JP3769822B2 - Method and apparatus for calculating coal output when purging mill residue of coal fired boiler - Google Patents

Method and apparatus for calculating coal output when purging mill residue of coal fired boiler Download PDF

Info

Publication number
JP3769822B2
JP3769822B2 JP17931196A JP17931196A JP3769822B2 JP 3769822 B2 JP3769822 B2 JP 3769822B2 JP 17931196 A JP17931196 A JP 17931196A JP 17931196 A JP17931196 A JP 17931196A JP 3769822 B2 JP3769822 B2 JP 3769822B2
Authority
JP
Japan
Prior art keywords
coal
output
signal
mill
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17931196A
Other languages
Japanese (ja)
Other versions
JPH1026343A (en
Inventor
繁一 古川
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP17931196A priority Critical patent/JP3769822B2/en
Publication of JPH1026343A publication Critical patent/JPH1026343A/en
Application granted granted Critical
Publication of JP3769822B2 publication Critical patent/JP3769822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石炭焚ボイラのミル残炭パージ時における出炭量算出方法及び装置に関するものである。
【0002】
【従来の技術】
一般に、石炭焚ボイラの場合、図3に示される如く、コールバンカ1に貯留された石炭を、モータ等の駆動装置2によって駆動される給炭機3により、石炭粉砕用のミル4へ投入し、該ミル4において粉砕された微粉炭を微粉炭管5を介してバーナ6へ空気搬送し、ボイラ7の火炉8内において燃焼させるようになっている。
【0003】
尚、図中、9はモータ等の駆動装置10によって開閉される石炭ゲートである。
【0004】
前記ミル4からボイラ7の火炉8内へ供給される石炭(微粉炭)の出炭量は、直接計測することができないため、給炭機3上に現在ある石炭の重量を図示していないロードセル等で測定すると共に、給炭機3の駆動装置2の回転数を測定し、これらの積を給炭機3からミル4へ供給される給炭量とし、該給炭量を前記ミル4からボイラ7の火炉8内へ供給されるであろう石炭の出炭量としている。
【0005】
又、前記ミル4は、一基のボイラ7に対して、通常、複数台(例えば六台)設けられており、ボイラ7の定常運転時においては、各ミル4の出炭量の合計と、ボイラ負荷指令(MWD)に基づく燃料流量指令とを比較し、該比較結果に応じて各給炭機3への給炭量指令を求め、該給炭量指令に基づいて各給炭機3の制御を行うようになっている。
【0006】
一方、例えば、一台のミル4に何らかの異常が発生した場合、該ミル4と、それに対応する給炭機3とを緊急停止させるが、何らかの異常が発生したミル4をそのまま放置しておくと、ミル4内に残った石炭が発火する可能性があるため、ミル4の緊急停止後、ミル4内に残った石炭を火炉8内へパージする、いわゆる残炭パージを行う必要がある。
【0007】
しかしながら、前述の如く、一台のミル4を緊急停止した後、残りの複数台(例えば五台)のミル4からボイラ7の火炉8内へ供給される石炭の出炭量がバランスしている状態で、緊急停止したミル4の残炭パージを行った場合、前記燃料流量指令を上回る必要以上の石炭がボイラ7の火炉8内へ供給されてしまうこととなり、燃料過多となって排ガスO2が低下したり、蒸気温度が上昇する虞れがあった。
【0008】
このため、従来においては、図4及び図5に示される如く、定常運転時には給炭機3からミル4へ投入される給炭量11をそのまま信号12として出力する(図中、b側に切り換えられる)一方、ミルトリップ時には給炭機3停止時点での給炭量11をホールドして残炭量を表わす信号12として出力する(図中、a側に切り換えられる)切換器13と、
ミルトリップ後の残炭パージミル起動指令14が出力された時点から所要時間(t[分])の間だけ“1”の信号15を出力するタイマ16と、
定常運転時には信号発生器17から出力される“0”の信号18を信号19として出力する(図中、b側に切り換えられる)一方、ミルトリップ後の残炭パージミル起動時には前記切換器13から出力される信号12を、前記タイマ16で設定された時間の間だけ信号19として出力する(図中、a側に切り換えられる)切換器20と、
該切換器20から出力される信号19が変化した場合に、その信号19の変化に対し、予め設定した時間遅れが生じるよう追従させて、残炭パージ時にミル4から出炭されると予測される出炭量模擬信号21を出力する一次遅れ器22と、該一次遅れ器22から出力される出炭量模擬信号21を前記給炭機3からミル4へ投入される給炭量11に加え、出炭量23を出力する加算器24と
から出炭量算出装置を構成していた。
【0009】
前述の如き従来の出炭量算出装置の場合、定常運転時には、給炭機3からミル4へ投入される給炭量11が加算器24へ出力されると共に、該給炭量11が切換器13を経由し、そのまま信号12として切換器20へ出力されるが、該切換器20においては定常運転時には信号発生器17から出力される“0”の信号18が信号19として一次遅れ器22へ出力され、該一次遅れ器22から前記加算器24へ出力される出炭量模擬信号21は“0”となるため、加算器24からは給炭量11がそのまま出炭量23として出力される。
【0010】
一方、ミル4に何らかの異常が発生し、該ミル4と、それに対応する給炭機3とを緊急停止させた場合、図5に示される如く、給炭量11はミルトリップ時にx[ton/h]から“0”となるが、切換器13は給炭機3停止時点での給炭量11をホールドして残炭量を表わす信号12として切換器20へ出力する。
【0011】
ミルトリップ後、残炭パージミル起動指令14が出力されると、タイマ16から所要時間(t[分])の間だけ“1”の信号15が出力され、前記切換器13から出力される信号12が、前記タイマ16で設定された時間の間だけ切換器20から信号19として一次遅れ器22へ出力され、該一次遅れ器22においては、切換器20から出力される信号19の変化に対し、予め設定した時間遅れが生じるよう追従させて、残炭パージ時にミル4から出炭されると予測される出炭量模擬信号21が加算器24へ出力され、該加算器24において、前記一次遅れ器22から出力される出炭量模擬信号21が前記給炭機3からミル4へ投入される給炭量11(ミルトリップ後は“0”となっている)に加えられ、出炭量23として出力される。
【0012】
