JPS58184809A - Frequency controlling method of digital control type temperature compensated crystal oscillator - Google Patents

Frequency controlling method of digital control type temperature compensated crystal oscillator

Info

Publication number
JPS58184809A
JPS58184809A JP6627882A JP6627882A JPS58184809A JP S58184809 A JPS58184809 A JP S58184809A JP 6627882 A JP6627882 A JP 6627882A JP 6627882 A JP6627882 A JP 6627882A JP S58184809 A JPS58184809 A JP S58184809A
Authority
JP
Japan
Prior art keywords
temperature
deviation
temperature coefficient
crystal oscillator
deltat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6627882A
Other languages
Japanese (ja)
Inventor
Takehiko Uno
宇野 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6627882A priority Critical patent/JPS58184809A/en
Publication of JPS58184809A publication Critical patent/JPS58184809A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/023Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using voltage variable capacitance diodes
    • H03L1/025Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using voltage variable capacitance diodes and a memory for digitally storing correction values

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To control a varactor, by giving a resonance frequency temperature coefficient of a crystal oscillator in a digital code series, providing an operating function in a control system, obtaining a resonance frequency deviation at an arbitrary temperature and processing the deviation. CONSTITUTION:A resonance frequency relative deviation DELTAf/f0 is expressed as a plynomial DELTAf/f0=A1DELTAT+A2(DELTAT)<2>+A3(DELTAT)<3>+A4(DELTAT)<4>+A5(DELTAT )<5>+...(1), where DELTAT is the temperature deviation from a reference temperature and An is the n-order temperature coefficient. The reference frequency temperature coefficient An of a crystal oscillator gives deviation information only to the reference value an, then the An is expressed as An=an+deltan...(2). First order temperature coefficients delta11, delta12,...delta1m1; second order temperature coefficients delta21, delta22...delta2m2;...; n-th order temperature coefficients deltan1,...deltanmn are inputted from a temperature coefficient information input terminal 9 to a temperature coefficient generating circuit 10, and the information corresponding to the temperature coefficients are given to an operation processing circuit 11. The circuit 11 obtains the resonance frequency deviation at an arbitrary temperature from equation (1) and performs signal processing.

Description

【発明の詳細な説明】 本発明は、少量の水晶振動子温度特性情報により高い周
波数精度を有するディジタル制御形温度補償水晶発振器
の周波数制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency control method for a digitally controlled temperature compensated crystal oscillator that has high frequency accuracy using a small amount of crystal resonator temperature characteristic information.

ディンタル制御形温度補償水晶発振器(以下DTCXO
と略記する)は、第1図に示すように水晶振動子1の周
囲温度を温度センサ2によって検知し、温度符号化回路
3にて温度情報をディジタル符号に変換し、該符号化温
度情報を信号処理回路4に入力し、水晶振動子1の共振
周波数温度特性に適合した信号処理を行ない、その処理
結果に基づいて発振回路5の構成要素である可変容量素
子6の答縫値を制御することにより、温度に対して安定
な周波数を得る水晶発振器である。水晶振動子の共振周
波数温度特性には製造偏差があるため、安定な発振周波
数を得るためには使用する振動子の特性に対応した信号
処理を行なう必要がある。
Digitally controlled temperature compensated crystal oscillator (DTCXO)
As shown in FIG. 1, the temperature sensor 2 detects the ambient temperature of the crystal resonator 1, converts the temperature information into a digital code in the temperature encoding circuit 3, and converts the encoded temperature information into a digital code. The signal is input to the signal processing circuit 4, where signal processing is performed that matches the resonant frequency temperature characteristics of the crystal resonator 1, and based on the processing result, the threading value of the variable capacitance element 6, which is a component of the oscillation circuit 5, is controlled. This is a crystal oscillator that obtains a stable frequency over temperature. Since there are manufacturing deviations in the resonant frequency temperature characteristics of a crystal resonator, in order to obtain a stable oscillation frequency, it is necessary to perform signal processing that corresponds to the characteristics of the resonator used.

