JPH08237030A - Temperature compensation device for crystal oscillation circuit - Google Patents

Temperature compensation device for crystal oscillation circuit

Info

Publication number
JPH08237030A
JPH08237030A JP6496595A JP6496595A JPH08237030A JP H08237030 A JPH08237030 A JP H08237030A JP 6496595 A JP6496595 A JP 6496595A JP 6496595 A JP6496595 A JP 6496595A JP H08237030 A JPH08237030 A JP H08237030A
Authority
JP
Japan
Prior art keywords
temperature
crystal
voltage
voltage signal
oscillation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6496595A
Other languages
Japanese (ja)
Other versions
JP2713214B2 (en
Inventor
Eiichi Fukiharu
栄一 吹春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6496595A priority Critical patent/JP2713214B2/en
Publication of JPH08237030A publication Critical patent/JPH08237030A/en
Application granted granted Critical
Publication of JP2713214B2 publication Critical patent/JP2713214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE: To eliminate the need for a temperature characteristic test after a crystal vibrator is mounted in an oscillation circuit in the temperature compensation device for a digital temperature compensation type crystal oscillation circuit. CONSTITUTION: Plural temperature coefficients and equivalent circuit constants of crystal vibrators are stored in a storage section PROM 3 when the frequency temperature characteristic of a crystal vibrator in use is expressed by a approximated polynomial. The ambient temperature sensed by a temperature sensor 1 is fed to an A/D converter 2 as a voltage, in which the voltage is converted into a digital signal and it is fed to an arithmetic section 6. The arithmetic section 6 gives a voltage signal based on a temperature sensed by the temperature sensor 1 and a temperature coefficient and an equivalent circuit constant stored in the storage section to a transfer function expressed as ΔF(CL)=Δf(T)+ΔfC to calculate a voltage signal for temperature compensation. The voltage signal is converted into an analog signal by a D/A converter 4, it is given to a crystal oscillation circuit 5, in which the temperature is compensated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、デジタル型水晶発振回
路の温度補償装置に関し、特に、水晶振動子を発振回路
に組み込んだ後の温度特性試験を必要としない温度補償
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature compensating device for a digital crystal oscillator circuit, and more particularly to a temperature compensating device which does not require a temperature characteristic test after the crystal oscillator is incorporated in the oscillator circuit.

【0002】[0002]

【従来の技術】水晶振動子を用いた発振回路は、安定し
た発振周波数を得ることができることから周波数、時間
等の基準として広く用いられているが、この水晶振動子
においても他の電子回路同様、温度係数が存在し、温度
変化によって発振される周波数が変化する。図2は、A
Tカット水晶振動子の周波数温度特性の一例を示すグラ
フであり、このように水晶振動子は、ほぼ3次曲線状の
温度特性を示し、25℃前後の変曲点T0を境に温度に
よる周波数偏差Δfが生じる。
2. Description of the Related Art An oscillator circuit using a crystal oscillator is widely used as a reference for frequency, time, etc. because it can obtain a stable oscillation frequency. , There is a temperature coefficient, and the oscillated frequency changes depending on the temperature change. FIG. 2 shows A
It is a graph which shows an example of the frequency-temperature characteristic of a T-cut crystal oscillator, and thus the crystal oscillator exhibits a temperature characteristic of a substantially cubic curve, and is dependent on the temperature at an inflection point T 0 around 25 ° C. A frequency deviation Δf occurs.

【0003】そのため従来では、コンデンサやダイオー
ド等を温度補償素子として利用し、水晶発振回路の発振
周波数を制御する、いわゆるアナログ型の温度補償装置
が用いられていたが、コンデンサやダイオード等による
温度補償素子の温度特性曲線はリニアに近く、3次曲線
状の水晶振動子の温度特性を補償することは困難であっ
た。
For this reason, conventionally, a so-called analog type temperature compensating device has been used in which a capacitor, a diode or the like is used as a temperature compensating element to control the oscillation frequency of a crystal oscillating circuit. The temperature characteristic curve of the element is close to linear, and it is difficult to compensate the temperature characteristic of the cubic crystal oscillator.

