JPH08236621A - Fabrication of semiconductor device - Google Patents

Fabrication of semiconductor device

Info

Publication number
JPH08236621A
JPH08236621A JP7040648A JP4064895A JPH08236621A JP H08236621 A JPH08236621 A JP H08236621A JP 7040648 A JP7040648 A JP 7040648A JP 4064895 A JP4064895 A JP 4064895A JP H08236621 A JPH08236621 A JP H08236621A
Authority
JP
Japan
Prior art keywords
insulating film
wiring
barrier metal
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7040648A
Other languages
Japanese (ja)
Inventor
Yukinobu Murao
幸信 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7040648A priority Critical patent/JPH08236621A/en
Priority to KR1019960005632A priority patent/KR960032617A/en
Publication of JPH08236621A publication Critical patent/JPH08236621A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Abstract

PURPOSE: To control the depth of interconnect trench automatically without increasing the number of steps of alignment exposure by forming a multilevel metallization using interconnect trenches made in a multilayer insulation film. CONSTITUTION: A barrier metal 110 is sputtered on a first insulation film 100 and a second insulation film 120 is deposited thereon thus burying the barrier metal 110 in the first insulation film 100. It is then subjected to dry etching using a photoresist 130 patterned through alignment exposure thus obtaining patterned BPSG 120A and barrier metal 110A. After removing the residual photoresist 130, a third insulation film 140 is deposited around the second insulation film 120 and the barrier metal 110A. Finally, the second insulation film 120 is removed while leaving the third insulation film 140 to form an interconnect trench having bottom of barrier metal 110A and the trench is filled with Cu film thus forming Cu interconnection 150A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に多層配線形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a multi-layer wiring.

【0002】[0002]

【従来の技術】従来溝を利用して配線を行うにあたって
は、図5(a),(b)に示すように、層間絶縁膜20
01に配線用溝2002をドライエッチングにより形成
し、配線用溝2002を含む層間絶縁膜2001の表面
に配線用メタル2003を被着し、次いで化学機械研磨
CMP法により配線用溝2002を除く層間絶縁膜20
01上の配線用メタル2003を除去し、溝20002
中にのみ配線用メタル2003を残存させて配線を行っ
ていた(例えば、James.S.Cho他、Inte
rnational Electron Device
s Meeting,1992,11.4.1)。
2. Description of the Related Art Conventionally, when wiring is performed using a groove, as shown in FIGS. 5 (a) and 5 (b), an interlayer insulating film 20 is formed.
A wiring groove 2002 is formed by dry etching at 01, a wiring metal 2003 is deposited on the surface of an interlayer insulating film 2001 including the wiring groove 2002, and then interlayer insulation except for the wiring groove 2002 is performed by a chemical mechanical polishing CMP method. Membrane 20
The metal 2003 for wiring on 01 is removed to form the groove 20002.
Wiring was carried out by leaving the metal 2003 for wiring only in the inside (for example, James. S. Cho et al., Inte.
national Electron Device
S Meeting, 1992, 11.4.1).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この方
法では層間絶縁膜2001に配線用溝2002をドライ
エッチングにより形成する際、そのドライエッチングを
自動的に停止するための基準となるストッパー層が層間
絶縁膜に設けられておらず、オペレータがドライエッチ
ングを勘により制御して配線用溝2002を設けること
となるため、溝2002の深さを設計値のものにコント
ロールすることは、非常に困難である。
However, in this method, when the wiring trench 2002 is formed in the interlayer insulating film 2001 by dry etching, the stopper layer serving as a reference for automatically stopping the dry etching is the interlayer insulating film. Since it is not provided on the film and the operator controls the dry etching to provide the wiring groove 2002, it is very difficult to control the depth of the groove 2002 to a designed value. .

【0004】一方、上述の困難を回避する目的で特開平
1−128528号で提案された方法が在る。その方法
は図5(c)に示すように溝2007の深さに対応させ
て層間絶縁膜2006にバリアメタル2005を被着
し、かつバリアメタル2005をパターニングして溝2
007の底部にのみ残留させる。
On the other hand, there is a method proposed in JP-A-1-128528 for the purpose of avoiding the above-mentioned difficulties. As shown in FIG. 5C, the method involves depositing a barrier metal 2005 on the interlayer insulating film 2006 corresponding to the depth of the groove 2007, and patterning the barrier metal 2005 to form the groove 2
Remain only at the bottom of 007.