そのだめ、信号処理回路4の構成法としては従来第2図
に示すように読み出し専用メモリ(ROM)7を設け、
水晶振動子の温度特性を予め測定して多数の温度点につ
いて基準温度に対する共振周波数偏差をROM7に記憶
させておき、温度情報により当該温度における周波数偏
差を読み出して制御信号発生回路8により制御信号を得
る方法が用いられている。
Therefore, the conventional method of configuring the signal processing circuit 4 is to provide a read-only memory (ROM) 7 as shown in FIG.
The temperature characteristics of the crystal oscillator are measured in advance, and the resonant frequency deviations with respect to the reference temperature are stored in the ROM 7 at many temperature points.The frequency deviation at the temperature is read out based on the temperature information, and the control signal generation circuit 8 generates the control signal. The method used is to obtain

上述のような従来方法においては、ROM7に対して大
きなメモリ容量が必要となる。すなわち、例えばDTC
XOの使用温度範囲を一20°〜+70℃とし、その間
0.2℃毎に共振周波数偏差のデータを8ビツトで符号
化する場合、8x (90X5+1 >=3608ビッ
トの容量が必要となる。このため各温度毎の共振周波数
偏差データを入力するには厖大な手間を要し、個々の水
晶撮動手毎にマスクを用意してマスクROMで対応する
などの方法が必要である。
In the conventional method as described above, a large memory capacity is required for the ROM 7. That is, for example, DTC
If the operating temperature range of the XO is -20° to +70°C and data of resonance frequency deviation is encoded in 8 bits every 0.2°C during that time, a capacity of 8x (90x5+1 >=3608 bits is required. Therefore, inputting resonant frequency deviation data for each temperature requires an enormous amount of effort, and a method such as preparing a mask for each crystal photographer and using a mask ROM is required.

この場合、水晶振動子とROMとは対にして使用しなけ
ればならないので、水晶振動子のみを取換えることかで
きないなど柔軟性に欠け、またROMと他の回路とを一
個の集積回路上に形成することが困難で複数個の半導体
チップにより構成されるため、小形、低電力化等の点で
問題がある。さらに、DTCXOの使用温度範囲につい
てもROMに記憶されたデータの温度範囲に制約される
ため、当該温度範囲から逸脱した場合飽和現象が生じ誤
差が急激に増大する。
In this case, the crystal oscillator and ROM must be used in pairs, which lacks flexibility as it is only possible to replace the crystal oscillator, and the ROM and other circuits must be combined on a single integrated circuit. Since it is difficult to form and consists of a plurality of semiconductor chips, there are problems in terms of miniaturization, low power consumption, etc. Furthermore, since the operating temperature range of the DTCXO is also restricted by the temperature range of data stored in the ROM, if the temperature range deviates from this temperature range, a saturation phenomenon occurs and the error increases rapidly.

一方別の構成法として、ROM7の代りにマイクロプロ
セッサを用い、水晶振動子の共振周波数温度係数値と温
度情報とに依り演算処理することにより制御する方法も
あるが、温度係数値を10進数の数値としてマイクロプ
ロセッサに与えているために温度係数を記憶するための
多くの容量を必要とし、回路規模、消費電力等が大きく
なるという欠点がある。
On the other hand, as another configuration method, there is a method in which a microprocessor is used instead of the ROM 7 and control is performed by performing arithmetic processing depending on the resonant frequency temperature coefficient value of the crystal resonator and temperature information, but the temperature coefficient value is converted into a decimal number. Since the temperature coefficient is given to the microprocessor as a numerical value, a large capacity is required to store the temperature coefficient, which has the drawback of increasing circuit scale and power consumption.