これにより、一台のミル4を緊急停止した後、残りの複数台(例えば五台)のミル4からボイラ7の火炉8内へ供給される石炭の出炭量23がバランスしている状態で、緊急停止したミル4の残炭パージを行った場合には、残炭パージによってボイラ7の火炉8内へ供給される石炭の出炭量23の分だけ、残りの複数台のミル4からボイラ7の火炉8内へ供給される石炭の出炭量23が減少される。
【0013】
【発明が解決しようとする課題】
前述の如く、残炭パージを開始してミル4から石炭が出炭される場合、その出炭量23は、残炭パージ開始からある時間経過するまでは増加して行き、その後、略一定となる状態が所定時間継続し、続いて減少して行くパターンとなるが、前述の如く、単に一次遅れ器22を設けて出炭量模擬信号21を作成するのでは、残炭パージ開始からある時間経過するまでの出炭量23増加の傾きと、出炭量23減少の傾きとを一義的に決まる同一のカーブでしか設定することができないため、実際の出炭量との誤差が大きくなり、精度的に見て充分であるとは言えず、依然として燃料過多となって排ガスO2が低下したり、蒸気温度が上昇する虞れがあり、改善の余地が残されていた。
【0014】
本発明は、斯かる実情に鑑み、残炭パージ時にミル4から出炭されると予測される出炭量23を精度よく求めることができ、燃料流量指令を上回る必要以上の石炭がボイラ7の火炉8内へ供給されてしまうことをなくし、排ガスO2の低下並びに蒸気温度の上昇を防止し得る石炭焚ボイラのミル残炭パージ時における出炭量算出方法及び装置を提供しようとするものである。
【0015】
【課題を解決するための手段】
本発明は、ミルトリップ時に給炭機3停止時点での給炭量11をホールドして残炭量とし、該残炭量に対して、時間の関数として与えられる出炭量模擬ゲイン34を掛け、残炭パージ時にミル4から出炭されると予測される出炭量23を求めることを特徴とする石炭焚ボイラのミル残炭パージ時における出炭量算出方法にかかるものである。
【0016】
又、本発明は、定常運転時には給炭機3からミル4へ投入される給炭量11をそのまま信号12として出力する一方、ミルトリップ時には給炭機3停止時点での給炭量11をホールドして残炭量を表わす信号12として出力する切換器13と、
定常運転時には信号発生器25から出力される“0”の信号26を信号30として出力する一方、ミルトリップ後の残炭パージミル起動時には信号発生器27から出力される“1”の信号28を信号30として出力する切換器29と、
該切換器29から出力される信号30が“0”から“1”へ変化した場合に、その変化率を設定値以下の範囲内に制限する処理を行って変化率補正信号32を出力する変化率制限器31と、
該変化率制限器31から出力される変化率補正信号32に基づき出炭量模擬ゲイン34を求めて出力する関数発生器33と、
該関数発生器33から出力される出炭量模擬ゲイン34を前記切換器13から出力される給炭量11の信号12に掛け、残炭パージ時にミル4から出炭されると予測される出炭量模擬信号21を出力する乗算器35と、
該乗算器35から出力される出炭量模擬信号21を前記給炭機3からミル4へ投入される給炭量11に加え、出炭量23を出力する加算器24と
を備えたことを特徴とする石炭焚ボイラのミル残炭パージ時における出炭量算出装置にかかるものである。
【0017】
上記手段によれば、以下のような作用が得られる。
【0018】
本発明の石炭焚ボイラのミル残炭パージ時における出炭量算出方法においては、ミルトリップ時に給炭機3停止時点での給炭量11をホールドして残炭量とし、該残炭量に対して、予め行ったテストデータに基づき時間の関数として与えられる出炭量模擬ゲイン34が掛けられ、残炭パージ時にミル4から出炭されると予測される出炭量23が求められる。
【0019】
又、本発明の石炭焚ボイラのミル残炭パージ時における出炭量算出装置においては、定常運転時には、給炭機3からミル4へ投入される給炭量11が加算器24へ出力されると共に、該給炭量11が切換器13を経由し、そのまま信号12として乗算器35へ出力されるが、該乗算器35には、定常運転時には信号発生器25から出力される“0”の信号26が切換器29と変化率制限器31と関数発生器33とを介して出炭量模擬ゲイン34として出力され、乗算器35から前記加算器24へ出力される出炭量模擬信号21は“0”となるため、加算器24からは給炭量11がそのまま出炭量23として出力される一方、ミル4に何らかの異常が発生し、該ミル4と、それに対応する給炭機3とを緊急停止させた場合、給炭量11はミルトリップ時に“0”となるが、切換器13は給炭機3停止時点での給炭量11をホールドして残炭量を表わす信号12として乗算器35へ出力し、ミルトリップ後、残炭パージのためにミル4が起動されると、信号発生器27から出力される“1”の信号28が切換器29から信号30として変化率制限器31へ出力され、該変化率制限器31において、“0”から“1”へ変化した切換器29からの信号30の変化率を設定値以下の範囲内に制限する処理が行われ、変化率補正信号32が関数発生器33へ出力され、該関数発生器33において前記変化率制限器31から出力される変化率補正信号32に基づき出炭量模擬ゲイン34が求められて乗算器35へ出力され、該乗算器35において、前記関数発生器33から出力される出炭量模擬ゲイン34が前記切換器13から出力される給炭量11の信号12に掛けられ、残炭パージ時にミル4から出炭されると予測される出炭量模擬信号21が前記加算器24へ出力され、該加算器24において、前記乗算器35から出力される出炭量模擬信号21が前記給炭機3からミル4へ投入される給炭量11(ミルトリップ後は“0”となっている)に加えられ、出炭量23として出力される。
【0020】
これにより、一台のミル4を緊急停止した後、残りの複数台のミル4からボイラ7の火炉8内へ供給される石炭の出炭量23がバランスしている状態で、緊急停止したミル4の残炭パージを行った場合には、残炭パージによってボイラ7の火炉8内へ供給される石炭の出炭量23の分だけ、残りの複数台のミル4からボイラ7の火炉8内へ供給される石炭の出炭量23が減少される。
【0021】
ここで、従来のように、単に一次遅れ器22を設けて出炭量模擬信号21を作成するのでは、残炭パージ開始からある時間経過するまでの出炭量23増加の傾きと、出炭量23減少の傾きとを一義的に決まる同一のカーブでしか設定することができないが、本発明の場合には、変化率制限器31と関数発生器33との組合せにより、残炭パージ開始からある時間経過するまでの出炭量23増加の傾きと、出炭量23が略一定となる状態と、出炭量23減少の傾きとをそれぞれ、実機でのテストデータに対応させた時間の関数として設定することができるため、前記加算器24から出力される出炭量23と実際の出炭量との誤差が最小限に抑えられ、燃料過多となって排ガスO2が低下したり、蒸気温度が上昇することがなくなる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図示例と共に説明する。
【0023】
図1及び図2は本発明を実施する形態の一例であって、図中、図3〜図5と同一の符号を付した部分は同一物を表わしており、29は定常運転時には信号発生器25から出力される“0”の信号26を信号30として出力する一方、ミルトリップ後の残炭パージミル起動時には信号発生器27から出力される“1”の信号28を信号30として出力する切換器、31は前記切換器29から出力される信号30が“0”から“1”へ変化した場合に、その変化率を設定値以下の範囲内に制限する処理を行って変化率補正信号32を出力する変化率制限器、33は前記変化率制限器31から出力される変化率補正信号32に基づき出炭量模擬ゲイン34を求めて出力する関数発生器、35は前記関数発生器33から出力される出炭量模擬ゲイン34を切換器13から出力される給炭量11の信号12に掛け、残炭パージ時にミル4から出炭されると予測される出炭量模擬信号21を出力する乗算器であり、該乗算器35から出力される出炭量模擬信号21を、加算器24において給炭機3からミル4へ投入される給炭量11に加え、出炭量23を出力するよう構成してある。
