JPH0823962A - Device for measuring number of viable microbes and spraying machine therefor - Google Patents
Device for measuring number of viable microbes and spraying machine thereforInfo
- Publication number
- JPH0823962A JPH0823962A JP18905994A JP18905994A JPH0823962A JP H0823962 A JPH0823962 A JP H0823962A JP 18905994 A JP18905994 A JP 18905994A JP 18905994 A JP18905994 A JP 18905994A JP H0823962 A JPH0823962 A JP H0823962A
- Authority
- JP
- Japan
- Prior art keywords
- sprayer
- reagent
- membrane filter
- cell count
- viable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Special Spraying Apparatus (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、検体中の生菌数を迅速
に測定する装置に関する。より詳しくは該装置中の試薬
噴霧機の改善とそれに用いられる試薬添加用給液具に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for rapidly measuring the viable cell count in a sample. More specifically, the present invention relates to an improvement of a reagent sprayer in the apparatus and a reagent addition liquid supply tool used therefor.
【0002】[0002]
【従来の技術】食料品、飲料、化粧品、半導体等の分野
に於いては製造工程中もしくは製品中の生菌数の測定が
極めて重要である。従来はこの生菌数の検出に寒天平板
法が主に用いられていたが、より迅速で簡便な方法が強
く希求されていたのであり、その要望に応えて、近年、
メンブレンフィルター法とバイオルミネッセンス発光技
術さらにそれに微弱光検出技術を巧みに組み合わせた微
生物迅速検出装置が開発され、利用されている。2. Description of the Related Art In the fields of foods, beverages, cosmetics, semiconductors, etc., it is extremely important to measure the viable cell count during the manufacturing process or in the products. Conventionally, the agar plate method was mainly used to detect the viable cell count, but there was a strong demand for a faster and simpler method, and in response to that request, in recent years,
A rapid detection device for microorganisms has been developed and used by skillfully combining the membrane filter method, bioluminescence emission technology, and weak light detection technology.
【0003】すなわち、その方法は本出願人が発明し先
に出願した(特願平3−40615号、PCT/JP9
2/00145、及び特願平5−328995号等)親
水性メンブレンフィルターで検体を濾過し、生菌を補捉
した後、抽出剤、次いで発光試薬を噴霧し、高感度の発
光量測定システムにより生菌数を測定する方法である。
そして、この方法を行うための便利な装置が本出願人に
よってすでに市販され利用されているのである〔日本ミ
リポア社製、RMDS「微生物迅速検出装置」(商品
名)〕。上記微生物迅速検出装置の出現によって、従来
に比べ大巾に生菌数の測定が簡便、迅速、正確になっ
た。That is, the method was invented by the present applicant and filed earlier (Japanese Patent Application No. 3-40615, PCT / JP9).
(2/00145, Japanese Patent Application No. 5-328995, etc.) After filtering the sample with a hydrophilic membrane filter to capture viable bacteria, an extractant and then a luminescent reagent are sprayed, and a highly sensitive luminescence measurement system is used. This is a method of measuring the number of viable bacteria.
A convenient device for carrying out this method has already been marketed and used by the present applicant [RMDS "microorganism rapid detection device" (trade name) manufactured by Nippon Millipore Co., Ltd.]. With the advent of the above-mentioned rapid microorganism detecting device, the measurement of the viable cell count has become simpler, faster, and more accurate than ever before.
【0004】さらに本出願人は、湿潤剤で処理された疎
水性膜が特定の条件下で使用すると極めて優れているこ
とを見出した。すなわち疎水性膜または撥水性の強い親
水性濾過膜を用いて生菌を含む液体を濾過して菌体を濾
過膜に補捉し、抽出試薬、発光試薬を噴霧して菌体に接
触させることにより、検出感度を著しく高め、細菌を濾
過補捉後培養することなしに明瞭な輝点として直ちに検
出する方法を考案した(特願平5−44397号)。The Applicant has further found that hydrophobic membranes treated with a wetting agent are very good for use under certain conditions. That is, a liquid containing viable bacteria is filtered using a hydrophobic membrane or a hydrophilic membrane having strong water repellency to capture the cells in the filtration membrane, and an extraction reagent and a luminescent reagent are sprayed to contact the cells. The inventors have devised a method in which the detection sensitivity is remarkably increased and bacteria are immediately detected as clear bright spots without culturing after capture by filtration (Japanese Patent Application No. 5-44397).
【0005】この方法では抽出試薬及び発光試薬を微量
噴霧すると、表面張力によりそれらの試薬が超微粒子状
のまま生菌の付着点に付着し、さらに抽出された発光成
分が拡散しないで超微粒子状で保持され発光させること
ができる。この場合、これらの試薬は直径20μm以下
の超微粒子で、且つ超微量噴霧であることが極めて重要
になる。それ故さらなる改良がその試薬噴霧化部に求め
られていたのである。In this method, when a small amount of the extraction reagent and the luminescent reagent are sprayed, the reagents remain in the form of ultrafine particles due to the surface tension and adhere to the attachment points of the live bacteria, and the extracted luminescent components do not diffuse and become ultrafine particles. It can be held by and can emit light. In this case, it is extremely important that these reagents are ultrafine particles having a diameter of 20 μm or less, and that they are ultratrace amounts of spray. Therefore, further improvement was required for the reagent atomization section.
【0006】すなわち、上記装置に於いてはフィルター
上に補捉した生菌のアデノシン−三−燐酸(以下ATP
という)を抽出するための抽出剤やルシフェリン−ルシ
フェラーゼ発光試薬液を噴霧する必要があり、そのため
これらの噴霧に従来より各種のスプレーやアトマイザー
或いは従来型の超音波式噴霧機等が用いられてきたので
あるが、生菌数が少ない場合(102 個以下/膜)等で
はより精密な微量噴霧が必要であり、又、使用する発光
試薬が高価なので、できるだけ微量の噴霧で測定効果が
得られるような噴霧方法と噴霧機の開発が希求されてい
たのである。That is, in the above apparatus, live adenosine-3-phosphate (hereinafter referred to as ATP) captured on the filter is used.
It is necessary to spray an extractant or a luciferin-luciferase luminescence reagent solution for extracting), and therefore various sprays and atomizers or conventional ultrasonic sprayers have been used for these sprays. However, when the viable cell count is small (10 2 or less / membrane), a more precise microscopic spray is required, and since the luminescent reagent used is expensive, the measurement effect can be obtained with as little spray as possible. The development of such a spraying method and spraying machine has been desired.
【0007】[0007]
【発明が解決しようとする課題】本発明は、以上に示し
た従来技術の問題点の解決、即ち生菌数測定用の微生物
迅速検出装置に於て用いられる試薬の噴霧装置の改善
と、さらにその噴霧装置の試薬添加方法をより優れたも
のにすることを課題としてなされたものである。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, that is, an improvement of a spraying apparatus for reagents used in a rapid microorganism detecting apparatus for measuring the viable cell count, and further The object was to improve the method of adding a reagent to the spray device.
【0008】[0008]
【課題を解決するための手段】本発明者らは上記課題を
解決するため、各種の噴霧機について検討を重ねた結
果、近年開発された高性能の超音波霧化装置(株式会社
ミクニ製、超音波霧化装置、特開平4−150968号
公報)がその試薬添加方法に改良を加えれば課題の解決
のために最も好適な噴霧装置になることを見出し、本発
明を完成した。In order to solve the above-mentioned problems, the present inventors have studied various sprayers, and as a result, have recently developed a high-performance ultrasonic atomizer (manufactured by Mikuni Co., Ltd., The inventors have found that an ultrasonic atomizer, Japanese Patent Application Laid-Open No. 4-150968) can be the most suitable atomizer for solving the problem if an improvement is made to the reagent addition method, and the present invention has been completed.