【0005】次に層間絶縁膜2006をドライエッチン
グして溝2007を形成し、溝2007内にバリアメタ
ル2005が露出した時点でドライエッチングを終了さ
せていた。
Next, the interlayer insulating film 2006 is dry-etched to form a groove 2007, and the dry etching is terminated when the barrier metal 2005 is exposed in the groove 2007.

【0006】しかしながら、上述した従来の方法では、
バリアメタル2005をパターニングする際と、溝20
07を開孔させる際とでそれぞれ目合わせ露光を行う必
要があり、この方法では、配線溝形成に2回の目合わせ
露光が必要であり、多層配線形成の工程数が増加すると
いう問題点があった。
However, in the above-mentioned conventional method,
When patterning the barrier metal 2005 and the groove 20.
It is necessary to perform the aligning exposure when opening the hole 07, and this method requires two aligning exposures for forming the wiring groove, which causes a problem that the number of steps for forming the multilayer wiring increases. there were.

【0007】本発明の目的は、目合わせ露光回数を増加
させることなく、配線用溝の深さを自動的に制御する半
導体装置の製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a semiconductor device in which the depth of a wiring groove is automatically controlled without increasing the number of aligning exposures.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る半導体装置の製造方法は、埋設工程
と、パターニング工程と、堆積工程と、溝形成工程と、
配線形成工程とを有し、絶縁膜の配線用溝内に配線を形
成する半導体装置の製造方法であって、埋設工程は、第
1の絶縁膜上にバリアメタルを被着し、その上に第2の
絶縁膜を形成することにより、バリアメタルを第1の絶
縁膜内に埋設するものであり、パターニング工程は、前
記バリアメタル上の第2の絶縁膜を配線形状に加工し、
該配線形状の絶縁膜をマスクとして前記バリアメタルを
配線形状にパターニング加工するものであり、堆積工程
は、前記配線形状に加工された第2の絶縁膜及びバリア
メタルの周囲に第3の絶縁膜を堆積するものであり、溝
形成工程は、前記第3の絶縁膜を残して前記バリアメタ
ル上の第2の絶縁膜を除去し、バリアメタルを底部とす
る配線用溝を形成するものであり、配線形成工程は、前
記配線用溝内にメタルを充填して配線を形成するもので
ある。
In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention comprises a burying step, a patterning step, a depositing step, a groove forming step,
A method of manufacturing a semiconductor device, comprising: forming a wiring in a wiring groove of an insulating film, wherein the burying step includes depositing a barrier metal on the first insulating film, and forming a barrier metal on the first insulating film. The barrier metal is embedded in the first insulating film by forming the second insulating film, and the patterning step processes the second insulating film on the barrier metal into a wiring shape,
The barrier metal is patterned into a wiring shape by using the wiring-shaped insulating film as a mask. In the deposition step, a third insulating film is formed around the second insulating film and the barrier metal processed into the wiring shape. In the groove forming step, the second insulating film on the barrier metal is removed while leaving the third insulating film, and a wiring groove having the barrier metal as a bottom is formed. In the wiring forming step, wiring is formed by filling the wiring groove with metal.

【0009】また、前記埋設工程から配線形成工程に至
る一連の処理を繰返し行い、多層の絶縁膜に設けた配線
用溝を利用して多層に配線を形成するものである。
Further, a series of processes from the burying step to the wiring forming step are repeatedly performed to form wiring in multiple layers by utilizing the wiring grooves provided in the multilayer insulating film.

【0010】また、前記第1及び第2の絶縁膜は、リン
或いはボロンを含有するシリコン酸化膜、またはプラズ
マ気相成長法によるシリコン酸化膜であり、前記第3の
絶縁膜は、ポリイミド膜である。
Further, the first and second insulating films are silicon oxide films containing phosphorus or boron or silicon oxide films formed by plasma vapor deposition, and the third insulating film is a polyimide film. is there.