【0024】
尚、前記変化率制限器31の変化率と、関数発生器33の関数は、それぞれ予め行ったテストデータに基づいて設定するようになっている。
【0025】
次に、上記図示例の作動を説明する。
【0026】
定常運転時には、給炭機3からミル4へ投入される給炭量11が加算器24へ出力されると共に、該給炭量11が切換器13を経由し、そのまま信号12として乗算器35へ出力されるが、該乗算器35には、定常運転時には信号発生器25から出力される“0”の信号26が切換器29と変化率制限器31と関数発生器33とを介して出炭量模擬ゲイン34として出力され、乗算器35から前記加算器24へ出力される出炭量模擬信号21は“0”となるため、加算器24からは給炭量11がそのまま出炭量23として出力される。
【0027】
一方、ミル4に何らかの異常が発生し、該ミル4と、それに対応する給炭機3とを緊急停止させた場合、図2に示す如く、給炭量11はミルトリップ時にx[ton/h]から“0”となるが、切換器13は給炭機3停止時点での給炭量11をホールドして残炭量を表わす信号12として乗算器35へ出力する。
【0028】
ミルトリップ後、残炭パージのためにミル4が起動されると、信号発生器27から出力される“1”の信号28が切換器29から信号30として変化率制限器31へ出力され、該変化率制限器31において、“0”から“1”へ変化した切換器29からの信号30の変化率を設定値以下の範囲内に制限する処理が行われ、変化率補正信号32が関数発生器33へ出力され、該関数発生器33において前記変化率制限器31から出力される変化率補正信号32に基づき出炭量模擬ゲイン34が求められて乗算器35へ出力され、該乗算器35において、前記関数発生器33から出力される出炭量模擬ゲイン34が前記切換器13から出力される給炭量11の信号12に掛けられ、残炭パージ時にミル4から出炭されると予測される出炭量模擬信号21が前記加算器24へ出力され、該加算器24において、前記乗算器35から出力される出炭量模擬信号21が前記給炭機3からミル4へ投入される給炭量11(ミルトリップ後は“0”となっている)に加えられ、出炭量23として出力される。
【0029】
これにより、一台のミル4を緊急停止した後、残りの複数台(例えば五台)のミル4からボイラ7の火炉8内へ供給される石炭の出炭量23がバランスしている状態で、緊急停止したミル4の残炭パージを行った場合には、残炭パージによってボイラ7の火炉8内へ供給される石炭の出炭量23の分だけ、残りの複数台のミル4からボイラ7の火炉8内へ供給される石炭の出炭量23が減少される。
【0030】
ここで、従来のように、単に一次遅れ器22を設けて出炭量模擬信号21を作成するのでは、残炭パージ開始からある時間経過するまでの出炭量23増加の傾きと、出炭量23減少の傾きとを一義的に決まる同一のカーブでしか設定することができないが、本図示例の場合には、変化率制限器31と関数発生器33との組合せにより、残炭パージ開始からある時間経過するまでの出炭量23増加の傾きと、出炭量23が略一定となる状態と、出炭量23減少の傾きとをそれぞれ、実機でのテストデータに対応させた時間の関数として設定することができるため、前記加算器24から出力される出炭量23と実際の出炭量との誤差が最小限に抑えられ、燃料過多となって排ガスO2が低下したり、蒸気温度が上昇することがなくなる。
【0031】
こうして、残炭パージ時にミル4から出炭されると予測される出炭量23を精度よく求めることができ、燃料流量指令を上回る必要以上の石炭がボイラ7の火炉8内へ供給されてしまうことをなくし、排ガスO2の低下並びに蒸気温度の上昇を防止し得る。
【0032】
尚、本発明の石炭焚ボイラのミル残炭パージ時における出炭量算出方法及び装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0033】
【発明の効果】
以上、説明したように本発明の石炭焚ボイラのミル残炭パージ時における出炭量算出方法及び装置によれば、残炭パージ時にミル4から出炭されると予測される出炭量23を精度よく求めることができ、燃料流量指令を上回る必要以上の石炭がボイラ7の火炉8内へ供給されてしまうことをなくし、排ガスO2の低下並びに蒸気温度の上昇を防止し得るという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明を実施する形態の一例のブロック図である。
【図2】本発明を実施する形態の一例のタイムチャート図である。
【図3】一般的な石炭焚ボイラの石炭の供給系統を表わす概略図である。
【図4】従来の石炭焚ボイラのミル残炭パージ時における出炭量算出装置の一例を表わすブロック図である。
【図5】図4に示す従来例のタイムチャート図である。
【符号の説明】
3 給炭機
4 ミル
11 給炭量
12 信号
13 切換器
21 出炭量模擬信号
23 出炭量
24 加算器
25 信号発生器
26 信号
27 信号発生器
28 信号
29 切換器
30 信号
31 変化率制限器
32 変化率補正信号
33 関数発生器
34 出炭量模擬ゲイン
35 乗算器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for calculating the amount of coal output when purging mill residual coal in a coal fired boiler.
[0002]
[Prior art]
In general, in the case of a coal fired boiler, as shown in FIG. 3, the coal stored in the coal bunker 1 is put into a coal grinding mill 4 by a coal feeder 3 driven by a driving device 2 such as a motor. The pulverized coal pulverized in the mill 4 is conveyed by air to the burner 6 through the pulverized coal pipe 5 and burned in the furnace 8 of the boiler 7.
[0003]
In the figure, 9 is a coal gate that is opened and closed by a driving device 10 such as a motor.
[0004]
Since the amount of coal (pulverized coal) supplied from the mill 4 to the furnace 8 of the boiler 7 cannot be directly measured, a load cell that does not show the weight of coal currently on the coal feeder 3 is shown. And the rotational speed of the driving device 2 of the coal feeder 3 is measured, and the product of these is defined as the amount of coal supplied from the coal feeder 3 to the mill 4. The amount of coal output that will be supplied into the furnace 8 of the boiler 7 is used.