【0009】即ち、本発明は、検体中の生菌を補捉する
ためのメンブレンフィルターを装着した濾過装置と生菌
を補捉したメンブレンフィルター上にATP抽出剤及び
発光試薬を噴霧せしめる多数の小孔が設けられた振動子
を配設した超音波噴霧機と発光処理されたメンブレンフ
ィルター上の発光点を高感度で検出することにより生菌
数を測定する生物発光画像解析装置からなる生菌数測定
装置を提供するものであり、且つ特に該装置中で用いる
噴霧機が優れた効果を発揮するチャンバー及び/又は給
液具を具備しているところに大きな特徴がある発明であ
る。That is, according to the present invention, a filtration device equipped with a membrane filter for capturing live bacteria in a sample and a large number of small devices for spraying an ATP extractant and a luminescent reagent on the membrane filter capturing live bacteria are provided. Viable cell count consisting of an ultrasonic atomizer equipped with a vibrator with holes and a bioluminescence image analyzer that measures the viable cell count by detecting the light emission point on the membrane filter that has been subjected to light emission with high sensitivity It is an invention that provides a measuring device, and is particularly characterized in that a sprayer used in the device is equipped with a chamber and / or a liquid supply tool that exhibits excellent effects.
【0010】以下に本発明を詳述する。まず、本発明の
生菌数迅速検出装置(システム)の全体の構成について
説明する。本発明の生菌数迅速検出システムは大別する
と三つの工程からなっている。その第1工程はメンブレ
ンフィルターで検体を濾過し、生菌をフィルター上に補
捉する)工程である。ここで用いられるメンブレンフィ
ルターとしては従来より使用されている微生物分析用メ
ンブレンフィルター、又は図5に示す疎水性区画壁4−
2で囲まれた多数の親水性区画4−1を有するフレーム
4−3付メンブレンフィルター4(特開平3−4061
5号、PCT/JP92/00145)、又は湿潤性剤
で処理された疎水性膜等が用いられる。これらのメンブ
レンフィルターは検体中の生菌を効率的に濃縮補捉する
ことができ、且つ該生菌の均一分散ができる他、次工程
でのATPの拡散稀釈も防止できるという効果がある。Hereinafter, the present invention will be described in detail. First, the overall configuration of the rapid viable cell count detection device (system) of the present invention will be described. The viable cell count rapid detection system of the present invention is roughly divided into three steps. The first step is a step of filtering the sample with a membrane filter to capture viable bacteria on the filter). The membrane filter used here is a conventionally used membrane filter for analyzing microorganisms, or the hydrophobic partition wall 4-shown in FIG.
A membrane filter 4 with a frame 4-3 having a large number of hydrophilic sections 4-1 surrounded by 2 (Japanese Patent Laid-Open No. 3-4061).
5, No. 5, PCT / JP92 / 00145), or a hydrophobic film treated with a wetting agent or the like is used. These membrane filters have the effects of efficiently concentrating and capturing live cells in a sample, capable of uniformly dispersing the live cells, and preventing diffusion dilution of ATP in the next step.
【0011】第2工程は上記工程でメンブレンフィルタ
ー上に補捉した生菌中のATPを抽出するための抽出剤
を該フィルター上に添加し、次いでそれに発光試薬を添
加して発光せしめる工程である。この工程で用いるAT
P抽出剤は本発明者等が先に発明し出願した(特開平5
−328995号)沸点が120℃以下の揮発性抽出
剤、特にメタノール又はエタノールが好ましく、発光試
薬は市販のルシフェリン−ルシフェラーゼ系発光試薬が
用いられる。このルシフェリン−ルシフェラーゼ系発光
試薬はマグネシウムイオン及び酵素の存在下でATPと
接触するとルシフェリンの酸化により発光するので、そ
の発光輝点数を測定することにより生菌数が検出される
のである。The second step is a step of adding an extractant for extracting ATP in live bacteria captured on the membrane filter in the above step onto the filter, and then adding a luminescent reagent thereto to cause luminescence. . AT used in this process
The present inventors have invented and applied for a P-extracting agent (Japanese Patent Laid-Open No. Hei 5 (1999) -58242).
(No. 328995) Volatile extractants having a boiling point of 120 ° C. or less, particularly methanol or ethanol are preferable, and commercially available luciferin-luciferase luminescent reagent is used as the luminescent reagent. This luciferin-luciferase luminescent reagent emits light by the oxidation of luciferin when contacted with ATP in the presence of magnesium ion and enzyme, and thus the viable cell count can be detected by measuring the luminescent bright spot number.
【0012】本工程のATP抽出及び発光に於ては、上
記した抽出剤及び発光試薬を、できるだけ微量で、的確
に、しかも時間をかけずに簡便に添加する必要がある。
すなわち、ATP抽出液が必要以上に添加されると抽出
されたATPが稀釈されたり、又近傍に拡散、或いは流
出して、発光点がぼやけるという問題が生じる他、残存
した抽出剤によって発光が阻害されたり、それを防ぐた
め抽出剤の揮散に時間と手間がかかるので避けなければ
ならないのである。そのため噴霧機等で注意深く適量を
噴霧添加したり、既存の超音波式噴霧機で手間をかけて
適量噴霧するよう努力していたが、両者とも散布量の調
節が難しく、且つ散布ムラが大きく、また個人差が生じ
るので熟練を要する割りには充分効果的な噴霧を得るこ
とができなかった。この点は発光試薬の添加に於ても同
様であり、特に本発明で用いる発光試薬の場合は高価で
もあるため、工業的には出来る限り少量で効果的な添加
が必要であり、それを実現する噴霧添加方法の開発が望
まれていたのである。In the ATP extraction and luminescence in this step, it is necessary to add the above-mentioned extractant and luminescent reagent in the smallest possible amount, accurately, and easily in a short time.
That is, if the ATP extract is added more than necessary, the extracted ATP may be diluted, diffused or flow out in the vicinity, and the emission point may be blurred, and the remaining extractant may inhibit the emission. In order to prevent this, it takes time and effort to volatilize the extractant, so it must be avoided. Therefore, we tried to add an appropriate amount carefully with a sprayer or the like, or tried to spray an appropriate amount with the existing ultrasonic sprayer, but it was difficult to adjust the spraying amount for both, and the spraying unevenness was large, In addition, because of individual differences, it was not possible to obtain a sufficiently effective spray although skill was required. This point is the same in the addition of the luminescent reagent, and particularly in the case of the luminescent reagent used in the present invention, it is also expensive, so it is necessary to effectively add it in a small amount as industrially possible. The development of a spray addition method for
【0013】前述の如く本発明は、第1にこの要望にこ
たえて本発明の生菌数の迅速検出方法に最適の噴霧装置
を発明したところにある。その噴霧装置は特開平4−1
50968号公報に開示されている超音波霧化装置を改
良したものである。すなわち、該特開の装置は圧電振動
子に舌片状の振動板が固定された構造を有する超音波振
動器によって発生させられる弾性振動を利用して液体を
霧化する装置であって、その振動板に多数の穴が設けら
れており、そこに液体が滴下されると、液はその穴を通
って振動板の上に出てきて微粒状で均一に霧化されるよ
うになっている。As described above, the present invention is, firstly, in response to this need, by inventing a spraying device most suitable for the method for rapidly detecting the viable cell count of the present invention. The spraying device is disclosed in Japanese Patent Laid-Open No. 4-1
This is an improvement of the ultrasonic atomizing device disclosed in Japanese Patent No. 50968. That is, the device of the above-mentioned Japanese Patent Application Laid-Open No. 11-242242 is a device for atomizing a liquid by utilizing elastic vibration generated by an ultrasonic vibrator having a structure in which a tongue-shaped vibrating plate is fixed to a piezoelectric vibrator. A large number of holes are provided in the diaphragm, and when liquid is dripped there, the liquid comes out through the holes onto the diaphragm and is atomized in fine particles. .