【0004】これに対し、いわゆるデジタル型の温度補
償装置が提案されている(特開昭63−240107
号、特開昭64−82809号、特開平3−21970
9号等)。これらは、不揮発性メモリ中に予め個々の水
晶発振器に応じて各温度に最適な温度補償データ群を格
納しておき、感温素子からの出力電気量に応じて、不揮
発性メモリから適当な温度補償データを読出してこれを
水晶発振器に与えるというものである。
On the other hand, a so-called digital temperature compensator has been proposed (Japanese Patent Laid-Open No. 63-240107).
JP-A 64-82809, JP-A-3-21970
No. 9). In these, the temperature compensation data group optimal for each temperature is stored in advance in the non-volatile memory according to the individual crystal oscillator, and the appropriate temperature is selected from the non-volatile memory according to the output electric quantity from the temperature sensing element. The compensation data is read and given to the crystal oscillator.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記不
揮発性メモリに温度補償情報を書き込む際には、水晶振
動子を発振回路に組み込んだ状態で恒温槽に入れ、恒温
槽の温度を何段階かに可変、安定させながらその都度、
発振周波数を高精度周波数カウンタで監視して書き込む
必要があり、水晶振動子の製造時と合わせて少なくとも
2回以上の温度特性試験工程が必要となり、工数が多く
かかるという問題点があった。
However, when the temperature compensation information is written in the non-volatile memory, the crystal unit is placed in an oscillation circuit and placed in a constant temperature oven, and the temperature of the constant temperature oven is set to several levels. Variable and stable, each time,
It is necessary to monitor and write the oscillation frequency with a high-precision frequency counter, and at least two or more temperature characteristic test steps are required at the time of manufacturing the crystal unit, resulting in a large number of steps.

【0006】本発明は、前記問題点を解決すべくなされ
たもので、水晶振動子を発振回路に組み込んだ後の温度
特性試験を必要としない温度補償装置を提供することを
目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a temperature compensator which does not require a temperature characteristic test after a crystal unit is incorporated in an oscillation circuit.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明は、可変リアクタンスを有する電圧制御発振回路
の発振周波数の温度変動を水晶振動子共振周波数の許容
範囲に制御する水晶発振回路の温度補償装置において、
検知温度に応じた電圧を出力する温度センサと、該温度
センサより出力された電圧をデジタル信号に変換するA
/Dコンバータと、水晶振動子の周波数温度特性を近似
多項式で表した場合の複数の温度係数と水晶振動子の等
価回路定数を格納する記憶部と、前記デジタル変換され
た信号及び前記記憶部に格納された温度係数及び等価回
路定数に基づいて温度補償に必要な電圧信号を算出する
演算部と、前記算出された電圧信号をアナログ変換して
水晶発振器に出力するD/Aコンバータとからなること
を特徴としている。
In order to achieve the above object, the present invention provides a temperature of a crystal oscillation circuit for controlling temperature fluctuation of the oscillation frequency of a voltage controlled oscillation circuit having a variable reactance within an allowable range of a crystal resonator resonance frequency. In the compensator,
A temperature sensor that outputs a voltage according to the detected temperature, and A that converts the voltage output from the temperature sensor into a digital signal
A D / D converter, a storage unit that stores a plurality of temperature coefficients when the frequency-temperature characteristic of the crystal unit is expressed by an approximate polynomial, and an equivalent circuit constant of the crystal unit, the digital-converted signal, and the storage unit. A D / A converter for calculating a voltage signal required for temperature compensation based on the stored temperature coefficient and equivalent circuit constant, and a D / A converter for converting the calculated voltage signal into an analog signal and outputting it to a crystal oscillator. Is characterized by.