[0005]
Moreover, the said mill 4 is normally provided with multiple units | sets (for example, 6 units | sets) with respect to the one boiler 7, The total amount of coal output of each mill 4 at the time of the steady operation of the boiler 7, The fuel flow rate command based on the boiler load command (MWD) is compared, a coal feed amount command to each coal feeder 3 is obtained according to the comparison result, and each coal feeder 3 is determined based on the coal feed command. It comes to perform control.
[0006]
On the other hand, for example, when some abnormality occurs in one mill 4, the mill 4 and the corresponding coal feeder 3 are stopped urgently, but if the mill 4 in which some abnormality occurs is left as it is, Since the coal remaining in the mill 4 may ignite, it is necessary to perform a so-called residual coal purge in which the coal remaining in the mill 4 is purged into the furnace 8 after the emergency stop of the mill 4.
[0007]
However, as described above, after the emergency stop of one mill 4, the amount of coal discharged from the remaining plurality of (for example, five) mills 4 into the furnace 8 of the boiler 7 is balanced. In this state, when the remaining coal purge of the mill 4 that has been urgently stopped is performed, excessive coal exceeding the fuel flow rate command is supplied into the furnace 8 of the boiler 7, resulting in excessive fuel and exhaust gas O 2. There was a risk that the temperature would decrease or the steam temperature would rise.
[0008]
For this reason, conventionally, as shown in FIGS. 4 and 5, during the steady operation, the amount of coal feed 11 fed from the coal feeder 3 to the mill 4 is output as a signal 12 as it is (switched to the b side in the figure). On the other hand, at the time of a mill trip, the coal feeder 3 at the time of stopping the coal feeder 3 is held and output as a signal 12 representing the remaining coal amount (switched to the a side in the figure);
A timer 16 that outputs a signal 15 of “1” only during a required time (t [minutes]) from the time when the remaining carbon purge mill start command 14 is output after the mill trip;
During steady operation, a “0” signal 18 output from the signal generator 17 is output as a signal 19 (switched to the “b” side in the figure). On the other hand, when the residual coal purge mill is started after the mill trip, the signal is output from the switch 13. A switch 20 for outputting the signal 12 to be performed as a signal 19 for a time set by the timer 16 (switched to the a side in the figure);
When the signal 19 output from the changer 20 changes, it is predicted that the change of the signal 19 follows the change so that a preset time delay occurs, and that the coal is discharged from the mill 4 at the time of the remaining coal purge. A primary delay device 22 for outputting a coal output simulation signal 21 and a coal output simulation signal 21 output from the primary delay device 22 are added to the coal supply amount 11 fed from the coal feeder 3 to the mill 4. The coal output calculation device is composed of the adder 24 that outputs the coal output 23.