本発明は、上述の夏点を除去するため、水晶振動子の温
度特性に関して少量の情報を与えるのみで高精度の周波
数制御を実現でき、かつ、回路全体を1チツプ上に搭載
可能ならしめるディジタル制御形温度補償水晶発振器の
周波数制御方法を提供するものである。
In order to eliminate the above-mentioned summer point, the present invention has developed a digital system that can realize highly accurate frequency control by providing only a small amount of information regarding the temperature characteristics of the crystal resonator, and also allows the entire circuit to be mounted on one chip. A frequency control method for a controlled temperature compensated crystal oscillator is provided.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第3図はATカット水晶振動子の共振周波数温度特性の
一例を示す図で、横軸は温度、縦軸は基準温度点Toに
対する共振周波数の相対偏差を表わし、基準温度は25
℃としている。共振周波数相対偏差Δf /foは一般
に多項式 %式%() (1) で表わすことができる。ここで、ΔTは基準温度からの
温度偏差、An(n=1,2.3・・曲)はn次温度係
数である。ATカット水晶振動子の共振周波数温度特性
は式(1)においてΔTの3次以下の項で精度良・く表
わすことができ、また5次項捷でとればより高精度の近
似が得られるので、4次以上あるいは6次以上の高次の
項は無視してよい。従って、各温度における周波数偏差
を記憶しておく代りに、使るいは、高精度を要する場合
に#′i1〜5次温度係数A+ + A2 、A3+ 
A4 、Asを与え、式(])の演算を行なえば任意の
温度における周波数偏差が得られる。
Figure 3 is a diagram showing an example of the resonant frequency temperature characteristics of an AT-cut crystal resonator, where the horizontal axis represents temperature and the vertical axis represents the relative deviation of the resonant frequency with respect to the reference temperature point To, where the reference temperature is
℃. The resonant frequency relative deviation Δf /fo can generally be expressed by the polynomial formula %() (1). Here, ΔT is the temperature deviation from the reference temperature, and An (n=1, 2.3, etc.) is the n-th temperature coefficient. The resonant frequency temperature characteristic of an AT-cut crystal resonator can be expressed with good precision by the third-order term or lower of ΔT in equation (1), and a more accurate approximation can be obtained by subtracting the fifth-order term. Higher-order terms such as fourth order or higher or sixth order or higher may be ignored. Therefore, instead of memorizing the frequency deviation at each temperature, #'i1 to 5th temperature coefficients A+ + A2, A3+ can be used or when high accuracy is required.
By giving A4 and As and calculating the formula (]), the frequency deviation at any temperature can be obtained.

本発明は、水晶振動子の共振周波数温度係数をディジタ
ル符号系列にて与え、制御系内に演算機能を設けて任意
の温度における共振周波数偏差を式(1)により求め、
これを信号処理することにより可変容量素子の制御を行
なうものであり、さらに少量の温度係数情報で高精度の
制御を可能とするため、以下に述べるように、水晶振動
子の共振周波数温度係数は基準値に対する偏差情報のみ
を与えている。すなわち、温度係数Anの値には製造ば
らつきがあるが、それぞれの次数の温度係数に対して基
準値anを設定し、差分をδ。とすると、An=an+
δn(2) と表わされ、あるいは、差分δ。の代りに偏差を表わす
ファクタpnを導入し、 An−pnxan(3) と表わすことができる。基準値anは制御系内部におい
てディジタル符号系列として発生させ、個々の水晶振動
子に対応した温度特性情報としては偏差へあるいはPn
をディジタル符号系列として入力し、式(2)によりA
nを求める。δ。あるいはPnは、基準値からの製造偏
差に対応するものであるから比較的低ビット数で与える
ことができ、後述のように各次数に対し5〜10ビツト
で十分高い精度が得られる。
The present invention provides a resonant frequency temperature coefficient of a crystal resonator in a digital code series, provides an arithmetic function in the control system, and calculates the resonant frequency deviation at an arbitrary temperature using equation (1).
The variable capacitance element is controlled by signal processing this, and in order to enable highly accurate control with a small amount of temperature coefficient information, as described below, the resonant frequency temperature coefficient of the crystal resonator is Only deviation information from the reference value is provided. That is, although there are manufacturing variations in the value of the temperature coefficient An, a reference value an is set for the temperature coefficient of each order, and the difference is calculated by δ. Then, An=an+
δn(2) or the difference δ. By introducing a factor pn representing the deviation instead of , it can be expressed as An-pnxan(3). The reference value an is generated as a digital code series within the control system, and the temperature characteristic information corresponding to each crystal oscillator is generated as a deviation or Pn.
is input as a digital code sequence, and A
Find n. δ. Alternatively, since Pn corresponds to the manufacturing deviation from the reference value, it can be given with a relatively low number of bits, and as will be described later, a sufficiently high precision can be obtained with 5 to 10 bits for each order.