【0008】この場合において、前記演算部により算出
される温度補償に必要な電圧信号は、前記記憶部に格納
した入力電圧信号に対する伝達関数により算出され、該
伝達関数が、水晶振動子の周波数温度偏差Δf(T)
と、水晶振動子の等価回路における負荷容量CLに対す
る共振周波数偏差ΔF(CL)とが、ΔF(CL)=−Δ
f(T)+ΔfC(fC:固定された任意の偏差)の関係
にあることに基づいて算出されるものである。
In this case, the voltage signal required for temperature compensation calculated by the arithmetic unit is calculated by the transfer function for the input voltage signal stored in the storage unit, and the transfer function is the frequency temperature of the crystal unit. Deviation Δf (T)
And the resonance frequency deviation ΔF (C L ) with respect to the load capacitance C L in the equivalent circuit of the crystal unit, ΔF (C L ) = − Δ
It is calculated based on the relationship of f (T) + Δf C (f C : fixed arbitrary deviation).

【0009】[0009]

【作用】以上の構成により、記憶部には、使用される水
晶振動子の周波数温度特性を近似多項式で表した場合の
複数の温度係数と水晶振動子の等価回路定数が格納され
る。温度センサにより検知された周囲温度は、電圧とし
てA/Dコンバータに送られデジタル変換された後、演
算部に入力される。演算部は、ΔF(CL)=−Δf
(T)+ΔfCに基づいて与えられる伝達関数に、前記
温度センサにより検知された温度に基づく電圧信号と、
前記記憶部に格納された温度係数及び等価回路定数を与
えて温度補償をする電圧信号を算出する。この電圧信号
は、D/Aコンバータによりアナログ変換され、水晶発
振回路に与えられ温度補償される。
With the above configuration, the storage unit stores a plurality of temperature coefficients and the equivalent circuit constant of the crystal unit when the frequency-temperature characteristic of the crystal unit used is represented by an approximate polynomial. The ambient temperature detected by the temperature sensor is sent to the A / D converter as a voltage, converted into a digital value, and then input to the calculation unit. The calculation unit calculates ΔF (C L ) = − Δf
A voltage signal based on the temperature detected by the temperature sensor is added to the transfer function given based on (T) + Δf C ,
A temperature signal and an equivalent circuit constant stored in the storage unit are given to calculate a voltage signal for temperature compensation. This voltage signal is converted into an analog signal by the D / A converter, applied to the crystal oscillation circuit, and temperature-compensated.

【0010】[0010]

【実施例】次に、本発明の一実施例について図面を参照
して説明する。図1は本発明の一実施例に係るデジタル
温度補償型水晶発振器のブロック図である。図中1は、
サーミスタ等からなる温度センサで、温度情報に応じた
電圧信号VSを出力する。温度センサ1から出力された
電圧信号VSは、A/Dコンバータ2によりアナログ信
号からデジタル信号に変換され、演算器6に入力され
る。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a digital temperature compensation type crystal oscillator according to an embodiment of the present invention. 1 in the figure
A temperature sensor such as a thermistor outputs a voltage signal V S according to the temperature information. The voltage signal V S output from the temperature sensor 1 is converted from an analog signal to a digital signal by the A / D converter 2 and input to the calculator 6.

【0011】一方、図中3は、温度補償情報を記憶させ
たPROMであり、PROM3の情報は、随時、演算器
6に呼び出される。PROM3に記憶させた温度補償情
報は、使用される水晶振動子の周波数温度特性を近似多
項式で表した場合の複数の温度係数と水晶振動子の等価
回路定数、並びに温度センサ1により与えられる温度情
報から温度補償に必要な電圧信号VDを導く伝達関数で
ある。ここで、これら温度補償情報を記憶するPROM
3は、電気的に書き換え可能な他のメモリ、例えばEE
PROM,EAROM等に置換することもできる。
On the other hand, reference numeral 3 in the drawing denotes a PROM in which temperature compensation information is stored, and the information in the PROM 3 is called up by the arithmetic unit 6 at any time. The temperature compensation information stored in the PROM 3 includes a plurality of temperature coefficients when the frequency-temperature characteristic of the crystal unit used is represented by an approximate polynomial, an equivalent circuit constant of the crystal unit, and temperature information provided by the temperature sensor 1. Is a transfer function for deriving a voltage signal V D required for temperature compensation from Here, a PROM that stores these temperature compensation information
3 is another electrically rewritable memory such as EE
It can be replaced with PROM, EAROM, or the like.