[0009]
In the case of the conventional coal output calculation device as described above, during steady operation, the coal supply amount 11 input from the coal feeder 3 to the mill 4 is output to the adder 24 and the coal supply amount 11 is switched to the switch. 13, the signal 12 is output as it is to the switcher 20. In the switcher 20, the “0” signal 18 output from the signal generator 17 during steady operation is supplied to the primary delay unit 22 as a signal 19. Since the coal output simulation signal 21 output from the first-order lag device 22 to the adder 24 is “0”, the coal supply amount 11 is directly output from the adder 24 as the coal output 23. .
[0010]
On the other hand, when an abnormality occurs in the mill 4 and the mill 4 and the corresponding coal feeder 3 are stopped urgently, as shown in FIG. 5, the coal supply amount 11 is x [ton / h] changes from “0” to “0”, but the switcher 13 holds the coal supply amount 11 when the coal feeder 3 is stopped and outputs it to the switcher 20 as a signal 12 representing the remaining coal amount.
[0011]
When the remaining coal purge mill start command 14 is output after the mill trip, a signal 15 of “1” is output from the timer 16 only for a required time (t [minutes]), and the signal 12 output from the switcher 13. Is output from the switcher 20 to the first-order lag device 22 as a signal 19 for the time set by the timer 16, and the first-order lag device 22 responds to a change in the signal 19 output from the switcher 20. Following a preset time delay, a coal output simulation signal 21 predicted to be output from the mill 4 at the time of the remaining coal purge is output to the adder 24. In the adder 24, the primary delay is output. The coal output simulation signal 21 output from the vessel 22 is added to the coal supply amount 11 (“0” after the mill trip) input from the coal feeder 3 to the mill 4, and the coal output 23 Is output as
[0012]
Thereby, after the emergency stop of one mill 4, the coal output amount 23 supplied to the furnace 8 of the boiler 7 from the remaining plural (for example, five) mills 4 is balanced. When the remaining coal purge of the mill 4 which has been urgently stopped is performed, the boilers are supplied from the remaining mills 4 by the amount of coal output 23 of the coal supplied into the furnace 8 of the boiler 7 by the remaining coal purge. 7 is reduced in the coal output amount 23 supplied to the furnace 8.
[0013]
[Problems to be solved by the invention]
As described above, when the remaining coal purge is started and coal is discharged from the mill 4, the output amount 23 increases until a certain time has elapsed from the start of the remaining coal purge, and then becomes substantially constant. This state continues for a predetermined time and then decreases. However, as described above, when the primary output delay unit 22 is simply provided to generate the coal output simulation signal 21, a certain period of time from the start of the residual coal purge. Since the slope of the increase in the coal output 23 and the slope of the decrease in the coal output 23 can be set only with the same curve that is uniquely determined, the error from the actual coal output increases. In terms of accuracy, this is not sufficient, and there is still a possibility of improvement because there is a possibility that exhaust gas O 2 may decrease due to excessive fuel and the steam temperature may increase.
[0014]
In view of such circumstances, the present invention can accurately determine the coal output 23 that is predicted to be output from the mill 4 during the residual coal purge, and the coal more than necessary exceeding the fuel flow command is included in the boiler 7. It is intended to provide a method and apparatus for calculating the amount of coal output at the time of purging the mill residual coal of a coal fired boiler, which can prevent supply to the furnace 8 and prevent a reduction in exhaust gas O 2 and an increase in steam temperature. is there.
[0015]
[Means for Solving the Problems]
The present invention holds the coal supply amount 11 when the coal feeder 3 is stopped during a mill trip to obtain a residual coal amount, and multiplies the residual coal amount by a coal output simulation gain 34 given as a function of time. The present invention relates to a method for calculating the amount of coal discharged at the time of the remaining coal purge of a coal fired boiler, characterized in that the amount of coal output 23 expected to be discharged from the mill 4 during the remaining coal purge is obtained.
[0016]
Further, according to the present invention, the coal supply amount 11 input from the coal feeder 3 to the mill 4 is output as a signal 12 as it is during steady operation, while the coal supply amount 11 when the coal feeder 3 is stopped is held during a mill trip. And a switch 13 for outputting as a signal 12 representing the amount of remaining coal,
During steady operation, a “0” signal 26 output from the signal generator 25 is output as a signal 30, while a “1” signal 28 output from the signal generator 27 is output at the start of the remaining coal purge mill after the mill trip. A switch 29 for outputting as 30;
When the signal 30 output from the switch 29 changes from “0” to “1”, the change is performed so that the rate of change is limited to a range below the set value and the rate of change correction signal 32 is output. Rate limiter 31;
A function generator 33 that calculates and outputs a coal output simulation gain 34 based on the change rate correction signal 32 output from the change rate limiter 31;
The coal output simulation gain 34 output from the function generator 33 is multiplied by the signal 12 of the coal supply amount 11 output from the switch 13, and the output expected to be output from the mill 4 during the remaining coal purge. A multiplier 35 for outputting a coal quantity simulation signal 21;
A coal output simulation signal 21 output from the multiplier 35 is added to the coal supply amount 11 input from the coal feeder 3 to the mill 4, and an adder 24 that outputs a coal output 23 is provided. The present invention relates to a coal output calculation device at the time of mill residual coal purge of a coal fired boiler.