【0014】この超音波霧化装置は、振動部の多数の穴
の働きによって、霧の粒子が微小で均一になるという効
果があり、又霧化が効率的で低電力消費で行うことがで
き、装置も小型になるという効果をもっている。本発明
の生菌数迅速検出システムに於いて該霧化装置を採用し
たのも、それらの効果、特にその噴霧粒子が微粒状且つ
均一で、しかも効率的噴霧ができ、その装置全体が小型
になるという点が今迄の噴霧装置に比べ本発明の生菌数
検出システムで用いる噴霧装置に要求される性能により
合致していることを確認したからである。This ultrasonic atomizer has the effect that the particles of the fog become minute and uniform due to the action of the numerous holes in the vibrating section, and atomization is efficient and can be performed with low power consumption. The device also has the effect of becoming smaller. The atomizing device is adopted in the viable cell number rapid detection system of the present invention, because of its effects, in particular, the spray particles are fine and uniform, and efficient spraying is possible, and the entire device is downsized. This is because it has been confirmed that the above-mentioned point is more consistent with the performance required for the spraying device used in the viable cell count detection system of the present invention, as compared with the conventional spraying device.
【0015】しかし、上記した特開の超音波霧化装置は
もともと本発明の生菌数の迅速検出装置で用いる噴霧機
として開発されたものではなく、ネブライザー或いは加
湿器等の従来通りの噴霧機用途もしくは超音波カラーオ
ルガンといった特殊な用途を対象としていたため、本発
明の装置システムに適合せしめるためにはいくつかの改
良が必要であった。However, the above-mentioned ultrasonic atomizing device of the above-mentioned Japanese Patent Laid-Open No. 10-134242 was not originally developed as a sprayer used in the rapid detecting device for the viable cell count of the present invention, and a conventional sprayer such as a nebulizer or a humidifier. Since it was intended for a specific application, such as an application or an ultrasonic color organ, some improvements were needed to accommodate the device system of the present invention.
【0016】その1つは、抽出剤の噴霧にあっては生菌
を補捉したフィルター上に的確で且つ微量で適量の噴霧
が必要であり、そのための工夫が必要とされたことであ
る。抽出剤の噴霧は検出精度をあげるためには生菌中の
ATPを抽出できるだけの必要最小限の量が必要である
反面、多すぎるとそのATPの希釈や拡散或いは流出等
が起こったり、発光点の輪郭がぼやけたりして検出感度
が低下するので避けねばならない。発光試薬の噴霧にお
いても同様であるばかりでなく、該試薬が高価で、でき
るだけ微量で効率良く噴霧する必要があるので、的確、
且つ微量で適量の噴霧の必要性はより高いといえる。[0016] One of them is that, in the case of spraying the extractant, it is necessary to spray a proper amount of a proper amount on the filter which has captured the viable bacteria, and a device for that is required. In order to improve the detection accuracy, spraying of the extractant requires the minimum amount necessary to extract ATP in viable bacteria. On the other hand, if the amount is too large, the ATP may be diluted, diffused or outflowed, or the emission point may be increased. Since the outline of the image becomes blurred and the detection sensitivity decreases, it must be avoided. Not only in the case of spraying a luminescent reagent, but also because the reagent is expensive and it is necessary to spray efficiently in a trace amount,
Furthermore, it can be said that the necessity of spraying a proper amount in a trace amount is higher.
【0017】次にその2として、測定の精度を向上させ
るためにはできるだけ生菌補捉後の抽出および発光の工
程を短くする必要があるが、そのために、噴霧液(抽出
剤、発光試薬)の噴霧前の滞留時間(リードタイム)を
少なくし、且つ試薬液の飛び散りを防止し、均一な噴霧
を実現するための給液具の発明が必要であったのであ
る。該給液具は効率的で均一、微粒状の噴霧をするため
に振動板との接面の均一性、密着性も向上させねばなら
ず、残液量もできるだけ少ない構造のものでなけねばな
らない。Secondly, in order to improve the accuracy of the measurement, it is necessary to shorten the extraction and luminescence steps after capturing the viable bacteria as much as possible. For that reason, the spray liquid (extractant, luminescent reagent) is required. Therefore, there has been a need for an invention of a liquid supply tool for reducing the residence time (lead time) before spraying, preventing the reagent solution from scattering, and realizing uniform spraying. The liquid supply tool must have a structure in which the uniformity and adhesiveness of the contact surface with the vibration plate must be improved for efficient and uniform atomization, and the residual liquid amount must be as small as possible. .
【0018】上記した2つの改善を行うため、本発明者
らはまず図1及び図2の2に示すチャンバーを考案し
た。このチャンバー2は該図に示すように噴霧装置の振
動子等の霧化部を出し入れする窓2−1が上部に設けら
れた円筒体であり、その底部の開口部がその円筒内に生
菌を補捉したメンブレンフィルター上に設置できるよう
に取り付けられている。そして、好ましくは該底面下方
より減圧ポンプ等により該チャンバー内の空気は吸引さ
れ、減圧されている。このときの減圧の度合は5〜50
mmHg、好ましくは10〜30mmHgがよい。In order to make the above two improvements, the present inventors first devised the chamber shown at 2 in FIGS. 1 and 2. As shown in the figure, this chamber 2 is a cylindrical body provided with a window 2-1 at the top for taking in and out the atomizing part such as a vibrator of a spraying device, and the opening at the bottom is a viable bacterium inside the cylinder. It is attached so that it can be installed on the membrane filter that has captured. And, preferably, the air in the chamber is sucked from the lower side of the bottom surface by a vacuum pump or the like to reduce the pressure. The degree of pressure reduction at this time is 5 to 50.
mmHg, preferably 10 to 30 mmHg.
【0019】このチャンバーの設置と下方からの吸引に
よって振動板で微粒状に霧化された抽出剤又は発光試薬
はメンブレンフィルター上の生菌に効率良く降り注ぎ、
微量且つ適量で夫々の機能を発揮することができるので
あり、チャンバーがないと霧は拡散し薬液量が増大し、
且つ効率的散布が不可能になる。The extractant or luminescent reagent finely atomized by the vibrating plate by the installation of this chamber and the suction from the bottom efficiently pours on the live bacteria on the membrane filter,
It is possible to exert each function with a small amount and an appropriate amount, and without a chamber the mist diffuses and the amount of chemical liquid increases,
In addition, efficient spraying becomes impossible.
【0020】次に、本発明者らは、前記の改善を行うた
めに抽出剤及び発光試薬を振動板上に供給する給液具を
発明した。従来、前記超音波霧化装置の振動板上に液体
を供給する方法としては、流量調整バルブと供給チュー
ブを用い液量をコントロールしつつ液体を滴下する方法
(特開平4−150968号公報)、スポンジ等の保液
材によって液体を吸い上げ振動板の下面に供給する方法
(特開平4−322290号公報)、角柱状プラスチッ
クケースにスポンジ等の保液材を入れ、その下部は液体
に浸して、吸い上げた液体を上端の上の振動板に補給す
る方法(特開平5−305257号公報)等が該超音波
霧化装置の開発者らにより考案され公開されている。Next, the inventors of the present invention invented a liquid supply tool for supplying an extractant and a luminescent reagent onto the diaphragm in order to improve the above. Conventionally, as a method of supplying a liquid onto the vibration plate of the ultrasonic atomizer, a method of dropping the liquid while controlling the liquid amount using a flow rate adjusting valve and a supply tube (JP-A-4-150968), A method of sucking up a liquid with a liquid-retaining material such as sponge and supplying it to the lower surface of the diaphragm (Japanese Patent Laid-Open No. 4-322290), in which a liquid-retaining material such as sponge is placed in a prismatic plastic case, and the lower portion is immersed in the liquid. The method of replenishing the vibrating plate on the upper end with the sucked up liquid (Japanese Patent Laid-Open No. 5-305257) has been devised and published by the developers of the ultrasonic atomizing device.