【0012】前記演算器6は、前記デジタル変換された
電圧信号VSから伝達関数を用いて温度補償に必要な電
圧信号VDを算出する。ここで、PROM3より温度係
数と等価回路定数が呼び出され、出力される電圧信号V
Dは一義的に定まる。この電圧信号VDはD/Aコンバー
タ4によりアナログ変換され、電圧制御発振器5に出力
される。
The arithmetic unit 6 calculates a voltage signal V D necessary for temperature compensation from the digitally converted voltage signal V S using a transfer function. Here, the temperature coefficient and the equivalent circuit constant are called from the PROM 3, and the output voltage signal V
D is uniquely determined. This voltage signal V D is analog-converted by the D / A converter 4 and output to the voltage controlled oscillator 5.

【0013】次に、前記電圧信号VDを求める伝達関数
の導出について説明する。ATカット水晶振動子の場
合、その周波数温度偏差Δf(T)は、図2に示したよ
うに3次曲線状となり、次に示す3次の近似多項式で表
すことができる。
Next, the derivation of the transfer function for obtaining the voltage signal V D will be described. In the case of an AT-cut crystal unit, its frequency temperature deviation Δf (T) has a cubic curve shape as shown in FIG. 2 and can be expressed by a cubic polynomial expression of the third order shown below.

【0014】 Δf(T)=A(T−T0)+B(T−T02+C(T−T03 …(1)Δf (T) = A (T−T 0 ) + B (T−T 0 ) 2 + C (T−T 0 ) 3 (1)

【0015】ここで、A,B,C:温度係数、T0:変
曲点 一方、図3はATカット水晶振動子の等価回路図であ
る。負荷容量CLに対する共振周波数偏差ΔF(CL)は
次の式で近似することができる。
Here, A, B, C: temperature coefficient, T 0 : inflection point On the other hand, FIG. 3 is an equivalent circuit diagram of the AT-cut crystal resonator. The resonance frequency deviation ΔF (C L ) with respect to the load capacitance C L can be approximated by the following equation.

【0016】 ΔF(CL)=1/2γ(1+CL/C0) …(2)ΔF (C L ) = 1 / 2γ (1 + C L / C 0 ) ... (2)

【0017】ここで、γ(=C0/C1):容量比 前記式(1)、(2)において、周波数温度補償するた
めには、
Here, γ (= C 0 / C 1 ): capacity ratio In the above equations (1) and (2), in order to perform frequency temperature compensation,

【0018】 ΔF(CL)=−Δf(T)+ΔfC …(3)ΔF (C L ) = − Δf (T) + Δf C (3)

【0019】を満足すればよい(但し、fC:固定され
た任意の偏差)。式(3)より以下が成立する。
It suffices to satisfy the following (however, f C : a fixed arbitrary deviation). The following holds from the equation (3).

【0020】 CL=−C0{1/2γ(Δf(T)−ΔfC)+1} …(4)C L = −C 0 {1 / 2γ (Δf (T) −Δf C ) +1} (4)

【0021】図4は電圧制御発振器の一実施例を示す回
路図である。図4の回路の場合、負荷容量CLは、水晶
振動子8の入力端子とグランド間に発生する可変容量ダ
イオード7の容量CVと水晶振動子8の出力端子とグラ
ンド間に発生する容量CCの合成容量で表すことができ
る。すなわち、以下が成立する。
FIG. 4 is a circuit diagram showing an embodiment of the voltage controlled oscillator. In the case of the circuit of FIG. 4, the load capacitance C L is the capacitance C V of the variable capacitance diode 7 generated between the input terminal of the crystal unit 8 and the ground and the capacitance C V generated between the output terminal of the crystal unit 8 and the ground. It can be represented by the synthetic capacity of C. That is, the following is established.