[0017]
According to the above means, the following operation can be obtained.
[0018]
In the method for calculating the coal output when purging the mill residual coal of the coal fired boiler of the present invention, the coal supply amount 11 at the time when the coal feeder 3 is stopped is held during the mill trip to obtain the residual coal amount. On the other hand, a coal output simulation gain 34 given as a function of time based on the test data performed in advance is multiplied to obtain a coal output 23 that is predicted to be output from the mill 4 during the remaining coal purge.
[0019]
Moreover, in the coal discharge amount calculation apparatus at the time of purge of mill residual coal of the coal fired boiler according to the present invention, the coal supply amount 11 input from the coal feeder 3 to the mill 4 is output to the adder 24 during the steady operation. At the same time, the coal supply amount 11 passes through the switch 13 and is output as it is to the multiplier 35 as the signal 12, but the multiplier 35 receives “0” output from the signal generator 25 during steady operation. A signal 26 is output as a coal output simulation gain 34 via a switch 29, a change rate limiter 31, and a function generator 33, and a coal output simulation signal 21 output from the multiplier 35 to the adder 24 is Since it becomes “0”, the coal supply amount 11 is output as it is as the coal output amount 23 from the adder 24, while some abnormality occurs in the mill 4, and the mill 4 and the corresponding coal feeder 3 When the emergency stop is performed, the coal supply amount is 11 However, the changer 13 holds the coal supply amount 11 when the coal feeder 3 is stopped and outputs it to the multiplier 35 as a signal 12 indicating the residual coal amount. When the mill 4 is started for charcoal purging, a signal “1” 28 output from the signal generator 27 is output from the switch 29 to the change rate limiter 31 as a signal 30, and the change rate limiter 31. , The process of limiting the rate of change of the signal 30 from the switch 29 that has changed from “0” to “1” within the range below the set value is performed, and the rate of change correction signal 32 is output to the function generator 33. The function generator 33 obtains a coal output amount simulation gain 34 based on the change rate correction signal 32 output from the change rate limiter 31 and outputs it to the multiplier 35, and the multiplier 35 generates the function generation. Of coal output output from the vessel 33 The in-34 is multiplied by the signal 12 of the coal supply amount 11 output from the switch 13, and a coal output simulation signal 21 that is predicted to be output from the mill 4 during the remaining coal purge is output to the adder 24. In the adder 24, the coal output simulation signal 21 output from the multiplier 35 becomes the coal supply amount 11 (“0” after the mill trip) input from the coal feeder 3 to the mill 4. And output as a coal output 23.
[0020]
Thus, after the emergency stop of one of the mills 4, the emergency stop mill in a state where the coal output 23 supplied to the furnace 8 of the boiler 7 from the remaining plurality of mills 4 is balanced. When the remaining coal purge of No. 4 is performed, the remaining coal is supplied from the remaining plurality of mills 4 to the furnace 8 of the boiler 7 by the amount of coal output 23 supplied into the furnace 8 of the boiler 7 by the remaining coal purge. The coal output 23 of coal supplied to is reduced.
[0021]
Here, as in the prior art, the primary delay unit 22 is simply provided to generate the coal output simulation signal 21. The slope of the increase in the coal output 23 from the start of the residual coal purge until a certain time elapses, and the coal output The slope of the decrease in the amount 23 can be set only with the same curve that is uniquely determined. In the case of the present invention, the combination of the change rate limiter 31 and the function generator 33 allows the start of the residual coal purge. A function of time in which the slope of the coal output 23 increase until a certain time elapses, the state where the coal output 23 becomes substantially constant, and the slope of the decrease of the coal output 23 correspond to the test data in the actual machine, respectively. Therefore, an error between the coal output amount 23 output from the adder 24 and the actual coal output amount is minimized, the fuel is excessive, and the exhaust gas O 2 is reduced. The temperature will not rise.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
1 and 2 show an example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 3 to 5 denote the same components, and 29 is a signal generator during steady operation. A switch that outputs the signal 26 of “0” output from the signal generator 25 as a signal 30 while outputting the signal 28 of “1” output from the signal generator 27 at the start of the remaining coal purge mill after the mill trip. , 31 when the signal 30 output from the switch 29 changes from “0” to “1”, the rate of change is limited to a range equal to or less than the set value to change the rate of change correction signal 32. An output change rate limiter 33, a function generator 35 for obtaining and outputting a coal output simulation gain 34 based on the change rate correction signal 32 output from the change rate limiter 31, and 35 an output from the function generator 33 Coal output simulation gain 3 Is a multiplier that outputs a coal output simulation signal 21 that is predicted to be output from the mill 4 during a residual coal purge. A coal output simulation signal 21 output from 35 is added to a coal supply amount 11 input from the coal feeder 3 to the mill 4 by an adder 24, and a coal output 23 is output.
[0024]
The change rate of the change rate limiter 31 and the function of the function generator 33 are set based on previously performed test data.
[0025]
Next, the operation of the illustrated example will be described.
[0026]
At the time of steady operation, the amount 11 supplied to the mill 4 from the coal feeder 3 is output to the adder 24, and the amount 11 supplied via the switch 13 is directly sent to the multiplier 35 as a signal 12. The multiplier 35 receives a “0” signal 26 output from the signal generator 25 during steady operation via a switch 29, a change rate limiter 31, and a function generator 33. Since the coal output simulation signal 21 output as the amount simulation gain 34 and output from the multiplier 35 to the adder 24 is “0”, the coal supply amount 11 from the adder 24 is directly used as the coal output 23. Is output.
[0027]
On the other hand, when an abnormality occurs in the mill 4 and the mill 4 and the corresponding coal feeder 3 are urgently stopped, as shown in FIG. 2, the coal supply amount 11 is x [ton / h during the mill trip. ] Changes from “0” to “0”, the switcher 13 holds the coal supply amount 11 when the coal feeder 3 is stopped and outputs it to the multiplier 35 as a signal 12 representing the remaining coal amount.
[0028]
After the mill trip, when the mill 4 is started to purge the remaining coal, a signal 28 of “1” output from the signal generator 27 is output as a signal 30 from the switch 29 to the change rate limiter 31, In the rate-of-change limiter 31, processing is performed to limit the rate of change of the signal 30 from the switch 29 that has changed from “0” to “1” within a range below the set value, and the rate-of-change correction signal 32 is generated as a function. The function generator 33 obtains the coal output amount simulation gain 34 based on the change rate correction signal 32 output from the change rate limiter 31 and outputs it to the multiplier 35, and the multiplier 35. , The coal output simulation gain 34 output from the function generator 33 is multiplied by the signal 12 of the coal supply amount 11 output from the switch 13, and it is predicted that the coal will be output from the mill 4 during the remaining coal purge. Of the amount of coal produced 21 is output to the adder 24. In the adder 24, the coal output simulation signal 21 output from the multiplier 35 is supplied to the mill 4 from the coal feeder 3 (mill trip). After that, it is “0”) and is output as a coal output 23.
[0029]
Thereby, after the emergency stop of one mill 4, the coal output amount 23 supplied to the furnace 8 of the boiler 7 from the remaining plural (for example, five) mills 4 is balanced. When the remaining coal purge of the mill 4 which has been urgently stopped is performed, the boilers are supplied from the remaining mills 4 by the amount of coal output 23 of the coal supplied into the furnace 8 of the boiler 7 by the remaining coal purge. 7 is reduced in the coal output amount 23 supplied to the furnace 8.
[0030]
Here, as in the prior art, the primary delay unit 22 is simply provided to generate the coal output simulation signal 21. The slope of the increase in the coal output 23 from the start of the residual coal purge until a certain time elapses, and the coal output The slope of the decrease in the amount 23 can be set only with the same curve that is uniquely determined, but in the case of the illustrated example, the remaining coal purge starts by the combination of the change rate limiter 31 and the function generator 33. The time when the slope of the increase in coal output 23 until a certain time elapses, the state where the coal output 23 becomes substantially constant, and the slope of decrease in the coal output 23 are respectively corresponding to the test data in the actual machine. Since it can be set as a function, the error between the coal output amount 23 output from the adder 24 and the actual coal output amount is minimized, the fuel is excessive, and the exhaust gas O 2 is reduced. Steam temperature will not rise.
[0031]
In this way, the coal output 23 predicted to be output from the mill 4 during the remaining coal purge can be accurately obtained, and more coal than is necessary exceeding the fuel flow rate command is supplied into the furnace 8 of the boiler 7. This can prevent the exhaust gas O 2 from decreasing and the steam temperature from rising.
[0032]
It should be noted that the coal output amount calculation method and apparatus at the time of purging the mill residual coal of the coal fired boiler of the present invention are not limited to the above illustrated examples, and various modifications can be made without departing from the scope of the present invention. Of course, it can be added.
[0033]
【The invention's effect】
As described above, according to the coal output amount calculation method and apparatus at the time of the remaining coal purge of the coal fired boiler according to the present invention, the output amount 23 predicted to be discharged from the mill 4 at the remaining coal purge is calculated. An excellent effect of being able to be obtained with high accuracy and preventing excessive coal exceeding the fuel flow rate command from being supplied into the furnace 8 of the boiler 7 and preventing reduction in exhaust gas O 2 and increase in steam temperature. Can be played.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an example of an embodiment of the present invention.
FIG. 2 is a time chart illustrating an example of an embodiment of the present invention.
FIG. 3 is a schematic diagram showing a coal supply system of a general coal fired boiler.
FIG. 4 is a block diagram showing an example of a coal output calculation device at the time of purging mill residual coal of a conventional coal fired boiler.
5 is a time chart of the conventional example shown in FIG.