第4図は本発明によるDTCXOの実施例でありlは水
晶振動子、2は温度セ/す、3は温度符号化回路、5は
発掘回路、6は可変容量素子、9は水晶振動子の温度係
数情報を基準値に対する偏差の形で入力するだめの端子
、10は基準値のディジタル符号系列を発生するレンス
タの如き回路を含み、端子9からの温度係数の偏差を示
すディジタル偏差値符号系列と基準値ディジタル符号系
列とを演算処理して水晶振動子の共振周波数温度係数に
対応する情報を発生するだめの温度係数発生回路、11
は演算処理回路であ名。i、温度係数情報入力端子9は
、第4図に端子名を付したように、1次温度係数につい
てはδ11 +δ12+・・・・・、δ11.、j  
のm1本、2次温度係数はδ21.δ22.・・曲、6
2.1mのm2本、以下同様にして、n次温度係数につ
いてはmn本の端子を設け、温度係数の偏差δ。を符号
化し、その結果に基づいて各端子をO”または“l’の
論理レベルに固定する。後述のように係数情報入力端子
の総数は、周波数温度特性を3次方程式で与える場合、
20本程度、5次式近似の場合は40本程度で実用上、
  十分な精度が得られる。
FIG. 4 shows an embodiment of the DTCXO according to the present invention, where l is a crystal oscillator, 2 is a temperature sensor, 3 is a temperature encoding circuit, 5 is an excavation circuit, 6 is a variable capacitance element, and 9 is a crystal oscillator. A terminal for inputting temperature coefficient information in the form of a deviation from a reference value, 10 includes a circuit such as a Renstar that generates a digital code sequence of a reference value, and a digital deviation value code sequence indicating the deviation of the temperature coefficient from the terminal 9. and a reference value digital code sequence to generate information corresponding to the resonant frequency temperature coefficient of the crystal resonator; 11;
is an arithmetic processing circuit. i, temperature coefficient information input terminal 9, as indicated by the terminal names in FIG. ,j
m1 piece, the secondary temperature coefficient is δ21. δ22. ...Song, 6
m2 terminals of 2.1 m, and similarly, mn terminals are provided for the n-th temperature coefficient, and the deviation of the temperature coefficient is δ. is encoded, and each terminal is fixed at a logic level of "O" or "l'" based on the result. As will be explained later, the total number of coefficient information input terminals is calculated as follows:
In practice, it is about 20 lines, and about 40 lines for quintic approximation.
Sufficient accuracy can be obtained.

第4図の実施例において、3,5.10および11は一
個の半導体チップ上に搭載することが可能であり、これ
らの回路を例えばCMO8で構成すれば、回路の小形化
のみならず低消費電力化を実現できる。また、温度係数
情報は外部端子により与えるから、水晶振動子の交換に
対しても端子接続の変更により容易に対処できる。一方
、温度係数情報入力のだめの外部端子を設けることが困
難な場合には、温度係数偏差δ。に対応したディジタル
符号・:き を発生する機能を有する回路を設けることで対処可能で
ある。具体的な構成としては、ごく小容量のROM 6
るいはプログラム可能論理プレイ(、PLA)を設けれ
ばよく、必要な記憶容量は5次式近似の場合でも高々4
0ピント程度で、従来の方法に比べれば格段に少ないの
で、他の回路部分と同一チップに搭載できる。
In the embodiment shown in FIG. 4, 3, 5, 10, and 11 can be mounted on one semiconductor chip, and if these circuits are configured with, for example, CMO8, not only the circuit can be made smaller but also the power consumption can be reduced. Electrification can be achieved. Furthermore, since temperature coefficient information is provided through external terminals, replacement of the crystal resonator can be easily handled by changing the terminal connections. On the other hand, if it is difficult to provide an external terminal for inputting temperature coefficient information, the temperature coefficient deviation δ. This can be solved by providing a circuit that has the function of generating a digital code corresponding to . The specific configuration is a very small capacity ROM 6
Alternatively, a programmable logic play (PLA) can be provided, and the required storage capacity is at most 4 even for quintic approximation.
The focus is about 0, which is much less than conventional methods, so it can be mounted on the same chip as other circuit parts.

次に温度係数偏差δ。を辱えるために必要なビット数に
ついて説明する。多数のATカット水晶振動fについて
共振周波数温度特性を測定した結果、3次式で近似した
場合の温度係数は、1次係数A。
Next is the temperature coefficient deviation δ. Explain the number of bits required to humiliate. As a result of measuring the resonance frequency temperature characteristics of a large number of AT-cut crystal vibrations f, the temperature coefficient when approximated by a cubic equation is a linear coefficient A.

については(0〜−4)×1O−7/℃、2次係数A2
については(−6〜−16)XIO−10/ (℃)2
、また3次係数A3は(9〜n ) x to−”  
/ (℃)3の範囲に存在する。従って各広温度係数を
それぞれとおくと、δl、δ2およびδ3はそれぞれと
なる。δ1(i==1+2.3)をm1ビツトで符号化
すると、皺了化ステノグdδ1はdδ1−δ1/2°1
で与えられるから、δlを8ピツト、δ2およびδ3を
それぞれ5ビツト、合計18ビツトで符号化した場合、
daI=0.0156 、 dδ2=0.313 、 
dδ3 = 0.0625’となる。
For (0~-4)×1O-7/℃, quadratic coefficient A2
For (-6 to -16)XIO-10/ (℃)2
, and the third-order coefficient A3 is (9~n) x to-”
/ (°C)3. Therefore, if each wide temperature coefficient is set separately, δl, δ2, and δ3 will be respectively. When δ1 (i = = 1 + 2.3) is encoded with m1 bits, the wrinkled stenog dδ1 is dδ1 - δ1/2°1
Therefore, if δl is encoded with 8 pits and δ2 and δ3 are encoded with 5 bits each, a total of 18 bits,
daI=0.0156, dδ2=0.313,
dδ3 = 0.0625'.

今例えば、25℃±45℃の温度範囲を考えた場合、上
記の量子化ステップによる周波数相対偏差の誤差の最大
値δ(Δf/fo ) 、、、はδ(Δf/fo )I
IIM、=dδ、Xl0−7X45+dδ2×1O−1
0X452+dδ3 X 10−” X 453= 1
.9 X 10−’ すなわち、0.2ppm以下の誤差とな抄、極めて小さ
い。
For example, if we consider a temperature range of 25°C ± 45°C, the maximum error value of the frequency relative deviation due to the above quantization step δ(Δf/fo), , is δ(Δf/fo)I
IIM, = dδ, Xl0−7X45+dδ2×1O−1
0X452+dδ3 X 10-” X 453= 1
.. 9 x 10-' That is, the error is 0.2 ppm or less, which is extremely small.

上述の例は共振周波数温度係数を式(2)に従って表わ
した場合であるが式(3)に従った場合も同様になる。
The above example is a case where the resonant frequency temperature coefficient is expressed according to equation (2), but the same applies when equation (3) is used.

すなわち例えば2次温度係数A2を暢 A2 =−pnX 6 X 10 ’/(℃)2(6)
とおくと 1≦pn≦2.667  、  、         
  (7)となるから、これを5ビツトで符号化すると
、。
In other words, for example, the quadratic temperature coefficient A2 is expressed as A2 = -pnX 6 X 10'/(℃)2(6)
Then, 1≦pn≦2.667, ,
(7), so if we encode this with 5 bits, we get:

A2(D量子化ステップはδA2= 6 X lo ”
x (2,667−1)/25= 0.313X 1o
−toとなるので、式(4)で表ゎした場合と一致する
A2 (D quantization step is δA2 = 6 X lo ”
x (2,667-1)/25= 0.313X 1o
-to, which matches the case expressed by equation (4).

共振周波数温度特性を5次式で近似した場合も、同様に
して各次数の温度係数を7〜lOビツト、合計40ビッ
ト程度で符号化すれば、25℃±45℃の温度範囲にお
いて、誤差の最大値は0.1 ppm程度となる。また
、周囲温度が上記温度範囲を逸脱した場合でも、当該温
度における共振周波数は演算によって求められるから記
憶容量の不足に伴う誤差の急増は起らない。
Even when the resonant frequency temperature characteristic is approximated by a quintic equation, if the temperature coefficient of each order is similarly encoded using 7 to 10 bits, a total of about 40 bits, the error will be reduced in the temperature range of 25°C ± 45°C. The maximum value is about 0.1 ppm. Further, even if the ambient temperature deviates from the above-mentioned temperature range, the resonant frequency at that temperature is determined by calculation, so that a sudden increase in errors due to insufficient storage capacity does not occur.

以上説明したように、本発明によるディジタル制御形温
度補償水晶発系器の制御方法は、わずかのビット数によ
り水晶振動子の共振周波数温度特性を高い精度にて与え
ることが可能であり、信号処理においても積および和の
計算のみで特別な処理を必要とせず、回路規模が小さい
から水晶振動子および温度セ/すを除く全ての回路を1
チツプの集積回路に搭載することが1liT−であり、
小形かつ低消費電力にして高精度の温度補償水晶発振器
を提供するものであるから、各種通信機器の性能向にに
対して絶大な効果がある。
As explained above, the control method of the digitally controlled temperature-compensated crystal oscillator according to the present invention makes it possible to provide the resonant frequency temperature characteristics of the crystal resonator with high precision using a small number of bits. Also, since the circuit size is small, all the circuits except the crystal oscillator and temperature sensor can be integrated into one.
It is 1liT- to be installed in the integrated circuit of the chip,
Since it provides a small, low power consumption, and highly accurate temperature compensated crystal oscillator, it has a tremendous effect on improving the performance of various communication devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はディジタル制御形温度補償水晶発振器の構成図
、第2図はディジタル制御形温度補償水晶発振器の信号
処理回路の従来の構成法を示す図、第3図は水晶振動子
の共振周波数温度特性例、第4図は本発明の制御方法に
よる温度補償水晶発振器の構成例を示す図である。 1・・・水晶振動子、2・・・温度センサ、3・・・温
度符号化回路、4・・・信号処理回路、5・・・発振回
路、6・・・可変容量素子、7・・・読み出し専用メモ
リ、8 ・制御信号発生回路、9・・・温度係数情報入
力端子、10・・・温度係数発生回路、11・・・演算
処理回路。 特許出願人  日本電信電話公社 代 理 人   1  水  常  雄性1名 ′I51 閃 、73 ≧ く WEI2[p
Figure 1 is a configuration diagram of a digitally controlled temperature compensated crystal oscillator, Figure 2 is a diagram showing the conventional configuration method of a signal processing circuit for a digitally controlled temperature compensated crystal oscillator, and Figure 3 is a diagram showing the resonant frequency temperature of the crystal resonator. Characteristic Example: FIG. 4 is a diagram showing an example of the configuration of a temperature compensated crystal oscillator according to the control method of the present invention. DESCRIPTION OF SYMBOLS 1... Crystal resonator, 2... Temperature sensor, 3... Temperature encoding circuit, 4... Signal processing circuit, 5... Oscillation circuit, 6... Variable capacitance element, 7... - Read-only memory, 8 - Control signal generation circuit, 9... Temperature coefficient information input terminal, 10... Temperature coefficient generation circuit, 11... Arithmetic processing circuit. Patent Applicant Nippon Telegraph and Telephone Public Corporation Agent 1 Mizutsune Male'I51 Flash, 73 ≧ KUWEI2[p

Claims (1)

【特許請求の範囲】[Claims] 水晶振動子の共振周波数温度特性を温度に関する多項式
に展開した該多項式の各次数に対応する共振周波数温度
係数を基準値と偏差値に分離して該偏差値に対応する情
報をディジタル偏差値符号系列となして制御系に入力し
、かつ前記基準値に対応するディジタル基準値符号系列
を制御系内部で発生させ、該ディジタル基準値符号系列
と前記ディジタル偏差値符号系列とを演算処理すること
により水晶振動子の共振周波数温度係数に対応する情報
となし、該共振周波数温度係数に対応する情報ならびに
別に供給されるディジタル符号系列化された温度情報に
基づいて発振周波数制御信号を生せしめることを特徴と
するディンタル制御形温度補償水晶発振器の周波数制御
方法。
The resonant frequency temperature characteristic of the crystal resonator is expanded into a polynomial related to temperature, the resonant frequency temperature coefficient corresponding to each order of the polynomial is separated into a reference value and a deviation value, and the information corresponding to the deviation value is converted into a digital deviation value code series. is input to the control system, a digital reference value code series corresponding to the reference value is generated within the control system, and the digital reference value code series and the digital deviation value code series are subjected to arithmetic processing. Information corresponding to the resonant frequency temperature coefficient of the vibrator, and generating an oscillation frequency control signal based on the information corresponding to the resonant frequency temperature coefficient and separately supplied digitally encoded temperature information. A frequency control method for a digitally controlled temperature compensated crystal oscillator.
JP6627882A 1982-04-22 1982-04-22 Frequency controlling method of digital control type temperature compensated crystal oscillator Pending JPS58184809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6627882A JPS58184809A (en) 1982-04-22 1982-04-22 Frequency controlling method of digital control type temperature compensated crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6627882A JPS58184809A (en) 1982-04-22 1982-04-22 Frequency controlling method of digital control type temperature compensated crystal oscillator

Publications (1)

Publication Number Publication Date
JPS58184809A true JPS58184809A (en) 1983-10-28

Family

ID=13311201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6627882A Pending JPS58184809A (en) 1982-04-22 1982-04-22 Frequency controlling method of digital control type temperature compensated crystal oscillator

Country Status (1)

Country Link
JP (1) JPS58184809A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149223A (en) * 1984-01-17 1985-08-06 Yaesu Musen Co Ltd Temperature-frequency characteristic correcting method
US4611181A (en) * 1984-09-10 1986-09-09 Nec Corporation Temperature compensated oscillator with reduced noise
JPS62161411U (en) * 1986-04-04 1987-10-14
JPS62278803A (en) * 1986-05-28 1987-12-03 Nec Corp Temperature compensation piezoelectric oscillator
JPS63108806A (en) * 1986-10-24 1988-05-13 Kinseki Kk Crystal oscilator with digital temperature compensation
JPS63206010A (en) * 1987-02-21 1988-08-25 Daiwa Shinku Kogyosho:Kk Crystal oscillator with temperature compensation
JPH01265708A (en) * 1988-03-03 1989-10-23 Motorola Inc Temperature compensator of crystal oscillator
JPH0584880U (en) * 1992-04-17 1993-11-16 日本無線株式会社 Linearizer for temperature compensation
US5757244A (en) * 1996-02-23 1998-05-26 Kyocera Corporation Digital control type oscillation circuit of portable telephone, crystal resonator oscillation frequency calculating method, and outputfrequency correcting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821665A (en) * 1973-06-11 1974-06-28 Motorola Inc Temperature compensated crystal oscillator
JPS5312255A (en) * 1976-07-21 1978-02-03 Seiko Epson Corp Electronic clock

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821665A (en) * 1973-06-11 1974-06-28 Motorola Inc Temperature compensated crystal oscillator
JPS5312255A (en) * 1976-07-21 1978-02-03 Seiko Epson Corp Electronic clock

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149223A (en) * 1984-01-17 1985-08-06 Yaesu Musen Co Ltd Temperature-frequency characteristic correcting method
JPH0469450B2 (en) * 1984-01-17 1992-11-06 Yaesu Musen Kk
US4611181A (en) * 1984-09-10 1986-09-09 Nec Corporation Temperature compensated oscillator with reduced noise
JPS62161411U (en) * 1986-04-04 1987-10-14
JPS62278803A (en) * 1986-05-28 1987-12-03 Nec Corp Temperature compensation piezoelectric oscillator
JPS63108806A (en) * 1986-10-24 1988-05-13 Kinseki Kk Crystal oscilator with digital temperature compensation
JPS63206010A (en) * 1987-02-21 1988-08-25 Daiwa Shinku Kogyosho:Kk Crystal oscillator with temperature compensation
JPH01265708A (en) * 1988-03-03 1989-10-23 Motorola Inc Temperature compensator of crystal oscillator
JPH0584880U (en) * 1992-04-17 1993-11-16 日本無線株式会社 Linearizer for temperature compensation
US5757244A (en) * 1996-02-23 1998-05-26 Kyocera Corporation Digital control type oscillation circuit of portable telephone, crystal resonator oscillation frequency calculating method, and outputfrequency correcting method

Similar Documents

Publication Publication Date Title
US7583157B2 (en) Method of manufacturing a temperature compensated oscillator
US8471619B2 (en) Circuit and method for generating a clock signal
CN101091316B (en) Method and device for Vco center frequency tuning and limiting gain variation
US7782152B2 (en) Monotonic frequency tuning technique for DCXO in cellular applications
US6154095A (en) Phase locked loop clock source provided with a plurality of frequency adjustments
JP2003218636A5 (en)
JP2013211654A (en) Oscillator, electronic apparatus and temperature compensation method for oscillator
JPS58184809A (en) Frequency controlling method of digital control type temperature compensated crystal oscillator
JP2001013011A (en) Temperature detecting circuit
JP4545769B2 (en) Temperature compensated oscillator
KR100635165B1 (en) Temperature-compensated oscillator and manufacturing methods thereof
JPS58168988A (en) Electronic timepiece with temperature compensating function
JP3211134B2 (en) Calculation method of oscillation frequency of crystal unit
JP7393744B2 (en) Oscillator, temperature compensation circuit, and temperature compensation method
JP2001186020A (en) Oscillator and its frequency setting method
JP2022098628A (en) Circuit device and oscillator
JP2022057163A (en) Circuit arrangement and oscillator
JP2002185312A (en) Method and device for adjusting oscillation frequency of pll piezoelectric oscillator
JPH05347512A (en) Temperature compensation type crystal oscillator
KR20060112547A (en) Temperature compensated oscillator and method of manufacturing the same
JP2001177405A (en) Oscillator and oscillating frequency setting method therefor
JP2011103636A (en) Method of adjusting frequency of temperature-compensated piezoelectric oscillator
JP2000040918A (en) Digital-control type oscillator
JP2008300977A (en) Temperature compensation crystal oscillator and method for compensating temperature of oscillator
JPH0685539A (en) Crystal oscillator