【0022】CL=CCV/(CC−CV) …(5)C L = C C C V / (C C -C V ) (5)

【0023】図5は、図4に示した可変容量ダイオード
7の特性の一例を示した図である。可変容量ダイオード
7の印可電圧VDは、容量CVを変数とする多項式で近似
することができる。例えば可変容量ダイオード7の近似
多項式を4次とすると、次式となる。
FIG. 5 is a diagram showing an example of characteristics of the variable capacitance diode 7 shown in FIG. The applied voltage V D of the variable capacitance diode 7 can be approximated by a polynomial having the capacitance C V as a variable. For example, when the approximation polynomial of the variable capacitance diode 7 is of the fourth order, the following expression is obtained.

【0024】 VD=aCV 4+bCV 3+cCV 2+dCV+e …(6)V D = aC V 4 + bC V 3 + cC V 2 + dC V + e (6)

【0025】ここで、a,b,c,dは可変容量ダイオ
ードの特性より決定される定数また、式(5)より、
Here, a, b, c and d are constants determined by the characteristics of the variable capacitance diode, and from equation (5),

【0026】CV=CCL/(CC−CLC V = C C C L / (C C -C L )

【0027】図6は温度センサ1の一実施例を示すダイ
オード温度センサの温度に対する準方向降下電圧特性図
である。準方向降下電圧VSは、下式のように温度Tの
1次関数で近似することができる。
FIG. 6 is a quasi-direction drop voltage characteristic diagram with respect to temperature of the diode temperature sensor showing one embodiment of the temperature sensor 1. The quasi-directional drop voltage V S can be approximated by a linear function of the temperature T as in the following equation.

【0028】VS=hT+i …(7)V S = hT + i (7)

【0029】つまり、式(6)、(7)より信号VS
入力し信号VDを出力するような伝達関数を導出し、そ
の伝達関数を演算器6にて実現すれば電圧制御発振器5
の発振周波数は温度補償される。すなわち、伝達関数H
(T)は、以下のように求められる。
That is, if a transfer function that inputs the signal V S and outputs the signal V D is derived from the equations (6) and (7) and the transfer function is realized by the arithmetic unit 6, the voltage controlled oscillator 5
The oscillation frequency of is compensated for temperature. That is, the transfer function H
(T) is calculated as follows.

【0030】 H(T)=VD/VS =(aCV 4+bCV 3+cCV 2+dCV+e)/(hT+i)…(8)H (T) = V D / V S = (aC V 4 + bC V 3 + cC V 2 + dC V + e) / (hT + i) (8)

【0031】ここで、VDは、式(1)〜(7)より、
温度Tの関数であり、VSも温度Tの関数であり、よっ
て、伝達関数H(T)は、温度Tによって一義的に定ま
る。すなわち、前記式中、A,B,C,D、C0は、水
晶振動子によって定まるパラメータであり、CC、a、
b,c,d,e、h,iは、その他の素子によって定ま
るパラメータである。
Here, V D is given by the following equations (1) to (7).
It is a function of the temperature T, and V S is also a function of the temperature T. Therefore, the transfer function H (T) is uniquely determined by the temperature T. That is, in the above formula, A, B, C, D, and C 0 are parameters determined by the crystal oscillator, and C C , a, and
b, c, d, e, h, and i are parameters determined by other elements.

【0032】なお、前記CC、a、b,c,d,e、
h,iは、水晶振動子のパラメータに比べてその周波数
温度特性に与える影響は極めて小さいので、デジタル温
度補償型水晶発振器の製造工程では、水晶振動子がもつ
パラメータのみが変わり、その他のパラメータを固定す
ることができる。従って、水晶振動子の温度係数と等価
定数によって温度補償する為の伝達関数が作成され、水
晶振動子を発振器に組み込んだ状態での温度特性試験が
なくても、周波数温度補償することが可能になる。
The above C C , a, b, c, d, e,
Since h and i have an extremely small effect on the frequency-temperature characteristic as compared with the parameters of the crystal unit, only the parameters of the crystal unit are changed and other parameters are changed in the manufacturing process of the digital temperature-compensated crystal oscillator. Can be fixed. Therefore, a transfer function for temperature compensation is created by the temperature coefficient and equivalent constant of the crystal unit, and frequency temperature compensation can be performed without the temperature characteristic test with the crystal unit incorporated in the oscillator. Become.

【0033】[0033]

【発明の効果】以上説明したように本発明は、水晶振動
子の周波数温度特性を近似多項式で表した場合の複数の
温度係数と水晶振動子の等価回路定数により温度補償情
報が導出されるので、水晶振動子を発振回路に組み込ん
だ状態での温度特性試験が不要となり、工数が削減でき
るという効果を有する。また、水晶振動子と水晶振動子
以外の温度補償回路及び発振回路を別々に購入又は組み
立てることが可能になり、原価低減及び小型化できると
いう効果を有する。
As described above, according to the present invention, temperature compensation information is derived from a plurality of temperature coefficients when the frequency-temperature characteristic of the crystal unit is expressed by an approximate polynomial and the equivalent circuit constant of the crystal unit. The temperature characteristic test with the crystal unit incorporated in the oscillation circuit is unnecessary, and the number of steps can be reduced. Further, it becomes possible to separately purchase or assemble the crystal oscillator and the temperature compensation circuit and the oscillation circuit other than the crystal oscillator, which has the effect of reducing the cost and downsizing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.

【図2】ATカット水晶振動子の温度特性図である。FIG. 2 is a temperature characteristic diagram of an AT-cut crystal unit.

【図3】水晶振動子の等価回路図である。FIG. 3 is an equivalent circuit diagram of a crystal unit.

【図4】図1に示した電圧制御発振器の回路図である。4 is a circuit diagram of the voltage controlled oscillator shown in FIG.

【図5】図4に示した可変容量ダイオードの特性図であ
る。
5 is a characteristic diagram of the variable capacitance diode shown in FIG.

【図6】図1に示した温度センサの特性図である。FIG. 6 is a characteristic diagram of the temperature sensor shown in FIG.

【符号の説明】[Explanation of symbols]

1 温度センサ 2 A/Dコンバータ 3 PROM 4 D/Aコンバータ 5 電圧制御発振器 6 演算器 7 可変容量ダイオード 8 水晶振動子 1 Temperature Sensor 2 A / D Converter 3 PROM 4 D / A Converter 5 Voltage Controlled Oscillator 6 Operator 7 Variable Capacitance Diode 8 Crystal Resonator

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年5月24日[Submission date] May 24, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】=C/(C−C …(5) C V = C C C L / (C C −C L ) ... (5)

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】ここで、Vは、式(1)〜(7)より、
温度Tの関数であり、Vも温度Tの関数であり、よっ
て、伝達関数H(T)は、温度Tによって一義的に定ま
る。すなわち、前記式中、A,B,C,γ,は、水
晶振動子によって定まるパラメータであり、C、a、
b,c,d,e、h,iは、その他の素子によって定ま
るパラメータである。
Here, V D is expressed by the following equations (1) to (7).
It is a function of temperature T, V S is also a function of temperature T, and thus the transfer function H (T) is uniquely determined by the temperature T. That is, in the above equation, A, B, C, γ, and C O are parameters determined by the crystal oscillator, and C C , a,
b, c, d, e, h, and i are parameters determined by other elements.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可変リアクタンスを有する電圧制御発振
回路の発振周波数の温度変動を水晶振動子共振周波数の
許容範囲に制御する水晶発振回路の温度補償装置におい
て、 検知温度に応じた電圧を出力する温度センサと、 該温度センサより出力された電圧をデジタル信号に変換
するA/Dコンバータと、 水晶振動子の周波数温度特性を近似多項式で表した場合
の複数の温度係数と水晶振動子の等価回路定数を格納す
る記憶部と、 前記デジタル変換された信号及び前記記憶部に格納され
た温度係数及び等価回路定数に基づいて温度補償に必要
な電圧信号を算出する演算部と、 前記算出された電圧信号をアナログ変換して水晶発振器
に出力するD/Aコンバータとからなることを特徴とす
る水晶発振回路の温度補償装置。
1. A temperature compensating device for a crystal oscillation circuit, which controls temperature fluctuations of the oscillation frequency of a voltage controlled oscillation circuit having a variable reactance within an allowable range of a crystal resonator resonance frequency, and a temperature for outputting a voltage according to a detected temperature. A sensor, an A / D converter that converts the voltage output from the temperature sensor into a digital signal, a plurality of temperature coefficients when the frequency temperature characteristics of the crystal unit are expressed by an approximate polynomial, and an equivalent circuit constant of the crystal unit. A storage unit for storing a voltage signal necessary for temperature compensation based on the digitally converted signal and the temperature coefficient and the equivalent circuit constant stored in the storage unit; and the calculated voltage signal. And a D / A converter for analog-converting and outputting to a crystal oscillator.
【請求項2】 前記演算部により算出される温度補償に
必要な電圧信号は、前記記憶部に格納した入力電圧信号
に対する伝達関数により算出され、該伝達関数が、水晶
振動子の周波数温度偏差Δf(T)と、水晶振動子の等
価回路における負荷容量CLに対する共振周波数偏差Δ
F(CL)とが、ΔF(CL)=−Δf(T)+Δf
C(fC:固定された任意の偏差)の関係にあることに基
づいて算出されるものであることを特徴とする請求項1
記載の水晶発振回路の温度補償装置。
2. The voltage signal required for temperature compensation calculated by the arithmetic unit is calculated by a transfer function for the input voltage signal stored in the storage unit, and the transfer function is the frequency temperature deviation Δf of the crystal unit. (T) and the resonance frequency deviation Δ with respect to the load capacitance C L in the equivalent circuit of the crystal unit
F (C L ) is ΔF (C L ) = − Δf (T) + Δf
The calculation is based on the relationship of C (f C : fixed arbitrary deviation).
A temperature compensation device for the crystal oscillation circuit described.
JP6496595A 1995-02-28 1995-02-28 Temperature compensation device for crystal oscillation circuit Expired - Lifetime JP2713214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6496595A JP2713214B2 (en) 1995-02-28 1995-02-28 Temperature compensation device for crystal oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6496595A JP2713214B2 (en) 1995-02-28 1995-02-28 Temperature compensation device for crystal oscillation circuit

Publications (2)

Publication Number Publication Date
JPH08237030A true JPH08237030A (en) 1996-09-13
JP2713214B2 JP2713214B2 (en) 1998-02-16

Family

ID=13273276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6496595A Expired - Lifetime JP2713214B2 (en) 1995-02-28 1995-02-28 Temperature compensation device for crystal oscillation circuit

Country Status (1)

Country Link
JP (1) JP2713214B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001069775A1 (en) * 2000-03-17 2001-09-20 Asahi Kasei Microsystems Co., Ltd. Temperature-compensated crystal oscillator and method of temperature compensation
US6304517B1 (en) 1999-06-18 2001-10-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for real time clock frequency error correction
JP2011182025A (en) * 2010-02-26 2011-09-15 Kyocera Kinseki Corp Temperature compensation type piezoelectric oscillator
JP2013243481A (en) * 2012-05-18 2013-12-05 Seiko Epson Corp Temperature compensation information generation method, manufacturing method of electronic component, oscillation element, oscillator and electronic apparatus
WO2014129069A1 (en) * 2013-02-22 2014-08-28 株式会社村田製作所 Sensor tag and method for manufacturing sensor tag
US9537079B2 (en) 2011-03-22 2017-01-03 Murata Manufacturing Co., Ltd. Piezoelectric device
JP2022100204A (en) * 2020-12-23 2022-07-05 台灣晶技股▲ふん▼有限公司 Temperature control type and temperature compensation type oscillation device, and method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304517B1 (en) 1999-06-18 2001-10-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for real time clock frequency error correction
WO2001069775A1 (en) * 2000-03-17 2001-09-20 Asahi Kasei Microsystems Co., Ltd. Temperature-compensated crystal oscillator and method of temperature compensation
GB2363269A (en) * 2000-03-17 2001-12-12 Asahi Chemical Micro Syst Temperature-compensated crystal oscillator and method of temperature compensation
US6603364B2 (en) 2000-03-17 2003-08-05 Asahi Kasei Microsystems Co., Ltd. Temperature-compensated crystal oscillator and method of temperature compensation
GB2363269B (en) * 2000-03-17 2004-02-18 Asahi Chemical Micro Syst Temperature-compensated crystal oscillator and method of compensating temperature thereof
JP2011182025A (en) * 2010-02-26 2011-09-15 Kyocera Kinseki Corp Temperature compensation type piezoelectric oscillator
US9537079B2 (en) 2011-03-22 2017-01-03 Murata Manufacturing Co., Ltd. Piezoelectric device
JP2013243481A (en) * 2012-05-18 2013-12-05 Seiko Epson Corp Temperature compensation information generation method, manufacturing method of electronic component, oscillation element, oscillator and electronic apparatus
WO2014129069A1 (en) * 2013-02-22 2014-08-28 株式会社村田製作所 Sensor tag and method for manufacturing sensor tag
JP6052388B2 (en) * 2013-02-22 2016-12-27 株式会社村田製作所 Sensor tag and sensor tag manufacturing method
US10234334B2 (en) 2013-02-22 2019-03-19 Murata Manufacturing Co., Ltd. Sensor tag and manufacturing method for sensor tag
JP2022100204A (en) * 2020-12-23 2022-07-05 台灣晶技股▲ふん▼有限公司 Temperature control type and temperature compensation type oscillation device, and method thereof

Also Published As

Publication number Publication date
JP2713214B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
JP2001267847A (en) Temperature compensated crystal oscillator and method for compensating temperature or the oscillator
JP4738409B2 (en) Temperature compensated thermostatic chamber controlled crystal oscillator
US6784756B2 (en) On-board processor compensated oven controlled crystal oscillator
JPH11220327A (en) Temperature compensation circuit for oscillator
JP4524326B2 (en) Crystal oscillator
JPH08237030A (en) Temperature compensation device for crystal oscillation circuit
US4072912A (en) Network for temperature compensation of an AT cut quartz crystal oscillator
JP3879274B2 (en) Oscillator temperature compensation method and temperature compensation circuit thereof
JP2975386B2 (en) Digital temperature compensated oscillator
JPH1093343A (en) Temperature compensation method for piezoelectric oscillating circuit
JP2002204127A (en) Method and device for adjusting temperature compensating crystal oscillator
JP3243680B2 (en) Frequency correction method for digitally controlled oscillator
JP2584991B2 (en) Digitally controlled temperature compensated crystal oscillator
JP3911722B2 (en) Analog / digital input / output switch circuit
JP3058425B2 (en) Temperature compensated oscillator
JPS63275210A (en) Digital temperature compensation type piezoelectric oscillator
JPH05183337A (en) Digitally controlled temperature compensation crystal oscillator
JPH09307355A (en) Oscillator
JPH01208905A (en) Temperature compensated crystal oscillator by microcomputer control
JPH0276304A (en) Crystal oscillation circuit
JPH10270942A (en) Temperature compensation crystal oscillator and its adjusting method
JPS63269811A (en) Digital temperature compensated crystal oscillator
JPH07122935A (en) Crystal oscillator and measuring device using the same
JP2019149668A (en) Method of manufacturing temperature-compensated oscillator
JPS63240107A (en) Crystal oscillation circuit with temperature compensation