【0011】また、前記第1及び第3の絶縁膜は、リン
或いはボロンを含有するシリコン酸化膜、またはプラズ
マ気相成長法によるシリコン酸化膜であり、前記第2の
絶縁膜は、ポリイミド膜である。
The first and third insulating films are silicon oxide films containing phosphorus or boron, or silicon oxide films formed by plasma vapor deposition, and the second insulating film is a polyimide film. is there.

【0012】また、前記第2の絶縁膜上に付着する余分
な第3の絶縁膜を化学機械研磨CMP法により除去し、
第2の絶縁膜の表面を完全に露出するものである。
Excessive third insulating film adhered on the second insulating film is removed by a chemical mechanical polishing CMP method,
The surface of the second insulating film is completely exposed.

【0013】また、前記第2の絶縁膜上に付着する余分
な第3の絶縁膜をドライエッチングによるエッチバック
法で除去し、第2の絶縁膜の表面を完全に露出するもの
である。
Further, the excess third insulating film attached on the second insulating film is removed by an etch back method by dry etching to completely expose the surface of the second insulating film.

【0014】また、前記第3の絶縁膜上に付着する余分
な配線用のメタルを化学機械研磨CMP法により除去す
るものである。
Further, excess wiring metal adhering to the third insulating film is removed by a chemical mechanical polishing CMP method.

【0015】また、前記第3の絶縁膜上に付着する余分
な配線用のメタルをドライエッチングによるエッチバッ
ク法で除去するものである。
Further, the excess wiring metal adhering to the third insulating film is removed by an etch back method by dry etching.

【0016】[0016]

【作用】バリアメタル上の第2の絶縁膜を配線形状に加
工し、配線形状の第2の絶縁膜をマスクとしてバリアメ
タルを配線形状にパターニング加工する。本発明では、
上記パターニング工程においてのみ目合わせ露光技術を
用いる。
The second insulating film on the barrier metal is processed into a wiring shape, and the barrier metal is patterned into a wiring shape using the wiring-shaped second insulating film as a mask. In the present invention,
The aligning exposure technique is used only in the patterning step.

【0017】後工程ではパターニング加工されたバリア
メタル周囲への絶縁膜の堆積処理、及びバリアメタル上
の絶縁膜の除去処理並びにバリアメタル上への配線形成
処理を行う。この各処理は目合わせ露光技術を用いる必
要がなく、工数を増加させることはない。
In a subsequent step, a process of depositing an insulating film around the patterned barrier metal, a process of removing the insulating film on the barrier metal, and a process of forming a wiring on the barrier metal are performed. It is not necessary to use the aligning exposure technique for each of these processes, and the number of steps is not increased.

【0018】[0018]

【実施例】以下、本発明の実施例を図により説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0019】(実施例1)図1,図2,図3は、本発明
の実施例1を工程順に示す断面図である。
(Embodiment 1) FIGS. 1, 2 and 3 are sectional views showing Embodiment 1 of the present invention in the order of steps.

【0020】図において、本発明に係る半導体装置の製
造方法は、基本的構成として、埋設工程と、パターニン
グ工程と、堆積工程と、溝形成工程と、配線形成工程と
を有し、絶縁膜の配線用溝内に配線を形成するものであ
る。各工程について説明すると、埋設工程は、第1の絶
縁膜上にバリアメタルを被着し、その上に第2の絶縁膜
を形成することにより、バリアメタルを第1の絶縁膜内
に埋設するものである。
In the figure, the method of manufacturing a semiconductor device according to the present invention has a basic structure including an embedding step, a patterning step, a depositing step, a groove forming step, and a wiring forming step. The wiring is formed in the wiring groove. Explaining each step, in the embedding step, a barrier metal is deposited on the first insulating film, and a second insulating film is formed on the barrier metal, thereby embedding the barrier metal in the first insulating film. It is a thing.

【0021】またパターニング工程は、前記バリアメタ
ル上の第2の絶縁膜を配線形状に加工し、該配線形状の
絶縁膜をマスクとして前記バリアメタルを配線形状にパ
ターニング加工するものである。
In the patterning step, the second insulating film on the barrier metal is processed into a wiring shape, and the barrier metal is patterned into a wiring shape using the wiring-shaped insulating film as a mask.

【0022】また堆積工程は、前記配線形状に加工され
た第2の絶縁膜及びバリアメタルの周囲に第3の絶縁膜
を堆積するものである。
In the deposition step, a third insulating film is deposited around the second insulating film and the barrier metal processed into the wiring shape.

【0023】また溝形成工程は、前記第3の絶縁膜を残
して前記バリアメタル上の第2の絶縁膜を除去し、バリ
アメタルを底部とする配線用溝を形成するものであり、
配線形成工程は、前記配線用溝内にメタルを充填して配
線を形成するものである。
In the groove forming step, the second insulating film on the barrier metal is removed leaving the third insulating film to form a wiring groove having the barrier metal as a bottom portion.
In the wiring forming step, the wiring is formed by filling the wiring groove with metal.

【0024】前記第1及び第2の絶縁膜は、リン或いは
ボロンを含有するシリコン酸化膜(PSGあるいはBP
SG膜)、またはプラズマ気相成長法によるシリコン酸
化膜(PECVD−SiOPECVD−SiO2)であ
り、前記第3の絶縁膜は、ポリイミド膜である、または
前記第1及び第3の絶縁膜は、リン或いはボロンを含有
するシリコン酸化膜(PSGあるいはBPSG膜)、ま
たはプラズマ気相成長法によるシリコン酸化膜(PEC
VD−SiOPECVD−SiO2)であり、前記第2
の絶縁膜は、ポリイミド膜である。
The first and second insulating films are silicon oxide films (PSG or BP) containing phosphorus or boron.
SG film) or a silicon oxide film (PECVD-SiOPECVD-SiO 2 ) formed by plasma vapor deposition, the third insulating film is a polyimide film, or the first and third insulating films are Silicon oxide film containing phosphorus or boron (PSG or BPSG film) or silicon oxide film by plasma vapor deposition (PEC)
VD-SiOPECVD-SiO 2 ) and the second
The insulating film is a polyimide film.

【0025】次に第1及び第2の絶縁膜としてBPSG
膜、第3の絶縁膜としてポリイミド膜をそれぞれ用いた
場合の具体的な例により本発明を説明する。
Next, BPSG is used as the first and second insulating films.
The present invention will be described with reference to specific examples in which polyimide films are used as the film and the third insulating film.

【0026】まず図1(a)に示すように1μmのBP
SG膜(第1の絶縁膜)100上に膜厚1000Åのバ
リアメタルとしてタングステン(W)110をスパッタ
被着し、さらに膜厚1μmのBPSG膜(第2の絶縁
膜)120を堆積する。次に上層のBPSG膜120上
にフォトレジスト130を塗布し、目合わせ露光技術に
よりフォトレジスト130を配線パターン形状に形成す
る。
First, as shown in FIG. 1 (a), 1 μm BP is used.
On the SG film (first insulating film) 100, a tungsten (W) 110 is deposited as a barrier metal having a film thickness of 1000Å by sputtering, and a BPSG film (second insulating film) 120 having a film thickness of 1 μm is further deposited. Next, a photoresist 130 is applied on the upper BPSG film 120, and the photoresist 130 is formed into a wiring pattern shape by the aligning exposure technique.

【0027】次に図1(b)に示すように配線パターン
形状のフォトレジスト130をマスクとしてBPSG膜
120とバリアメタル110をドライエッチングにより
パターニングし、配線パターン形状のBPSG膜120
Aとバリアメタル110Aを得る。
Next, as shown in FIG. 1B, the BPSG film 120 and the barrier metal 110 are patterned by dry etching using the photoresist 130 having a wiring pattern shape as a mask, and the BPSG film 120 having a wiring pattern shape.
A and barrier metal 110A are obtained.

【0028】次に図1(c)に示すように配線パターン
形状のBPSG膜120A上に残留したフォトレジスト
130を除去した後、ポリイミド膜(第3の絶縁膜)1
40をBPSG膜100上のBPSG膜120A及びバ
リアメタル110Aの周囲に2μm塗布しベークを行
う。
Next, as shown in FIG. 1C, after removing the photoresist 130 remaining on the wiring pattern shaped BPSG film 120A, a polyimide film (third insulating film) 1 is formed.
40 is applied to the periphery of the BPSG film 120A and the barrier metal 110A on the BPSG film 100 by 2 μm and baked.

【0029】次に図2(d)に示すように化学機械研磨
CMP法によりポリイミド膜140を約1μm研磨し、
BPSG膜120Aの表面を完全に露出させる。
Next, as shown in FIG. 2D, the polyimide film 140 is polished by about 1 μm by the chemical mechanical polishing CMP method,
The surface of the BPSG film 120A is completely exposed.

【0030】次に図2(e)に示すように表面が露出し
たBPSG膜120Aをフッ酸を用いたエッチング法に
より選択的に除去する。ポリイミド膜140A並びにバ
リアメタル110Aは、フッ酸ではエッチングされない
ため、BPSG膜120Aのみを選択的に除去すること
が可能となり、バリアメタル110Aを底部とする配線
用溝が形成される。
Next, as shown in FIG. 2E, the exposed BPSG film 120A is selectively removed by an etching method using hydrofluoric acid. Since the polyimide film 140A and the barrier metal 110A are not etched with hydrofluoric acid, only the BPSG film 120A can be selectively removed, and a wiring groove having the barrier metal 110A as the bottom is formed.

【0031】次に図2(f)に示すようにCu(銅)膜
150をポリイミド膜140Aの表面及びポリイミド膜
140A間の配線用溝内に2μm被着する。
Next, as shown in FIG. 2F, a Cu (copper) film 150 is deposited by 2 μm on the surface of the polyimide film 140A and in the wiring groove between the polyimide films 140A.

【0032】最終的にCu膜150を化学機械研磨CM
P法により配線用溝内にのみ残存させることにより、配
線用溝内に埋設されたCu配線150Aを形成する。
Finally, the Cu film 150 is subjected to chemical mechanical polishing CM.
The Cu wiring 150A embedded in the wiring groove is formed by leaving it only in the wiring groove by the P method.

【0033】尚、余分なポリイミド膜(第3の絶縁膜)
140をドライエッチングによるエッチバック法で除去
してもよく、また配線用溝以外の不要なCu膜150を
除去するにあたっては、ドライエッチングによるエッチ
バック法を用いてもよい。
An extra polyimide film (third insulating film)
140 may be removed by an etch-back method by dry etching, and an etch-back method by dry etching may be used to remove the unnecessary Cu film 150 other than the wiring trench.

【0034】(実施例2)図4は本発明の実施例2を示
す断面図である。さらに本発明は、前記埋設工程から配
線形成工程に至る一連の処理を繰返し行い、多層の絶縁
膜に設けた配線用溝を利用して多層に配線を形成するよ
うにしてもよく、本発明の実施例を図4に示す。図4に
示す実施例では、実施例1の方法を基本的に使用するこ
とにより2層のCu配線を形成したものである。すなわ
ち、実施例1に示す1層のCu配線105Aを形成した
後、プラズマ酸化膜(第1の絶縁膜)200を約1μm
被着し、プラズマ酸化膜200にスルーホール210を
開口し、スルーホール210の内周面及びプラズマ酸化
膜200の表面にバリアメタル205を被着した後、実
施例1で示したと同様の方法で第2の絶縁膜をバリアメ
タル205上に堆積し、第2の絶縁膜とバリアメタル2
05を配線パターン形状にパターニングし、さらに第3
の絶縁膜としてのポリイミド膜230Aを形成し、その
後ポリイミド膜230Aで取り囲まれた第2の絶縁膜を
バリアメタル205が露出するまで除去し配線用溝を形
成し、その溝及びスルーホール210内にCu膜220
を充填し、2層目のCu配線220を形成したものであ
る。尚、配線用溝を利用して多層配線を形成するにあた
っては、図4に示される2層のものに限定されるもので
はなく、2層以上設けてもよい。
(Embodiment 2) FIG. 4 is a sectional view showing Embodiment 2 of the present invention. Further, in the present invention, a series of processes from the burying step to the wiring forming step may be repeated to form the wiring in multiple layers by utilizing the wiring grooves provided in the multilayer insulating film. An example is shown in FIG. In the embodiment shown in FIG. 4, two layers of Cu wiring are formed by basically using the method of the first embodiment. That is, after forming the one-layer Cu wiring 105A shown in Example 1, the plasma oxide film (first insulating film) 200 is formed to a thickness of about 1 μm.
After deposition, a through hole 210 is opened in the plasma oxide film 200, a barrier metal 205 is deposited on the inner peripheral surface of the through hole 210 and the surface of the plasma oxide film 200, and then the same method as that described in Example 1 is used. A second insulating film is deposited on the barrier metal 205, and the second insulating film and the barrier metal 2 are deposited.
05 is patterned into a wiring pattern shape,
Forming a polyimide film 230A as an insulating film, and then removing the second insulating film surrounded by the polyimide film 230A until the barrier metal 205 is exposed to form a wiring groove, and in the groove and the through hole 210. Cu film 220
To form a second layer of Cu wiring 220. It should be noted that when forming a multilayer wiring using the wiring groove, it is not limited to the two layers shown in FIG. 4, and two or more layers may be provided.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、一
回の目合わせ露光で溝配線を形成することができる。ま
た、配線埋設用溝の深さをドライエッチング時に自動的
に制御して形成することができる。さらに、ドライエッ
チングによる微細加工の困難なポリイミド膜中に、直接
ポリイミド膜をエッチングすることなく微細な配線用溝
を形成することができ、比誘電率の低いポリイミド膜を
層間膜として使用することができるという効果がある。
As described above, according to the present invention, it is possible to form the groove wiring by a single aligning exposure. Further, the depth of the wiring burying groove can be automatically controlled and formed during dry etching. Further, it is possible to form fine wiring grooves in a polyimide film which is difficult to be micromachined by dry etching without directly etching the polyimide film, and it is possible to use a polyimide film having a low relative dielectric constant as an interlayer film. The effect is that you can do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を工程順に示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention in process order.

【図2】本発明の実施例1を工程順に示す断面図であ
る。
FIG. 2 is a cross-sectional view showing the first embodiment of the present invention in the order of steps.

【図3】本発明の実施例1を工程順に示す断面図であ
る。
FIG. 3 is a cross-sectional view showing the first embodiment of the present invention in the order of steps.

【図4】本発明の実施例2を示す断面図である。FIG. 4 is a sectional view showing a second embodiment of the present invention.

【図5】従来例を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

100,120,120A BPSG膜 110,110A,205 タングステン(バリアメタ
ル) 130 フォトレジスト 150,150A,220 Cu膜 140,140A,230A ポリイミド膜 210 スルーホール 2001 層間絶縁膜 2002 配線用溝 2003 配線用メタル
100, 120, 120A BPSG film 110, 110A, 205 Tungsten (barrier metal) 130 Photoresist 150, 150A, 220 Cu film 140, 140A, 230A Polyimide film 210 Through hole 2001 Interlayer insulating film 2002 Wiring groove 2003 Wiring metal

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 埋設工程と、パターニング工程と、堆積
工程と、溝形成工程と、配線形成工程とを有し、絶縁膜
の配線用溝内に配線を形成する半導体装置の製造方法で
あって、 埋設工程は、第1の絶縁膜上にバリアメタルを被着し、
その上に第2の絶縁膜を形成することにより、バリアメ
タルを第1の絶縁膜内に埋設するものであり、 パターニング工程は、前記バリアメタル上の第2の絶縁
膜を配線形状に加工し、該配線形状の絶縁膜をマスクと
して前記バリアメタルを配線形状にパターニング加工す
るものであり、 堆積工程は、前記配線形状に加工された第2の絶縁膜及
びバリアメタルの周囲に第3の絶縁膜を堆積するもので
あり、 溝形成工程は、前記第3の絶縁膜を残して前記バリアメ
タル上の第2の絶縁膜を除去し、バリアメタルを底部と
する配線用溝を形成するものであり、 配線形成工程は、前記配線用溝内にメタルを充填して配
線を形成するものであることを特徴とする半導体装置の
製造方法。
1. A method of manufacturing a semiconductor device, comprising a burying step, a patterning step, a depositing step, a groove forming step, and a wiring forming step, wherein a wiring is formed in a wiring groove of an insulating film. In the burying step, a barrier metal is deposited on the first insulating film,
By forming a second insulating film on the barrier metal, the barrier metal is embedded in the first insulating film. In the patterning step, the second insulating film on the barrier metal is processed into a wiring shape. The barrier metal is patterned into a wiring shape by using the wiring-shaped insulating film as a mask, and the deposition step includes a third insulation film around the second insulating film and the barrier metal processed into the wiring shape. A film is deposited. In the groove forming step, the second insulating film on the barrier metal is removed while leaving the third insulating film, and a wiring groove having the barrier metal as a bottom is formed. In the method for manufacturing a semiconductor device, the wiring forming step is to fill the inside of the wiring groove with metal to form a wiring.
【請求項2】 前記埋設工程から配線形成工程に至る一
連の処理を繰返し行い、多層の絶縁膜に設けた配線用溝
を利用して多層に配線を形成するものであることを特徴
とする請求項1に記載の半導体装置の製造方法。
2. A wiring is formed in multiple layers by utilizing a wiring groove provided in a multilayer insulating film by repeating a series of processes from the burying step to the wiring forming step. Item 2. A method of manufacturing a semiconductor device according to item 1.
【請求項3】 前記第1及び第2の絶縁膜は、リン或い
はボロンを含有するシリコン酸化膜、またはプラズマ気
相成長法によるシリコン酸化膜であり、 前記第3の絶縁膜は、ポリイミド膜であることを特徴と
する請求項1に記載の半導体装置の製造方法。
3. The first and second insulating films are silicon oxide films containing phosphorus or boron or silicon oxide films formed by plasma vapor deposition, and the third insulating film is a polyimide film. The method for manufacturing a semiconductor device according to claim 1, wherein there is.
【請求項4】 前記第1及び第3の絶縁膜は、リン或い
はボロンを含有するシリコン酸化膜、またはプラズマ気
相成長法によるシリコン酸化膜であり、 前記第2の絶縁膜は、ポリイミド膜であることを特徴と
する請求項1に記載の半導体装置の製造方法。
4. The first and third insulating films are silicon oxide films containing phosphorus or boron, or silicon oxide films formed by plasma vapor deposition, and the second insulating film is a polyimide film. The method for manufacturing a semiconductor device according to claim 1, wherein there is.
【請求項5】 前記第2の絶縁膜上に付着する余分な第
3の絶縁膜を化学機械研磨CMP法により除去し、第2
の絶縁膜の表面を完全に露出することを特徴とする請求
項1に記載の半導体装置の製造方法。
5. Excessive third insulating film adhering to the second insulating film is removed by a chemical mechanical polishing CMP method,
The method for manufacturing a semiconductor device according to claim 1, wherein the surface of the insulating film is completely exposed.
【請求項6】 前記第2の絶縁膜上に付着する余分な第
3の絶縁膜をドライエッチングによるエッチバック法で
除去し、第2の絶縁膜の表面を完全に露出することを特
徴とする請求項1に記載の半導体装置の製造方法。
6. The excess third insulating film adhering to the second insulating film is removed by an etch-back method by dry etching to completely expose the surface of the second insulating film. The method for manufacturing a semiconductor device according to claim 1.
【請求項7】 前記第3の絶縁膜上に付着する余分な配
線用のメタルを化学機械研磨CMP法により除去するこ
とを特徴とする請求項1に記載の半導体装置の製造方
法。
7. The method of manufacturing a semiconductor device according to claim 1, wherein excess wiring metal adhering to the third insulating film is removed by a chemical mechanical polishing CMP method.
【請求項8】 前記第3の絶縁膜上に付着する余分な配
線用のメタルをドライエッチングによるエッチバック法
で除去することを特徴とする請求項1に記載の半導体装
置の製造方法。
8. The method of manufacturing a semiconductor device according to claim 1, wherein the excess wiring metal adhering to the third insulating film is removed by an etch back method by dry etching.
JP7040648A 1995-02-28 1995-02-28 Fabrication of semiconductor device Pending JPH08236621A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7040648A JPH08236621A (en) 1995-02-28 1995-02-28 Fabrication of semiconductor device
KR1019960005632A KR960032617A (en) 1995-02-28 1996-02-28 Method for forming interconnections of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7040648A JPH08236621A (en) 1995-02-28 1995-02-28 Fabrication of semiconductor device

Publications (1)

Publication Number Publication Date
JPH08236621A true JPH08236621A (en) 1996-09-13

Family

ID=12586381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7040648A Pending JPH08236621A (en) 1995-02-28 1995-02-28 Fabrication of semiconductor device

Country Status (2)

Country Link
JP (1) JPH08236621A (en)
KR (1) KR960032617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084303A (en) * 2014-05-21 2015-11-25 上海蓝沛新材料科技股份有限公司 Micro-nano copper wire and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487476B1 (en) * 1997-05-23 2005-09-16 삼성전자주식회사 Method of forming semiconductor devices and semiconductor devices formed thereby

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114639A (en) * 1988-10-25 1990-04-26 Seiko Epson Corp Semiconductor device
JPH03244126A (en) * 1990-02-22 1991-10-30 Toshiba Corp Manufacture of semiconductor device
JPH04290249A (en) * 1991-03-19 1992-10-14 Nec Corp Manufacture of semiconductor device
JPH06177126A (en) * 1992-12-01 1994-06-24 Alps Electric Co Ltd Formation of multilayer thin film
JPH06275612A (en) * 1993-03-19 1994-09-30 Fujitsu Ltd Manufacture of integrated circuit device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114639A (en) * 1988-10-25 1990-04-26 Seiko Epson Corp Semiconductor device
JPH03244126A (en) * 1990-02-22 1991-10-30 Toshiba Corp Manufacture of semiconductor device
JPH04290249A (en) * 1991-03-19 1992-10-14 Nec Corp Manufacture of semiconductor device
JPH06177126A (en) * 1992-12-01 1994-06-24 Alps Electric Co Ltd Formation of multilayer thin film
JPH06275612A (en) * 1993-03-19 1994-09-30 Fujitsu Ltd Manufacture of integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084303A (en) * 2014-05-21 2015-11-25 上海蓝沛新材料科技股份有限公司 Micro-nano copper wire and preparation method thereof

Also Published As

Publication number Publication date
KR960032617A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
TW201041035A (en) Integrated circuit structure
US5518963A (en) Method for forming metal interconnection of semiconductor device
JPH0680667B2 (en) Planarization method for vertical metal interconnects
US6027994A (en) Method to fabricate a dual metal-damascene structure in a substrate
JPH0775235B2 (en) Flattening method for forming through conductors in a silicon wafer
EP1107308A1 (en) Methods for fabricating a multilevel interconnection for an integrated circuit device utilizing a selective overlayer
JP3214475B2 (en) Method of forming dual damascene wiring
JPH04313232A (en) Integrated circuit structure having high-density multilayered interconnection pattern and manufacture thereof
JPH0982804A (en) Semiconductor device and manufacture thereof
JP3391933B2 (en) Semiconductor device and manufacturing method thereof
US6204096B1 (en) Method for reducing critical dimension of dual damascene process using spin-on-glass process
JPH08236621A (en) Fabrication of semiconductor device
JP2872086B2 (en) Method for manufacturing semiconductor device
US6337268B1 (en) Method of manufacturing contact structure
US6143644A (en) Method to prevent passivation from keyhole damage and resist extrusion
US5854130A (en) Method of forming multilevel interconnects in semiconductor devices
EP1432026A1 (en) Method of forming a metal interconnect in a trench
JPS63271958A (en) Formation of multilayer interconnection
JPH08306780A (en) Fabrication of semiconductor device
KR100274976B1 (en) Method of manufacturing trench for semiconductor device
JPH0415926A (en) Manufacture of semiconductor device
JPS63258043A (en) Manufacture of semiconductor device
JP2770398B2 (en) Method of forming contact hole
US20090166884A1 (en) Semiconductor device and method for manufacturing the same
KR100550776B1 (en) Method for forming Metal Line of Semiconductor devce