【0021】しかし、これらの方法では本発明が要求す
る少量で適量の薬液の的確な噴霧は困難であり、又、該
薬液の滞留時間が短く、飛び散る等のトラブルがないと
いう効果を得ることはできなかった。そこで本発明者ら
は薬液の供給口の改善を検討した結果、試薬ビンからニ
ードルにより供給された薬液を振動子の振動板上に滴下
する際に、直接液滴を滴下するのではなく、一旦吸液材
シート1−1に吸収させ、そこから平均化して振動子3
に液を供給することによって目的とする効果が得られる
ことを見出した。そして、その吸液材は当初スポンジの
小円柱体を用いていたが、これでは滞留時間及び残液の
点で問題が残るので、さらにそれを改善した結果図4に
示す本発明の抽出剤や発光試薬の薬液を振動子3の霧発
生部に好適に供給するための給液具1を発明した。However, with these methods, it is difficult to accurately spray a small amount of an appropriate amount of the chemical liquid required by the present invention, and the retention time of the chemical liquid is short and there is no trouble such as scattering. could not. Therefore, as a result of studying the improvement of the supply port of the chemical liquid, the present inventors have found that when the chemical liquid supplied by the needle from the reagent bottle is dropped on the vibration plate of the vibrator, the liquid droplet is not dropped directly but once. The absorbent material sheet 1-1 absorbs it, and then averages it to obtain the vibrator 3
It was found that the intended effect can be obtained by supplying the liquid to the. And, as the liquid absorbing material, a small cylindrical body of sponge was initially used, but this causes problems in terms of residence time and residual liquid, and as a result of further improvement, the extractant of the present invention shown in FIG. The liquid supply tool 1 for suitably supplying the chemical solution of the luminescent reagent to the fog generating portion of the vibrator 3 has been invented.
【0022】この給液具1は振動子3の霧発生部の形状
にあわせた断面形状を有する両端が開口した筒状支持体
1−2の底部に吸液材シート1−1を種々の方法で接着
した構造を有する。筒状支持体1−2の材質は薬液に侵
されないプラスチック又は金属等が用いられる。その外
径は4〜30mm、好ましくは6〜12mmであり、高さは
4〜30mm、好ましくは6〜12mmである。又、筒状支
持体の壁には空隙が設けられていてもよく籠状のもので
もよい。In this liquid supply tool 1, a liquid absorbing material sheet 1-1 is formed by various methods on the bottom of a cylindrical support 1-2 having both ends having a cross-sectional shape corresponding to the shape of the fog generating portion of the vibrator 3. It has a structure bonded with. As the material of the cylindrical support 1-2, plastic, metal, or the like that is not corroded by the chemical liquid is used. Its outer diameter is 4 to 30 mm, preferably 6 to 12 mm, and its height is 4 to 30 mm, preferably 6 to 12 mm. Further, the wall of the cylindrical support may be provided with voids or may have a cage shape.
【0023】底部に貼り着けられているシート1−1の
シートの表面は振動板に均等に接して供液を均一に行え
るようできるだけ平面的なものが好ましい。このシート
は本発明で用いる抽出剤及び発光試薬を素早く吸収し、
且つそれを保持できる吸液性に優れたシートが適してい
る。したがって、該シートとしては濾紙等に用いられる
セルロース系又は吸水性を有する合成又は半合成繊維の
シートや不織布或いは吸液性を有する天然もしくは合成
のスポンジシート等が用いられる。具体的な例としては
日本ミリポア社製のセルロース系フィルター,AP−1
0等が用いられる。このシートの厚さは0.3〜3mm、
好ましくは0.5〜1mmである。その平面形状は筒状支
持体の断面形状にあわせた形状にする必要があるが、円
筒支持体の場合には直径は4〜30mmφ、好ましくは6
〜12mmφのものが用いられる。The surface of the sheet 1-1 attached to the bottom is preferably as flat as possible so that the liquid can be uniformly contacted with the diaphragm evenly. This sheet quickly absorbs the extractant and luminescent reagent used in the present invention,
Moreover, a sheet having excellent liquid absorbability capable of holding it is suitable. Therefore, as the sheet, a cellulosic or water-absorbing synthetic or semi-synthetic fiber sheet or nonwoven fabric used for filter paper or a liquid-absorbing natural or synthetic sponge sheet is used. As a specific example, a cellulosic filter manufactured by Nippon Millipore, AP-1
0 or the like is used. The thickness of this sheet is 0.3-3mm,
It is preferably 0.5 to 1 mm. Its planar shape needs to be a shape that matches the cross-sectional shape of the cylindrical support, but in the case of a cylindrical support, the diameter is 4 to 30 mmφ, preferably 6
The one having a diameter of up to 12 mm is used.
【0024】本発明の給液具1を用いると、直接振動子
上に薬液を滴下する場合に比べて、液の飛び散りがほと
んどなく、振動子の霧発生部全体にほぼ均一に液が供給
され、且つその液が的確に霧化できるので残液がなく、
微量で適量の噴霧が可能になる。又、シートへの液の浸
出入が早いのでリードタイムもほとんどなく、測定操作
に合わせて迅速な測定ができるようになった。When the liquid supply tool 1 of the present invention is used, the liquid is hardly scattered as compared with the case where the chemical liquid is dropped directly on the vibrator, and the liquid is supplied almost uniformly to the entire fog generating portion of the vibrator. And since the liquid can be atomized accurately, there is no residual liquid,
A very small amount of spraying is possible. In addition, since the liquid seeps into and out of the sheet quickly, there is almost no lead time, and quick measurement can be performed according to the measurement operation.
【0025】以上に説明した本発明の噴霧機の要部を図
1及び図2に示す。図中1が給液具、2がチャンバーで
ある。この噴霧機及び給液具を用いて噴霧すると前記の
メンブレンフィルター上に補捉された生菌の上に粒径が
1〜60μm、好ましくは5〜20μmの微粒状のAT
P抽出剤及び/又はルシフェリンルシフェラーゼ系発光
試薬が前者の場合0.04〜0.08ml程度、後者の場
合0.02〜0.04ml程度、的確且つ迅速に噴霧する
ことができる。The essential parts of the above-described sprayer of the present invention are shown in FIGS. In the figure, 1 is a liquid supply tool and 2 is a chamber. When sprayed using this sprayer and a liquid supply tool, a fine-grained AT having a particle size of 1 to 60 μm, preferably 5 to 20 μm, on the live bacteria captured on the membrane filter.
The P extractant and / or the luciferin luciferase-based luminescent reagent can be sprayed accurately and rapidly in the former amount of about 0.04 to 0.08 ml and in the latter case of about 0.02 to 0.04 ml.
【0026】以上によって発光試薬の噴霧されたフィル
ターは、本発明の第3工程である生物発光画像解析装置
〔例えば浜松ホトニック(株)社製ARGUSー50/
CL、又は日本ミリポア(株)社製RMDS〕にかけ、
その輝点を撮像し、生菌数を測定する。この生物発光画
像解析システムは、従来の測定装置に比べ、微弱な発光
を高感度で処理することができ、データの処理及び解析
も早いのでこれを採用することにより本発明のフィルタ
ー及び試薬の改良された噴霧機の効果と相乗して、極め
て優れた生菌測定法を実現することができた。The filter sprayed with the luminescence reagent as described above is the bioluminescence image analysis apparatus which is the third step of the present invention [eg, ARGUS-50 / manufactured by Hamamatsu Photonics KK].
CL or Japan Millipore RMDS],
The bright spot is imaged and the viable cell count is measured. This bioluminescence image analysis system can process weak luminescence with high sensitivity as compared with a conventional measuring device, and can process and analyze data quickly. Therefore, by adopting this, the filter and reagent of the present invention can be improved. It was possible to realize an extremely excellent method for measuring live bacteria in synergy with the effect of the sprayer.
【0027】そのシステムの概要は図6に示す通りであ
る。この図6に示すシステムは上記の抽出試薬及び発光
試薬で処理した後のフィルター4を支持するためのフィ
ルターホルダー11、遮光ハウジング16、フィルター
にできるだけ接近させて配置された発光を2次元的に検
出するテーパーファイバー17、光増幅部及び撮像管か
らなる超高感度テレビカメラ18、カメラコントローラ
ー19、イメージプロセッサ20、データ解析装置2
1、テレビモニター22から構成されている。The outline of the system is as shown in FIG. The system shown in FIG. 6 two-dimensionally detects the luminescence arranged as close as possible to the filter holder 11, the light-shielding housing 16 and the filter for supporting the filter 4 after being treated with the extraction reagent and the luminescence reagent. A taper fiber 17, an ultra-high-sensitivity television camera 18 including an optical amplifier and an image pickup tube, a camera controller 19, an image processor 20, and a data analysis device 2
1. It is composed of a TV monitor 22.
【0028】測定は、発光処理した前記フィルター4
(生菌を保持したフィルター)を保持したフィルターホ
ルダー11をテーパーファイバー面に密着させて置き、
超高感度テレビカメラ、カメラコントローラー及びイメ
ージプロセッサーを用いて2次元的に光子を30〜18
0秒間、例えば120秒間蓄積し、菌体からの発光を撮
像し、データ解析装置により画像処理を行い微細な発光
ノイズを消去して生菌由来の強い発光のみを残してテレ
ビモニターに表示する。この処理によって菌体以外の発
光がノイズとして消去されるので測定された輝点数は生
菌数と略一致する。The measurement is carried out by the light-emitting treated filter 4
Place the filter holder 11 holding (the filter holding the viable bacteria) in close contact with the tapered fiber surface,
30-18 photons two-dimensionally using ultra-sensitive TV camera, camera controller and image processor
The light is accumulated for 0 seconds, for example, 120 seconds, the light emission from the fungus body is imaged, and the image processing is performed by the data analysis device to eliminate the minute light emission noise and display only the strong light emission from the live bacteria on the TV monitor. By this processing, the light emission other than the bacterial cells is erased as noise, and thus the measured number of bright spots substantially coincides with the viable cell count.
【0029】[0029]
【実施例】以下実施例で本発明を説明する。The present invention will be described in the following examples.
【0030】実施例1 SCD培地(日本製薬製)5mlを含む試験管に1白金耳
の大腸菌(Escherichia coli IFO
13898)を接種し、37℃、1夜培養した後、ヘ
ペス緩衝液(pH7.75)で約100個/mlになるよ
うに希釈し、その0.2mlを検体液とした。疎水性のP
VDF膜(HVHP.47mmφ、日本ミリポア(株)
製)を濾過器に装着した後、少量のメタノール浸漬して
親水化しさらに水で充分洗浄してから、この上に10ml
のヘペス緩衝液(シグマ社製)を加え、さらに上記検体
液0.2mlを加えてから吸引濾過した。同緩衝液15ml
で3回洗浄した後、濾過器からメンブレンフィルターを
取り外す。Example 1 One platinum loop E. coli (Escherichia coli IFO) was added to a test tube containing 5 ml of SCD medium (manufactured by Nippon Pharmaceutical Co., Ltd.).
13898) was inoculated and cultured overnight at 37 ° C., then diluted with Hepes buffer (pH 7.75) to about 100 cells / ml, and 0.2 ml thereof was used as a sample solution. Hydrophobic P
VDF film (HVHP.47mmφ, Japan Millipore Co., Ltd.)
After making a hydrophilic filter by immersing it in a small amount of methanol and washing it thoroughly with water, add 10 ml
Hepes buffer solution (manufactured by Sigma) was added, and 0.2 ml of the sample solution was further added, followed by suction filtration. 15 ml of the same buffer
After washing 3 times with, remove the membrane filter from the filter.
【0031】次に、図1及び図2に示す噴霧装置に上記
のメンブレンフィルターをセットし、以下に示すように
してATP抽出試薬(日本ミリポア(株)製)及び発光
試薬(日本ミリポア(株)製))を噴霧する。抽出試薬
及び発光試薬は試薬ビン5に夫々充填されており、マニ
ホールド7に取り付けられる。このセットが抽出試薬と
発光試薬の二系列設けられている。マニホールド7に
は、上下にニードル8がついており、一方は試薬滴下用
8−aで、他方は試薬導入用8−b及びガス圧にて送液
のためのガスの取り込み用ニードル8−cである。Next, the above-mentioned membrane filter was set in the spraying device shown in FIGS. 1 and 2, and the ATP extraction reagent (manufactured by Nippon Millipore Co., Ltd.) and the luminescence reagent (manufactured by Nippon Millipore Co., Ltd.) were set as follows. Spray)). The extraction reagent and the luminescent reagent are filled in the reagent bottle 5 and attached to the manifold 7. This set has two series of extraction reagents and luminescence reagents. The manifold 7 is provided with needles 8 on the upper and lower sides, one is a reagent dropping 8-a, the other is a reagent introducing 8-b and a gas intake needle 8-c for feeding liquid at gas pressure. is there.
【0032】このマニホールド7全体は上下が逆転する
機能を有しているので、試薬ビンの取り付けの場合は8
−b,8−cのニードルを下側にした状況で行うことが
できる。マニホールド7にはさらに電磁バルブ6が取付
けてあり、制御機構からの制御によりバルブが開閉し、
送液用ガス(チッ素ガス等)がコントロールされ試薬が
定量的に送液される。Since the entire manifold 7 has a function of turning upside down, when the reagent bottle is attached, 8
This can be done with the needles -b and 8-c on the lower side. An electromagnetic valve 6 is further attached to the manifold 7, and the valve opens and closes under the control of the control mechanism.
The liquid-feeding gas (such as nitrogen gas) is controlled to quantitatively feed the reagent.
【0033】試薬ビン5の取付けが終わると試薬ビンが
上方になるようにマニホールドを回転させ、次に給液具
1を振動子(ミクニ製3T−UVA)3上に設置する。
振動子3には、給液具1が所定の位置に設置、保持され
るようなガイド3−1が設けてある。When the attachment of the reagent bottle 5 is completed, the manifold is rotated so that the reagent bottle is located above, and then the liquid supply tool 1 is placed on the vibrator (3T-UVA manufactured by Mikuni).
The vibrator 3 is provided with a guide 3-1 that allows the liquid supply tool 1 to be installed and held at a predetermined position.
【0034】本発明の給液具1はポリカーボネートでで
きた円筒支持体1−2aの底面に厚さ1mmで直径が7.
5mmセルロース系のフィルター1−1が熔着されてい
る。支持体1−2の高さは8mmである。The liquid supply tool 1 of the present invention has a thickness of 1 mm and a diameter of 7.
A 5 mm cellulose-based filter 1-1 is welded. The height of the support 1-2 is 8 mm.
【0035】次いで本発明のチャンバー2をチャンバー
ホルダー9に取付ける。チャンバーホルダー9はチャン
バー取付け時には大きく左右に開けることができ、チャ
ンバーを適切な強さで保持している。このチャンバー2
の大きさは直径40mm、高さ200mmであって、ポリカ
ーボネート樹脂でできており、フィルターの大きさによ
って直径や高さを変えることができる。このチャンバー
ホルダー9はチャンバーホルダーマウント10と一体構
造となっており、チャンバーホルダーマウントは空気圧
(又はモーター駆動)で上下に約5〜20mm程度動くよ
うな機構となっている。Next, the chamber 2 of the present invention is attached to the chamber holder 9. The chamber holder 9 can be opened greatly to the left and right when the chamber is attached, and holds the chamber with an appropriate strength. This chamber 2
It has a diameter of 40 mm and a height of 200 mm and is made of polycarbonate resin. The diameter and height can be changed depending on the size of the filter. The chamber holder 9 has an integral structure with the chamber holder mount 10, and the chamber holder mount has a mechanism that moves vertically by about 5 to 20 mm by air pressure (or motor drive).
【0036】前工程で処理をしたメンブレンフィルター
4は、フィルター取付用リング及びフィルターホルダー
から構成されている耐蝕性金属(又はプラスチック)の
フィルターホルダー11に取付けられている。このフィ
ルターホルダー11をベースプレート12上に設置す
る。ベースプレート12には1個以上の吸引孔13が設
けられており、10〜30mmHgの圧力で吸引されてい
る。そして、このプレートにはフィルター送り用テフロ
ンのレール14が設置されており、このレール上にメン
ブレンフィルターをのせることにより所定の位置まで移
動させることができる。The membrane filter 4 treated in the previous step is attached to a filter holder 11 made of a corrosion-resistant metal (or plastic), which is composed of a filter attachment ring and a filter holder. The filter holder 11 is installed on the base plate 12. The base plate 12 is provided with one or more suction holes 13, and suction is performed at a pressure of 10 to 30 mmHg. Then, a Teflon rail 14 for filter feeding is installed on this plate, and by placing a membrane filter on this rail, it can be moved to a predetermined position.
【0037】レール14上に置かれたメンブレンフィル
ター4が装着されたフィルターホルダー11をチャンバ
ー2の下に送る。チャンバー2はフィルターホルダー1
1がチャンバーの真下にくるように上方に持ち上げるこ
とができフィルター4がチャンバー2の真下に来ると、
チャンバー2を元の位置まで下げることができる。The filter holder 11 mounted with the membrane filter 4 placed on the rail 14 is sent to below the chamber 2. Chamber 2 is filter holder 1
1 can be lifted upwards so that it is directly below the chamber, and when the filter 4 is directly below the chamber 2,
The chamber 2 can be lowered to its original position.
【0038】次に電磁バルブ6が開き試薬ビン5内にチ
ッ素ガスを供給しATP抽出試薬であるメタノールが
0.08cc給液具1中に滴下される。これらのプロセス
は制御手段、可働手段を設けて自動化、連続化も可能で
ある。給液具1の給液材シート(セルロース系フィルタ
ー)1−1が直ちに試薬を吸収し、一方、電磁バルブ6
が開くと同時に振動子3が作動を始め該給液具1の給液
材シート1−1に均等に保持された試薬を直ちに霧状に
霧化し下方に噴霧する。チャンバー内は吸引孔13から
吸引減されて20mmHgの負圧となっているので霧状と
なった抽出試薬はチャンバーの壁面にもほとんど付着せ
ずメンブレンフィルター4の表面に微量均等に噴霧され
る。Next, the electromagnetic valve 6 is opened, nitrogen gas is supplied into the reagent bottle 5, and methanol as an ATP extraction reagent is dripped into the 0.08 cc liquid supply tool 1. These processes can be automated or continuous by providing a control means and an operable means. The liquid supply sheet (cellulosic filter) 1-1 of the liquid supply tool 1 immediately absorbs the reagent, while the electromagnetic valve 6
At the same time as the opening, the vibrator 3 starts to operate, and the reagent uniformly held on the liquid supply material sheet 1-1 of the liquid supply tool 1 is immediately atomized into a mist and sprayed downward. Since the inside of the chamber is sucked down from the suction hole 13 and has a negative pressure of 20 mmHg, the atomized extraction reagent hardly adheres to the wall of the chamber and is sprayed evenly on the surface of the membrane filter 4 in a trace amount.
【0039】上記によって、抽出試薬の噴霧が行われた
後、そのメンブレンフィルターは再び乾燥され、次に上
記と同じ器具、方法によって発光試薬を0.04cc噴霧
し、乾燥し、次の生物画像発光システムにかける。生物
画像発光解析システムは図6に示し、前に説明した通り
のものであって、日本ミリポア製のRMDSを用いた。
測定の結果、18〜22個の生菌(輝点)が測定され
た。After the extraction reagent is sprayed as described above, the membrane filter is dried again, and then 0.04 cc of the luminescent reagent is sprayed by the same apparatus and method as described above and dried, and the next biological image luminescence is performed. Call the system. The biological image emission analysis system is shown in FIG. 6 and is as described above, and RMDS manufactured by Nippon Millipore was used.
As a result of the measurement, 18 to 22 viable bacteria (bright spots) were measured.
【0040】実施例2 サッカロミセス セルビシェ(Saccharomyc
es cerevisiae,IFO 0209)をグ
ルコース・ペプトン培地(栄研化学製)を用いて1夜培
養を行った後、リン酸バッファー(pH7.5)で10
2 個/mlとなるように希釈して得られた試験液の0.5
mlを検体液とした。多数の疎水性隔壁で囲まれた区画を
有する図5に示す親水性PVDFメンブレンフィルター
(HVWP.47mmφ、日本ミリポア(株)製)を濾過
器に装着、濾過集菌したメンブレンフィルターに、実施
例1と同様にして、抽出薬試薬0.08cc、発光試薬
0.04ccの噴霧を行い、実施例1と同一のRMDSで
測定したところ、45〜60個の輝点が測定された。Example 2 Saccharomyces Saccharomyc
es cerevisiae, IFO 0209) was cultured overnight in a glucose-peptone medium (manufactured by Eiken Chemical Co., Ltd.), and then 10 times in a phosphate buffer (pH 7.5).
0.5 of test solution obtained by diluting to 2 cells / ml
ml was used as the sample liquid. A hydrophilic PVDF membrane filter (HVWP.47 mmφ, manufactured by Nippon Millipore Co., Ltd.) shown in FIG. 5 having a section surrounded by a large number of hydrophobic partition walls was attached to a filter, and a membrane filter obtained by filtration and collection was subjected to Example 1 In the same manner as described above, spraying of 0.08 cc of the extractant reagent and 0.04 cc of the luminescent reagent was carried out, and 45-60 bright spots were measured when measured by the same RMDS as in Example 1.
【0041】実施例3 市販缶ビール(A社製)350mlを無菌濾過したものに
実施例1と同様に培養した大腸菌(Escherich
ia coli IFO 13898)をヘペス緩衝液
(pH7.75)で約100個/mlになるように希釈
し、その0.2mlをポリカーボネートメンブレンフィル
ター(商品名アイソポア0.4μm、47mmφ、日本ミ
リポア(株)製)を用いて濾過した後、SCD寒天(日
本製薬製)平板にのせ、37℃、6hr培養した。その
後メンブレンフィルターを取り外し、実施例1と同一の
装置及び方法により、抽出試薬0.04cc、発光試薬
0.02ccの噴霧を行い、実施例1と同様にRMDSで
測定したところ、17〜21個の輝点が測定された。Example 3 Escherichia coli (Escherichh) cultured in the same manner as in Example 1 was obtained by aseptically filtering 350 ml of commercial canned beer (manufactured by Company A).
ia coli IFO 13898) is diluted with Hepes buffer (pH 7.75) to about 100 cells / ml, and 0.2 ml of the diluted solution is a polycarbonate membrane filter (trade name: Isopore 0.4 μm, 47 mmφ, Japan Millipore Co., Ltd.). After filtering using S.A., it was placed on a SCD agar (manufactured by Nippon Pharmaceutical Co., Ltd.) plate and cultured at 37.degree. C. for 6 hours. After that, the membrane filter was removed, the extraction reagent 0.04 cc and the luminescence reagent 0.02 cc were sprayed by the same apparatus and method as in Example 1, and the measurement was performed by RMDS in the same manner as in Example 1. The bright spot was measured.
【0042】[0042]
【発明の効果】弾性振動により液体を霧化する超音波霧
化装置に噴霧すべき液体を供給する際、本発明の給液具
を用いると、該液体(ATP抽出剤、発光試薬)の飛び
散りによるトラブルやロスが防止できる上に、液の滞留
時間が短く、振動板上の霧化発生部に均等に液が供給で
きるため微量、適量の噴霧が迅速にできるという効果が
得られる。そして、チャンバーを設置し、さらに下方か
ら吸引減圧することにより、噴霧された液微粒子が効率
良く且つ的確にメンブレンフィルター上の生菌に添加す
ることが容易に且つ個人差なく可能になったという効果
が得られた。When the liquid to be sprayed is supplied to the ultrasonic atomizer which atomizes the liquid by elastic vibration, the liquid supply tool of the present invention is used to scatter the liquid (ATP extractant, luminescent reagent). As a result, troubles and losses due to the above can be prevented, and the retention time of the liquid is short, and the liquid can be evenly supplied to the atomization generating portion on the vibration plate. Then, by installing a chamber and further suctioning and depressurizing from below, it is possible to easily and accurately add the atomized liquid particles to the live bacteria on the membrane filter without individual differences. was gotten.
【0043】以上の効果が相乗して製造工程及び製品中
の生菌の制御及び管理が重要な技術分野、例えば医薬
品、食品、飲料、化粧品、半導体等の分野に於て高価な
試薬を微量的確に使用でき、しかも迅速簡便で高感度に
生菌数の測定ができるようになった効果は極めて大きい
といえる。The above-mentioned effects synergize with each other, and in a technical field in which control and management of viable bacteria in the manufacturing process and products are important, for example, pharmaceuticals, foods, beverages, cosmetics, semiconductors, etc. It can be said that the effect of being able to be used for, and being able to measure the viable cell count rapidly, easily and with high sensitivity is extremely large.
【図1】本発明で用いる噴霧装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a spraying device used in the present invention.
【図2】本発明で用いる噴霧装置の斜視図である。FIG. 2 is a perspective view of a spraying device used in the present invention.
【図3】本発明で用いる噴霧装置のチャンバー及びその
吸引部の断面図である。FIG. 3 is a cross-sectional view of a chamber of a spraying device used in the present invention and a suction portion thereof.
【図4】本発明で用いる噴霧装置の給液具の斜視図であ
る。FIG. 4 is a perspective view of a liquid supply tool of the spraying device used in the present invention.
【図5】本発明で用いるメンブレンフィルターの一例を
示す平面図(A)とその一部切欠拡大図(B)である。FIG. 5 is a plan view (A) showing an example of a membrane filter used in the present invention and a partially cutaway enlarged view (B) thereof.
【図6】本発明で使用する生物発光画像解析システムの
概略図である。FIG. 6 is a schematic diagram of a bioluminescence image analysis system used in the present invention.
1 給液具 1−1 吸液材シート 1−2 給液具の筒状支持体 2 チャンバー 2−1 チャンバーの窓 3 振動子 3−1 ガイド 4 メンブレンフィルター 4−1 メンブレンフィルターの区画 4−2 メンブレンフィルターの区画壁 4−3 メンブレンフィルターのホルダー 5 試薬ビン 6 電磁バルブ 7 マニホールド 8 ニードル 8−a 試薬滴下用ニードル 8−b 試薬導入用ニードル 8−c ガス圧取込用ニードル 9 チャンバーホルダー 10 チャンバーホルダーマウント 11 フィルターホルダー 12 ベースプレート 13 吸引孔 14 レール 16 遮光ハウジング 17 テーパーファイバー 18 超高感度テレビカメラ 19 カメラコントローラー 20 イメージプロセッサ 21 データ解析装置 22 テレビモニター 1 Liquid Supply Tool 1-1 Liquid Absorbing Material Sheet 1-2 Cylindrical Support of Liquid Supply Tool 2 Chamber 2-1 Chamber Window 3 Vibrator 3-1 Guide 4 Membrane Filter 4-1 Membrane Filter Section 4-2 Partition wall of membrane filter 4-3 Membrane filter holder 5 Reagent bottle 6 Electromagnetic valve 7 Manifold 8 Needle 8-a Reagent dropping needle 8-b Reagent introducing needle 8-c Gas pressure intake needle 9 Chamber holder 10 Chamber Holder mount 11 Filter holder 12 Base plate 13 Suction hole 14 Rail 16 Shading housing 17 Tapered fiber 18 Ultra-sensitive TV camera 19 Camera controller 20 Image processor 21 Data analysis device 22 TV monitor
Claims (9)
おいて、抽出剤及び発光試薬を噴霧するために用いられ
る噴霧機であって、多数の小孔を設けた振動子を超音波
で振動させ、該振動子上に供給された液体を霧化せしめ
る生菌数測定装置用噴霧機。1. A sprayer used for spraying an extractant and a luminescent reagent in a device for rapidly measuring the number of viable bacteria in a sample, wherein a vibrator provided with a large number of small holes is ultrasonicated. A sprayer for viable cell count measuring apparatus, which vibrates to atomize the liquid supplied onto the vibrator.
剤又は発光試薬をメンブレンフィルターに効率よく降り
懸けるためのチャンバーが設置されている請求項1記載
の生菌数測定装置用噴霧機。2. The sprayer for a viable cell count measuring apparatus according to claim 1, wherein a chamber is provided for efficiently suspending the fine particulate extractant or luminescent reagent atomized by the sprayer on the membrane filter.
いる請求項2記載の生菌数測定装置用噴霧機。3. The sprayer for a viable cell count measuring apparatus according to claim 2, wherein suction and decompression are performed from the bottom of the chamber.
体底部に吸液材シートを接着してなる給液具が取付けら
れている請求項1〜3のいずれかに記載の生菌数測定装
置用噴霧機。4. The raw material according to any one of claims 1 to 3, wherein a liquid supply tool, which is obtained by adhering a liquid absorbing material sheet to a bottom portion of a tubular support, is attached to a liquid supply portion of a vibrator of a sprayer. A sprayer for bacteria count device.
あり、吸液材シートがセルロース系フィルターである請
求項4記載の生菌数測定装置用噴霧機。5. The sprayer for a viable cell count measuring apparatus according to claim 4, wherein the tubular support of the liquid supply tool is made of plastic, and the liquid absorbing material sheet is a cellulosic filter.
ンフィルターを装着した濾過装置と抽出剤及び発光試薬
を噴霧するために用いられる多数の小孔を設けた振動子
を超音波で振動させ、該振動子上に供給された液体を霧
化せしめる噴霧機と発光処理されたメンブレンフィルタ
ー上の発光点を高感度で検出することにより生菌数を測
定する生物発光画像解析装置からなる生菌数測定装置。6. An ultrasonic wave vibrates a filtering device equipped with a membrane filter for trapping viable bacteria in a specimen and a vibrator provided with a large number of small holes used for spraying an extracting agent and a luminescent reagent. And a bioluminescence image analyzer for measuring the viable cell count by highly sensitively detecting a light emission point on a membrane filter that has been subjected to a light emission treatment and a sprayer that atomizes the liquid supplied onto the vibrator. Bacteria count measuring device.