[Explanation of symbols]
3 Coal feeder 4 Mill 11 Coal feed amount 12 Signal 13 Switcher 21 Coal output amount simulation signal 23 Coal output amount 24 Adder 25 Signal generator 26 Signal 27 Signal generator 28 Signal 29 Switcher 30 Signal 31 Change rate limiter 32 Change rate correction signal 33 Function generator 34 Coal output simulation gain 35 Multiplier

Claims (2)

ミルトリップ時に給炭機(3)停止時点での給炭量(11)をホールドして残炭量とし、該残炭量に対して、時間の関数として与えられる出炭量模擬ゲイン(34)を掛け、残炭パージ時にミル(4)から出炭されると予測される出炭量(23)を求めることを特徴とする石炭焚ボイラのミル残炭パージ時における出炭量算出方法。Holding the coal supply amount (11) when the coal feeder (3) is stopped during the mill trip to obtain a residual coal amount, and a coal output simulation gain (34) given as a function of time with respect to the residual coal amount And calculating a coal output amount at the time of the remaining coal purge of the coal fired boiler, wherein a coal output amount (23) predicted to be output from the mill (4) at the time of residual coal purge is obtained. 定常運転時には給炭機(3)からミル(4)へ投入される給炭量(11)をそのまま信号(12)として出力する一方、ミルトリップ時には給炭機(3)停止時点での給炭量(11)をホールドして残炭量を表わす信号(12)として出力する切換器(13)と、
定常運転時には信号発生器(25)から出力される“0”の信号(26)を信号(30)として出力する一方、ミルトリップ後の残炭パージミル起動時には信号発生器(27)から出力される“1”の信号(28)を信号(30)として出力する切換器(29)と、
該切換器(29)から出力される信号(30)が“0”から“1”へ変化した場合に、その変化率を設定値以下の範囲内に制限する処理を行って変化率補正信号(32)を出力する変化率制限器(31)と、
該変化率制限器(31)から出力される変化率補正信号(32)に基づき出炭量模擬ゲイン(34)を求めて出力する関数発生器(33)と、
該関数発生器(33)から出力される出炭量模擬ゲイン(34)を前記切換器(13)から出力される給炭量(11)の信号(12)に掛け、残炭パージ時にミル(4)から出炭されると予測される出炭量模擬信号(21)を出力する乗算器(35)と、
該乗算器(35)から出力される出炭量模擬信号(21)を前記給炭機(3)からミル(4)へ投入される給炭量(11)に加え、出炭量(23)を出力する加算器(24)と
を備えたことを特徴とする石炭焚ボイラのミル残炭パージ時における出炭量算出装置。
During steady operation, the amount of coal feed (11) input from the coal feeder (3) to the mill (4) is output as it is as a signal (12), while during the mill trip, the coal feeder when the coal feeder (3) is stopped. A switch (13) for holding the amount (11) and outputting it as a signal (12) representing the amount of remaining coal;
A signal (26) of “0” output from the signal generator (25) is output as a signal (30) during steady operation, while it is output from the signal generator (27) when the remaining coal purge mill is started after the mill trip. A switch (29) that outputs a signal (28) of "1" as a signal (30);
When the signal (30) output from the switch (29) changes from "0" to "1", a process for limiting the change rate to a range equal to or less than a set value is performed to change the change rate correction signal ( 32) output rate limiter (31),
A function generator (33) for obtaining and outputting a coal output simulation gain (34) based on the change rate correction signal (32) output from the change rate limiter (31);
The coal output simulation gain (34) output from the function generator (33) is multiplied by the signal (12) of the coal supply amount (11) output from the switch (13), and the mill ( A multiplier (35) for outputting a coal output simulation signal (21) predicted to be output from 4);
The coal output simulation signal (21) output from the multiplier (35) is added to the coal supply amount (11) input from the coal feeder (3) to the mill (4), and the coal output (23). And an adder (24) for outputting coal, a coal output calculation device at the time of mill residual coal purge of a coal fired boiler.
JP17931196A 1996-07-09 1996-07-09 Method and apparatus for calculating coal output when purging mill residue of coal fired boiler Expired - Fee Related JP3769822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17931196A JP3769822B2 (en) 1996-07-09 1996-07-09 Method and apparatus for calculating coal output when purging mill residue of coal fired boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17931196A JP3769822B2 (en) 1996-07-09 1996-07-09 Method and apparatus for calculating coal output when purging mill residue of coal fired boiler

Publications (2)

Publication Number Publication Date
JPH1026343A JPH1026343A (en) 1998-01-27
JP3769822B2 true JP3769822B2 (en) 2006-04-26

Family

ID=16063621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17931196A Expired - Fee Related JP3769822B2 (en) 1996-07-09 1996-07-09 Method and apparatus for calculating coal output when purging mill residue of coal fired boiler

Country Status (1)

Country Link
JP (1) JP3769822B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234219B (en) * 2013-04-24 2016-02-24 广东电网公司电力科学研究院 Pulverized-coal fired boiler changes the surrounding air amount adjustment method after coal-fired kind and system
CN104238494B (en) * 2014-07-29 2017-12-22 国家电网公司 Fired power generating unit Limestone control method based on power grid frequency modulation peak regulation

Also Published As

Publication number Publication date
JPH1026343A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
JP4594376B2 (en) Gas heating value control method and gas heating value control device
CA2573015A1 (en) Process for operating a continuous steam generator
JP3769822B2 (en) Method and apparatus for calculating coal output when purging mill residue of coal fired boiler
JP3787901B2 (en) Device for calculating the amount of coal output during normal shutdown of a coal fired boiler
JP3785706B2 (en) Method and apparatus for calculating coal output at the start of mill residue in coal fired boiler
JP3831998B2 (en) Coal amount calculation device at the time of normal start-up of coal fired boiler
JP2006046874A (en) Drum level control system
JPH0762525B2 (en) Boiler combustion control device
JP3797689B2 (en) Combustion control device for coal fired boiler
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JP2002195551A (en) Device for compensating measurement of quantity of coal produced by lateral mill
JPH0988631A (en) Gas fuel burning gas turbine misfire preventing method
JPH08284614A (en) Main steam pressure control device for steam generating plant
JP2906722B2 (en) Boiler drum level control method and control device
JPH10288301A (en) Apparatus for correcting fuel calorie of coal-fired boiler
WO2021176525A1 (en) Correlation deriving method and correlation deriving device
JPH10231708A (en) Combustion control method in coal-fired thermal power generating plant
JP3094847B2 (en) Water supply method to waste heat boiler of fluidized bed waste incinerator
JP2008241048A (en) Operation method and device for gas burning boiler
WO2003102472A1 (en) Method and apparatus in connection with a power boiler
JPS60216829A (en) Denitration apparatus
JP2000130741A (en) Method and device for controlling output of coal- burning thermal power plant
JP2003065083A (en) Power generating device and its operation control method
JP3866860B2 (en) Combustion control method in stoker-type incineration plant with boiler turbine generator
JP3094848B2 (en) Water supply method to waste heat boiler of fluidized bed waste incinerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees