JPS63269811A - Digital temperature compensated crystal oscillator - Google Patents

Digital temperature compensated crystal oscillator

Info

Publication number
JPS63269811A
JPS63269811A JP10600587A JP10600587A JPS63269811A JP S63269811 A JPS63269811 A JP S63269811A JP 10600587 A JP10600587 A JP 10600587A JP 10600587 A JP10600587 A JP 10600587A JP S63269811 A JPS63269811 A JP S63269811A
Authority
JP
Japan
Prior art keywords
temperature
temperature compensation
storage
crystal oscillator
storage section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10600587A
Other languages
Japanese (ja)
Inventor
Hitoyuki Ogawa
小川 仁行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP10600587A priority Critical patent/JPS63269811A/en
Publication of JPS63269811A publication Critical patent/JPS63269811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To perform a wide range of temperature compensation even with the same number of bits as in a conventional device and to obtain compensation accuracy with a high level, by providing first and second storage parts and an arithmetic part, and performing the temperature compensation by computing the temperature compensation data of both storage parts by the arithmetic part. CONSTITUTION:Temperature information from a temperature sensor part 1 is inputted to the first storage part 3 and the second storage part 4 of the storage part 10 via an A/D conversion part 2, and the output of the storage part 3 is inputted to the arithmetic part 5, then, addition is performed. Added temperature compensation data is converted to a voltage at a D/A conversion part 6, and is inputted to a voltage controlled crystal oscillator 7. In such a case, the temperature compensation data obtained from the temperature characteristic of a representative quartz oscillator is stored in the storage part 3, and in the storage part 4, the temperature compensation information of respective quartz oscillator is stored. In such a way, by performing the temperature compensation by computing the temperature compensation data of the storage parts 3 and 4, the wide range of temperature compensation can be realized and the accuracy can be heightened even with the same number of bits as in the conventional device.

Description

【発明の詳細な説明】 く本発明の目的〉 [産業上の利用分野] 本発明は、ディジタル回路を利用した温度補償水晶発振
器に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature compensated crystal oscillator using a digital circuit.

【従来の技術J 近年水晶振動子を用いた発振器にディジタル技術を利用
したものが多く発表されている。これは発振器の温度特
性を向上させるために、従来のように恒温槽に入れた発
振器では電力が大きく、また小型化が出来なかった。そ
こで予め水晶振動子の温度補償データをROM−ICに
メモリーしこの記憶されたデータをもとに温度補償をす
るものが多い。
[Prior Art J] In recent years, many oscillators using digital technology have been announced using crystal resonators. This is to improve the temperature characteristics of the oscillator, but conventional oscillators placed in a constant temperature bath require a large amount of power and cannot be miniaturized. Therefore, in many cases, temperature compensation data of the crystal resonator is stored in a ROM-IC in advance, and temperature compensation is performed based on this stored data.

第4図は従来のディジタル温度補償水晶発振器のブロッ
クダイヤグラムである。温度センサー部はサーミスタ等
感温素子からなり、この温度情報は記憶部であるROM
に入り、温度に対応したアドレスにある補償データを出
力する。この信号はD/A変換器で電圧に変換され可変
容量ダイオードを水晶振動子に接続した電圧制御水晶発
振器に入れ温度補償する。
FIG. 4 is a block diagram of a conventional digital temperature compensated crystal oscillator. The temperature sensor section consists of a temperature sensing element such as a thermistor, and this temperature information is stored in a ROM which is a storage section.
and outputs the compensation data at the address corresponding to the temperature. This signal is converted into a voltage by a D/A converter, and then entered into a voltage controlled crystal oscillator in which a variable capacitance diode is connected to a crystal resonator for temperature compensation.

[発明が解決しようとする問題点] 、しかし従来のディジタル温度補償水晶発振器は、広い
温度範囲を補償するには大きな容量のROMが必要にな
る。そこでROMの記憶情報の有効な利用が求めれてい
た。
[Problems to be Solved by the Invention] However, the conventional digital temperature compensated crystal oscillator requires a large capacity ROM to compensate for a wide temperature range. Therefore, there has been a demand for effective use of the information stored in the ROM.

ディジタル温度補償水晶発振器の温度補償可能な範囲は
A/D変換器、D/A変換器のビット数で決定される。
The temperature compensable range of the digital temperature compensated crystal oscillator is determined by the number of bits of the A/D converter and D/A converter.

例えば第2図に示す特性は、水晶振動子の中でも広く利
用されているATカット水晶振動子の周波数温度特性で
あり、3次関数の特性を有している。この特性で縦軸の
周波数制御をNビットで制御できる温度範囲が、図中の
Tnである。すなわち補償温度範囲を広げるには、ビッ
ト数をNより大きくする必要がある。
For example, the characteristic shown in FIG. 2 is the frequency-temperature characteristic of an AT-cut crystal resonator, which is widely used among crystal resonators, and has a characteristic of a cubic function. With this characteristic, the temperature range in which the frequency control on the vertical axis can be controlled by N bits is Tn in the figure. That is, in order to widen the compensation temperature range, it is necessary to make the number of bits larger than N.

E本発明の目的] 本発明の目的は、制御ビット数を増やさずに高精度なデ
ィジタル温度補償水晶発振器を提供することある。
EObject of the present invention] An object of the present invention is to provide a highly accurate digital temperature compensated crystal oscillator without increasing the number of control bits.

く本発明の構成〉 [問題を解決する手段1 本発明では、温度補償データを記憶部である第lROM
に記憶しておき、温度補償するが、第lROMだけでは
なく、再補償分のデータを第2R○Mに記憶して、第l
ROMと第2RO〜1の温度補償データを演算回路で演
算し、温度補償しようとするものである。
Configuration of the present invention> [Means for solving the problem 1 In the present invention, temperature compensation data is stored in the first ROM which is a storage unit.
Temperature compensation is performed by storing the data in the 2nd R○M in addition to the 1st ROM.
Temperature compensation data of the ROM and the second RO to 1 is calculated by an arithmetic circuit to perform temperature compensation.

[作用及び実施例] (第1実施例) 第1図は、本発明の構成を示すブロックダイヤグラムで
ある。サーミスタ等の感温素子から成る温度センサ部l
から温度情報を得、この温度情報をディジタル最に変換
するA/D変換器2と第1記憶部3に温度情報を伝達し
、第1記憶部3は代表的な水晶振動子の温度特性から得
られた温度補償データが記憶されており、マスクROM
等で量産が可能である。この第1記憶部3と実際の水晶
振動子とはカットアングルのズレ等によって生じた誤差
があるため、製造工程においてこの誤差のの分の温度補
償データを第2記憶部4に記憶する。
[Operations and Examples] (First Example) FIG. 1 is a block diagram showing the configuration of the present invention. Temperature sensor section l consisting of a temperature sensing element such as a thermistor
The temperature information is transmitted to an A/D converter 2 that converts this temperature information into digital data and a first storage section 3.The first storage section 3 obtains temperature information from the temperature characteristics of a typical crystal resonator. The obtained temperature compensation data is stored in the mask ROM.
Mass production is possible. Since there is an error between the first storage section 3 and the actual crystal resonator due to a difference in cut angle, etc., temperature compensation data corresponding to this error is stored in the second storage section 4 during the manufacturing process.

すなわち第2記憶部4はそれぞれの水晶振動子の温度補
償情報が記憶されている。この第1記憶部3と第2記憶
部11との出力は演算部5に入力される。演算部5ては
第1記憶部3と第2記憶部4とのデータを加算器で加算
する。この加算された温度補償データは、D/A変換器
6て電圧に変換され電圧制御水晶発振器7に入力される
That is, the second storage unit 4 stores temperature compensation information for each crystal resonator. The outputs of the first storage section 3 and the second storage section 11 are input to the calculation section 5. The arithmetic unit 5 adds the data in the first storage unit 3 and the second storage unit 4 using an adder. This added temperature compensation data is converted into a voltage by a D/A converter 6 and input to a voltage controlled crystal oscillator 7.

(第2実施例) 第1記憶部3は従来と同様各水晶振動子ごとに温度特性
を測定し、これを補償するデータをつくる。そして第2
記憶部4には、第1記憶部3てカバーしきれなかった温
度領域、例えば高温側や低温側で常温付近と異なり温度
特性の立ち上がり立ち下がりの大きな温度領域で誤差を
生じる。この誤差を第2記憶部4の温度補償情報として
記憶させておき、第1記憶部3と第2記憶部4で温度補
償させる。
(Second Embodiment) The first storage unit 3 measures the temperature characteristics of each crystal resonator and creates data to compensate for the temperature characteristics, as in the conventional case. and the second
Errors occur in the storage unit 4 in temperature ranges that cannot be covered by the first storage unit 3, for example, in temperature ranges where the temperature characteristics have large rises and falls, unlike near room temperature, on the high temperature side or low temperature side. This error is stored as temperature compensation information in the second storage section 4, and the temperature is compensated in the first storage section 3 and the second storage section 4.

第3図は、第1記憶部でのみ温度補償した時の発振器の
周波数温度特性である。第1記憶部だけでは補償しきれ
ない誤差を打ち消す温度補償データを第2記憶部に記憶
する。
FIG. 3 shows the frequency-temperature characteristics of the oscillator when temperature compensation is performed only in the first storage section. Temperature compensation data for canceling errors that cannot be compensated for by the first storage unit alone is stored in the second storage unit.

従来の構成で広範囲の温度特性の良好にするには、大容
量のROMが必要となったが、本発明においては第1記
憶部と第1記憶部だけでは?tti償しきれない分を第
2記憶部で温度補償することにより、効率よく温度補償
情報が記1′きされ、温度補償できる。 第1記憶部、
第2記憶部とあるが、必ずしも2つのROM−I Cを
用いなくても、1つのROIVI−ICの中で第1記憶
部と第2記憶部の割り当てをすればよく、従来の構成に
演算部を付加するだけで高精度化することができる。
In order to achieve good temperature characteristics over a wide range with the conventional configuration, a large-capacity ROM was required, but in the present invention, the first storage section and the first storage section alone are sufficient. By compensating for the temperature that cannot be compensated for in the second storage section, temperature compensation information can be efficiently written and temperature compensation can be performed. first storage section,
Although it is referred to as a second storage section, it is not necessary to use two ROM-ICs; it is sufficient to allocate the first storage section and the second storage section within one ROIVI-IC. High accuracy can be achieved simply by adding a section.

く本発明の効果〉 本発明によって従来と同しビット数であっても広範囲の
温度補償が可能となり、高精度のディジタル温度補償水
晶発振器が出来た。
Effects of the Present Invention> According to the present invention, a wide range of temperature compensation is possible even with the same number of bits as in the prior art, and a highly accurate digital temperature compensated crystal oscillator has been created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロックダイヤグラム、第
2図は温度範囲上周波数の関係を示すグラフ、第3図は
第1ROII、=1のみで補償した時の周波数1品度特
性を示すグラフ、第4図は従来の構成を示すブロックダ
イヤグラムである。 ■・・・・・・・・・温度センサー部、2・・・・・・
・・・A / D変換部、3・・・・・・・・・第1記
憶部、 4・・・・・・・・・第2記憶部、 5・・・・・・・・・演算部、 6・・・・・・・・・D/A変換部、 7・・・・・・・・・電圧制御水晶発振器、10・・・
・・・・・・記憶部 特許出頓人  キンセキ株式会社 第2図
Fig. 1 is a block diagram showing the configuration of the present invention, Fig. 2 is a graph showing the relationship between frequency over temperature range, and Fig. 3 is a graph showing frequency 1 quality characteristics when compensated only with 1 ROI = 1. , FIG. 4 is a block diagram showing a conventional configuration. ■・・・・・・Temperature sensor part, 2・・・・・・
...A/D converter, 3...First memory section, 4...Second memory section, 5......Calculation part, 6......D/A conversion part, 7......voltage controlled crystal oscillator, 10...
・・・・・・Memory Department Patent Executor Kinseki Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 感温素子等で温度を測定する温度センサ部と該温度セン
サー部の温度情報をディジタル量に変換するA/D変換
部と予め水晶振動子の温度補償データを記憶してある記
憶部と、該記憶部からのデータをアナログ量に変換する
D/A変換部と、電圧により周波数が変化する電圧制御
水晶発振器とから成るディジタル温度補償水晶発振器に
おいて、該記憶部が第1記憶部と第2記憶部とから成り
、該第1記憶部と第2記憶部の出力を演算する演算部が
あることを特徴とするディジタル温度補償水晶発振器。
A temperature sensor unit that measures temperature with a temperature sensing element or the like, an A/D converter unit that converts temperature information from the temperature sensor unit into a digital quantity, a storage unit that stores temperature compensation data of a crystal oscillator in advance, and In a digital temperature-compensated crystal oscillator comprising a D/A conversion section that converts data from a storage section into an analog quantity and a voltage-controlled crystal oscillator whose frequency changes depending on a voltage, the storage section has a first storage section and a second storage section. A digital temperature-compensated crystal oscillator comprising: a digital temperature-compensated crystal oscillator, comprising: a calculating portion for calculating the outputs of the first storage portion and the second storage portion;
JP10600587A 1987-04-28 1987-04-28 Digital temperature compensated crystal oscillator Pending JPS63269811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10600587A JPS63269811A (en) 1987-04-28 1987-04-28 Digital temperature compensated crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10600587A JPS63269811A (en) 1987-04-28 1987-04-28 Digital temperature compensated crystal oscillator

Publications (1)

Publication Number Publication Date
JPS63269811A true JPS63269811A (en) 1988-11-08

Family

ID=14422568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10600587A Pending JPS63269811A (en) 1987-04-28 1987-04-28 Digital temperature compensated crystal oscillator

Country Status (1)

Country Link
JP (1) JPS63269811A (en)

Similar Documents

Publication Publication Date Title
JP2001267847A (en) Temperature compensated crystal oscillator and method for compensating temperature or the oscillator
US4872765A (en) Dual mode quartz thermometric sensing device
JP2011114403A (en) Temperature compensation method for piezoelectric oscillator, and piezoelectric oscillator
CN102027672A (en) Oscillator
JP2001292030A (en) Crystal oscillation circuit and crystal resonator
JPH04123617A (en) Digital temperature compensated oscillator
JP3310550B2 (en) Temperature compensated crystal oscillator and method for optimizing its characteristics
JPS63269811A (en) Digital temperature compensated crystal oscillator
JPS58184809A (en) Frequency controlling method of digital control type temperature compensated crystal oscillator
JP2713214B2 (en) Temperature compensation device for crystal oscillation circuit
JPS60220605A (en) Piezoelectric oscillator for asynchronous mode operation
JPS61154206A (en) Piezoelectric oscillator
JPS6129652B2 (en)
JPH07162228A (en) Oscillation circuit
JPS5840155B2 (en) densid cay
JP4771280B2 (en) Temperature compensation method, correction value determination circuit, and temperature compensation oscillation circuit
JP2975411B2 (en) Temperature compensated piezoelectric oscillator
JP3673406B2 (en) Digitally controlled oscillator
JP3211134B2 (en) Calculation method of oscillation frequency of crystal unit
JPH06291550A (en) Digital type temperature compensation piezoelectric oscillator and communication equipment
JP2584991B2 (en) Digitally controlled temperature compensated crystal oscillator
JP2006303855A (en) Temperature compensation method of temperature compensation oscillation circuit, temperature compensation oscillation circuit, and piezoelectric device
JPS6393205A (en) Digital control type temperature compensating crystal oscillator
JP2002299957A (en) Method for correcting temperature characteristics of crystal oscillator
JPH09153738A (en) Temperature compensation oscillator