画壁で囲まれた親水性濾過膜区画を有する親水性のメン
ブレンフィルターである請求項6記載の生菌数測定装
置。7. The viable cell count measuring device according to claim 6, wherein the membrane filter is a hydrophilic membrane filter having a hydrophilic filtration membrane section surrounded by a large number of hydrophobic section walls.
ーと請求項4に記載された給液具とが設けられ、且つ請
求項3に記載された吸引減圧が行われている噴霧機であ
る請求項6記載の生菌数測定装置。8. A sprayer comprising the chamber according to claim 2 and the liquid supply tool according to claim 4, and the suction and decompression according to claim 3 being performed. The viable cell count measuring device according to claim 6.
ダー、遮光ハウジング、テーパーフアィバー、超高感度
テレビカメラ、カメラコントローラー、イメージプロセ
ッサ、データ解析装置及びテレビモニターからなる装置
である請求項6記載の生菌数測定装置。9. The bioluminescence image analysis device is a device comprising a filter holder, a light-shielding housing, a taper fiber, an ultra-sensitive television camera, a camera controller, an image processor, a data analysis device and a television monitor. Viable cell count measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18905994A JP3609453B2 (en) | 1994-07-20 | 1994-07-20 | Viable count device and its sprayer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18905994A JP3609453B2 (en) | 1994-07-20 | 1994-07-20 | Viable count device and its sprayer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0823962A true JPH0823962A (en) | 1996-01-30 |
JP3609453B2 JP3609453B2 (en) | 2005-01-12 |
Family
ID=16234610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18905994A Expired - Fee Related JP3609453B2 (en) | 1994-07-20 | 1994-07-20 | Viable count device and its sprayer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3609453B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0974827A2 (en) * | 1998-07-09 | 2000-01-26 | Sapporo Breweries Ltd. | Sample preparation apparatus including spray apparatus |
JP2008183009A (en) * | 2007-01-29 | 2008-08-14 | Millipore Corp | Device for spraying reagent for fast microbiological analysis |
JP2009098140A (en) * | 2007-10-17 | 2009-05-07 | Millipore Corp | Microbiological analysis system |
JP2010193835A (en) * | 2009-02-26 | 2010-09-09 | Hitachi Plant Technologies Ltd | Microbial detection apparatus, microbial detection method, and sample container used therein |
JP2011156481A (en) * | 2010-02-01 | 2011-08-18 | Mitsubishi Electric Corp | Ultrasonic atomizing device and equipment provided with the same |
JP2013078339A (en) * | 2013-01-08 | 2013-05-02 | Hitachi Plant Technologies Ltd | Microbial detection apparatus, detection method, and sample container used therein |
JP2013099340A (en) * | 2013-01-08 | 2013-05-23 | Hitachi Plant Technologies Ltd | Microorganism detector, detecting method, and sample container for use in the same |
WO2014061786A1 (en) * | 2012-10-19 | 2014-04-24 | 株式会社日立製作所 | Microbe quantifying device and microbe quantifying method |
CN115058320A (en) * | 2022-04-14 | 2022-09-16 | 唐山师范学院 | Aquatic microorganism metering device |
-
1994
- 1994-07-20 JP JP18905994A patent/JP3609453B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0974827A2 (en) * | 1998-07-09 | 2000-01-26 | Sapporo Breweries Ltd. | Sample preparation apparatus including spray apparatus |
US6312943B1 (en) * | 1998-07-09 | 2001-11-06 | Sapporo Breweries Ltd. | Sample preparation apparatus and spray apparatus for sample preparation |
EP0974827A3 (en) * | 1998-07-09 | 2002-10-02 | Sapporo Breweries Ltd. | Sample preparation apparatus including spray apparatus |
JP2008183009A (en) * | 2007-01-29 | 2008-08-14 | Millipore Corp | Device for spraying reagent for fast microbiological analysis |
JP2009098140A (en) * | 2007-10-17 | 2009-05-07 | Millipore Corp | Microbiological analysis system |
US8569047B2 (en) | 2009-02-26 | 2013-10-29 | Hitachi Plant Technologies, Ltd. | Microbial detection apparatus, microbial detection method, and sample container used therein |
JP2010193835A (en) * | 2009-02-26 | 2010-09-09 | Hitachi Plant Technologies Ltd | Microbial detection apparatus, microbial detection method, and sample container used therein |
JP2011156481A (en) * | 2010-02-01 | 2011-08-18 | Mitsubishi Electric Corp | Ultrasonic atomizing device and equipment provided with the same |
WO2014061786A1 (en) * | 2012-10-19 | 2014-04-24 | 株式会社日立製作所 | Microbe quantifying device and microbe quantifying method |
JP2014082945A (en) * | 2012-10-19 | 2014-05-12 | Hitachi Ltd | Microbe determination apparatus and microbe determination method |
US10167495B2 (en) | 2012-10-19 | 2019-01-01 | Hitachi, Ltd. | Microbe quantifying apparatus and microbe quantifying method |
JP2013078339A (en) * | 2013-01-08 | 2013-05-02 | Hitachi Plant Technologies Ltd | Microbial detection apparatus, detection method, and sample container used therein |
JP2013099340A (en) * | 2013-01-08 | 2013-05-23 | Hitachi Plant Technologies Ltd | Microorganism detector, detecting method, and sample container for use in the same |
CN115058320A (en) * | 2022-04-14 | 2022-09-16 | 唐山师范学院 | Aquatic microorganism metering device |
Also Published As
Publication number | Publication date |
---|---|
JP3609453B2 (en) | 2005-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3228812B2 (en) | How to measure viable cell count | |
JP3133328B2 (en) | Viable count method | |
JP3609453B2 (en) | Viable count device and its sprayer | |
US7754478B2 (en) | Device for cell culture | |
JP5026849B2 (en) | Chemiluminescence measuring device | |
WO2009157510A1 (en) | Cartridge of microbial cell-capturing carrier, carrier treating device and method for counting microbial cells | |
KR102028821B1 (en) | Device and method for detecting airborne microorganism | |
US20150010902A1 (en) | Apparatus and Method for Monitoring Airborne Microorganisms in the Atmosphere | |
JP2011097861A (en) | Apparatus and method for detecting microorganism | |
KR101912521B1 (en) | Continuous real-time monitor for airborne microbes | |
SG172584A1 (en) | Device for capturing object and method for using the same | |
JP2014153258A (en) | Particle detection system and particle detection method | |
JP3998782B2 (en) | Rapid measurement method of microbial count and filtration membrane used for it | |
US20190161719A1 (en) | Liquid feeding device and method for feeding liquid | |
JP3678612B2 (en) | Sample preparation device and spray device for sample preparation | |
JP2004337091A (en) | Cell culture apparatus | |
CN101427120B (en) | Body fluid collection device and body fluid measurement device using the same | |
JP3803399B2 (en) | Immunoassay device | |
JP5466731B2 (en) | Chemiluminescence measuring device | |
JP3822226B2 (en) | Microbe recovery member and immunoassay device | |
JPS6293634A (en) | Microbe counter | |
JP2006017736A (en) | Member for collecting microorganisms and immunity measuring apparatus | |
JP2024064956A (en) | Biological particles concentrator, and micro-droplet generator of the same | |
CN221156731U (en) | Humidifying device of high-low temperature test box for experiments | |
JP2984161B2 (en) | Bacteria test equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Effective date: 20040629 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20041005 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20041014 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20081022 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20091022 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |