16 of the rotary feeder 03 via the function generator 24 and the adder 26.

【0019】以上において、各区分の温度センサ1、2
の出力から温度設定器21の出力が各減算器21、22
で減算出力される。そして各関数発生器23、24に送
られ、例えば図2に示すような特性の、減算器21、2
2の出力がゼロになるよう回転数補正信号が発生される
(ここでαは実運転で適切に設定される)。この信号が
各加算器25、26で回転数制御信号13s、14sに
加算され、補正された回転数制御信号となり、それぞれ
のロータリフィーダの操作器15、16へ送られる。こ
の補正された回転数制御信号によりロータリフィーダ0
2、03は回転が調節され、各区分の温度が温度設定器
の出力に維持される。
In the above, the temperature sensors 1, 2 of each section
From the output of the temperature setter 21 to the subtractor 21, 22
Is subtracted and output. Then, it is sent to the respective function generators 23 and 24, and the subtracters 21 and 2 having the characteristics as shown in FIG.
A rotation speed correction signal is generated so that the output of 2 becomes zero (α is appropriately set in actual operation). This signal is added to the rotation speed control signals 13s and 14s by the adders 25 and 26, and becomes a corrected rotation speed control signal, which is sent to the operation devices 15 and 16 of the respective rotary feeders. The rotary feeder 0 is driven by the corrected rotational speed control signal.
The rotation of Nos. 2, 03 is adjusted, and the temperature of each section is maintained at the output of the temperature setter.

【0020】このようにしてベッド部分の各区分の温度
が均一化される。
In this way, the temperature of each section of the bed is made uniform.

【0021】すなわち、流動床ボイラに投入される燃料
量はボイラ負荷(蒸発量)に見合う量に加え、平均ベッ
ド温度が規定値となる様に投入される。このとき燃料粉
体のかさ密度の変化のように運転中に起きるアンバラン
スの原因については、それぞれの部分の温度差が検出さ
れ、これにより補正が加えられることで、各区分が均一
な温度に保持される。
That is, in addition to the amount of fuel charged to the fluidized bed boiler in proportion to the boiler load (evaporation amount), the amount of fuel is injected so that the average bed temperature becomes a specified value. At this time, regarding the cause of the imbalance that occurs during operation, such as the change in the bulk density of the fuel powder, the temperature difference between each part is detected, and the correction is added by this, so that the temperature in each section becomes uniform. Retained.

【0022】上記系統図中に設けた、機械的アンバラン
ス要因を補正するための掛算器13、14、設定器1
1、12は省略してもよい。なお、蒸発器、過熱器ベッ
ド温度をそれぞれ独立して制御することは可能である
が、比例積分コントローラ5、10、比較器4、8、加
算器9などが独立させた、倍数だけ増えて、経済性、信
頼性が劣る。
Multipliers 13 and 14 and a setter 1 for correcting a mechanical unbalance factor provided in the above system diagram.
The numbers 1 and 12 may be omitted. Although it is possible to control the evaporator and superheater bed temperatures independently, the proportional-integral controllers 5, 10 and the comparators 4, 8 and the adder 9 are independently increased by a multiple, Economical efficiency and reliability are poor.

【0023】[0023]

【発明の効果】以上に説明したように、本発明によれ
ば、粉体燃料のかさ密度の変化等による外乱を受けて
も、炉内ベッド各区分の温度が均一に保たれ、ボイラの
性能向上が図れる。
As described above, according to the present invention, the temperature of each section of the bed in the furnace is kept uniform even if it is subjected to a disturbance due to a change in the bulk density of the powdered fuel, and the performance of the boiler is improved. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の炉内ベッド温度制御装置の
構成ブロック図である。
FIG. 1 is a configuration block diagram of an in-furnace bed temperature control device according to an embodiment of the present invention.

【図2】同実施例の作用説明図である。FIG. 2 is an explanatory view of the operation of the same embodiment.

【図3】同実施例および従来例の流動床ボイラの系統図
である。
FIG. 3 is a system diagram of a fluidized bed boiler of the same example and a conventional example.

【図4】同従来例の炉内ベッド温度制御装置の構成ブロ
ック図である。
FIG. 4 is a block diagram showing a configuration of an in-furnace bed temperature control device of the conventional example.

【符号の説明】[Explanation of symbols]

01 ホッパ 02、03 フィーダ 04、05 分配器 06、07 搬送管 08 流動床ボイラ火炉本体 1、2 温度センサ 3 平均演算器 4 平均温度減算器 5、10 PIコントローラ 7 加算器 8、21、22 減算器 9、25、26 加算器 11、12 設定器 13、14 掛算器 15、16 回転操作器 19、20 回転数計 23、24 関数発生器 27 温度設定器 01 Hopper 02, 03 Feeder 04, 05 Distributor 06, 07 Conveying pipe 08 Fluidized bed boiler furnace body 1, 2 Temperature sensor 3 Average calculator 4 Average temperature subtractor 5, 10 PI controller 7 Adder 8, 21, 22 Subtraction Device 9, 25, 26 Adder 11, 12 Setting device 13, 14 Multiplier 15, 16 Rotating operation device 19, 20 Revolution counter 23, 24 Function generator 27 Temperature setting device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉内のベッド部分が複数に区分されてい
る流動床ボイラ火炉本体と、上記各区分へ粉体燃料をそ
れぞれ供給する燃料フィーダと、上記各区分に設けられ
た温度センサと、同温度センサの出力を受ける平均演算
器と、温度設定器と、上記平均演算器および温度設定器
の出力を受ける平均温度減算器と、上記燃料フィーダの
回転数計と、上記平均温度減算器および回転数計の出力
ならびに燃料要求信号を受け上記各燃料フィーダへ回転
数制御信号を送る回転数制御手段とを有する炉内ベッド
温度制御装置において、上記温度センサおよび温度設定
器の出力を受ける減算器と、同減算器の出力を受け回転
数補正信号を出力する関数発生器と、同関数発生器の出
力を受け上記回転数制御信号に加算する加算器とを備え
てなることを特徴とする炉内ベッド温度制御装置。
1. A fluidized bed boiler furnace body in which a bed portion in the furnace is divided into a plurality of parts, a fuel feeder for supplying powdered fuel to each of the above sections, and a temperature sensor provided in each of the above sections, An average calculator for receiving the output of the temperature sensor, a temperature setter, an average temperature subtractor for receiving the outputs of the average calculator and the temperature setter, a tachometer of the fuel feeder, and an average temperature subtractor, In a reactor bed temperature control device having a rotation speed control means for sending a rotation speed control signal to each of the fuel feeders, which receives the output of the rotation speed meter and a fuel request signal, a subtractor for receiving the outputs of the temperature sensor and the temperature setter. And a function generator that receives the output of the subtractor and outputs a rotation speed correction signal, and an adder that receives the output of the function generator and adds to the rotation speed control signal. In-furnace bed temperature control device.
JP4403795A 1995-03-03 1995-03-03 Controller for temperature of bed in furnace Withdrawn JPH08240302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4403795A JPH08240302A (en) 1995-03-03 1995-03-03 Controller for temperature of bed in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4403795A JPH08240302A (en) 1995-03-03 1995-03-03 Controller for temperature of bed in furnace

Publications (1)

Publication Number Publication Date
JPH08240302A true JPH08240302A (en) 1996-09-17

Family

ID=12680435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4403795A Withdrawn JPH08240302A (en) 1995-03-03 1995-03-03 Controller for temperature of bed in furnace

Country Status (1)

Country Link
JP (1) JPH08240302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446598A (en) * 2021-05-26 2021-09-28 山西河坡发电有限责任公司 Low-nitrogen combustion zone control method under full load of CFB boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446598A (en) * 2021-05-26 2021-09-28 山西河坡发电有限责任公司 Low-nitrogen combustion zone control method under full load of CFB boiler
CN113446598B (en) * 2021-05-26 2022-10-04 山西河坡发电有限责任公司 Low-nitrogen combustion zone control method under full load of CFB boiler

Similar Documents

Publication Publication Date Title
CN1202371C (en) Automatic regulating system for combustion process of circulating fluid bed in boiler
JPH08240302A (en) Controller for temperature of bed in furnace
JPH079288B2 (en) Fuel supply control method for solid combustion device
AU2011202500A1 (en) Control systems and methods for controlling a dry feed system to convey a solid fuel
JP3797689B2 (en) Combustion control device for coal fired boiler
JP5627566B2 (en) Control device and control method for coal-fired thermal power plant
EP1596977B1 (en) Method and plant for controlling the process conditions in a reactor
JPH048337B2 (en)
CN111830831A (en) Control optimization method and control optimization system applying multi-term self-adaptive dynamic feedforward
JPH01219401A (en) Method of adjusting generation of steam of combustion apparatus
JPH10231708A (en) Combustion control method in coal-fired thermal power generating plant
JP3787901B2 (en) Device for calculating the amount of coal output during normal shutdown of a coal fired boiler
US3659829A (en) Method for adjustment of the heat generating process in a rotary kiln with a heat exchanger etc.
SU1710947A1 (en) Method of automatic combustion control in furnace with recirculating fluidized bed
JPS6115578A (en) Fan motor controlling method in combustion controller
JP3769822B2 (en) Method and apparatus for calculating coal output when purging mill residue of coal fired boiler
JP3699216B2 (en) Metering device
JPS5770321A (en) Controlling method of boiler
JPS59164823A (en) Moving bed drum type coal burning boiler
JP2749588B2 (en) Fuel control method for coal-fired boiler
SU1161802A1 (en) Method of automatic control of process of drying loose materials
JPH0310380B2 (en)
JPH03211310A (en) Method of charging desulfurizing agent in desulfruization of furnace inside and its device
SU1281829A1 (en) Automatic control system for process of burning in steam generator
JPS5866715A (en) Control method of combustion for coal-fired boiler

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507