JPH08236386A - Laminated ceramic capacitor and manufacture thereof - Google Patents

Laminated ceramic capacitor and manufacture thereof

Info

Publication number
JPH08236386A
JPH08236386A JP3979495A JP3979495A JPH08236386A JP H08236386 A JPH08236386 A JP H08236386A JP 3979495 A JP3979495 A JP 3979495A JP 3979495 A JP3979495 A JP 3979495A JP H08236386 A JPH08236386 A JP H08236386A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
oxidizing atmosphere
residual stress
ray
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3979495A
Other languages
Japanese (ja)
Inventor
Shoji Kosaka
祥二 高坂
Tetsuya Kimura
哲也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3979495A priority Critical patent/JPH08236386A/en
Publication of JPH08236386A publication Critical patent/JPH08236386A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enhance a laminated ceramic capacitor in mechanical strength by a method wherein a residual compressive stress acting on a ceramic crystal and calculated through an X-ray residual stress measurement method is specified. CONSTITUTION: Dielectric layers and inner electrodes of Pd or Pd-Ag are alternately laminated into a laminate of integral structure, and the laminate is burned in an oxidizing atmosphere. The burned laminate is worked into a burned body of prescribed shape, and the burned body of prescribed shape is thermally treated at a temperature above 600 deg.C but below a sintering temperature in an oxidizing atmosphere. After a thermal treatment, a terminal electrode is provided on each of the ends of the burned body for the formation of a laminated ceramic capacitor. At this point, a residual compressive stress acting on a ceramic crystal and calculated by an X-ray residual compressive measurement method is set below 50MPa. By this setup, a laminated ceramic capacitor excellent in flexural strength can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層セラミックコンデ
ンサおよびその製造方法に関し、特に過酷な条件で使用
される車載用コンデンサとして、機械的強度に優れた高
信頼性の積層セラミックコンデンサおよびその製造方法
の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monolithic ceramic capacitor and a method of manufacturing the same, and particularly as an on-vehicle capacitor used under severe conditions, a highly reliable monolithic ceramic capacitor having excellent mechanical strength and a method of manufacturing the same. Related to the improvement of.

【0002】[0002]

【従来技術】近年、電子部品としてチップ型積層セラミ
ックコンデンサが大量に使用されるようになっている。
かかる積層セラミックコンデンサは、チタン酸バリウム
やチタン酸ネオジウム等からなる誘電体層とパラジウム
−銀やニッケル等からなる内部電極層とを交互に積層
し、場合によってはこの積層物の上下に誘電体層と同質
の保護層を接着して積層一体化した後、これを所定の温
度で焼成し緻密化してコンデンサ磁器を作製し、その後
に磁器の両端部に端子電極を焼き付けて形成される。
2. Description of the Related Art In recent years, chip type monolithic ceramic capacitors have been used in large quantities as electronic parts.
In such a laminated ceramic capacitor, dielectric layers made of barium titanate, neodymium titanate or the like and internal electrode layers made of palladium-silver, nickel or the like are alternately laminated. In some cases, dielectric layers are formed above and below the laminated body. A protective layer of the same quality as that of (1) and (2) is adhered and laminated to form a single layer, which is then fired at a predetermined temperature for densification to produce a capacitor porcelain, and then terminal electrodes are baked on both ends of the porcelain.

【0003】また、焼成後の磁器に対しては端子電極を
形成する前に、磁器に対して加工を施すことがある。例
えば、端子電極を形成する端面を研摩したり、磁器をバ
レル研磨し磁器の角部を滑らかにすることも行われる。
因みに、上記角部の研磨加工は、その後の工程でのハン
ドリング時の欠けを防止するためのものである。
Further, the fired porcelain may be processed before forming the terminal electrodes. For example, the end faces forming the terminal electrodes are polished, or the porcelain is barrel-polished to smooth the corners of the porcelain.
Incidentally, the polishing of the above-mentioned corners is for preventing chipping during handling in the subsequent steps.

【0004】一方、セラミックコンデンサとして、例え
ば戸外で使用される車載用のコンデンサは、季節の変化
による気温の影響を直接受け、車内で低温あるいは高温
下に曝されるため、低温から高温までの繰り返し熱衝撃
に対して耐久性を有することが必要になり、そのために
は高い強度が必要とされる。
On the other hand, as a ceramic capacitor, an on-vehicle capacitor used outdoors, for example, is directly affected by the temperature due to seasonal changes and is exposed to low or high temperatures in the vehicle, so that it is repeated from low temperature to high temperature. It is necessary to have durability against thermal shock, and for that purpose, high strength is required.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、従来
のコンデンサに使用される誘電体磁器は、通常、強度が
200MPa以下、破壊靱性値が1MPa・m1/2 とガ
ラス並みに小さく、コンデンサの製造工程で材料中にマ
イクロクラックが生じ易く、特に前述したように焼成物
に対して加工を施す場合にはクラックの発生は免れな
い。さらに、これらのマイクロクラックの発生により強
度が低下し、特に、車載用のように低温から高温への繰
り返し熱衝撃が付与されるような場合において十分に耐
えうる程度の強度を有しておらず、過酷な条件で使用さ
れるコンデンサとしては、その信頼性が非常に低いもの
であった。
However, the dielectric porcelain used in the conventional capacitor has a strength of 200 MPa or less and a fracture toughness value of 1 MPa · m 1/2, which is as small as that of glass, and the production of the capacitor is therefore difficult. Microcracks are likely to occur in the material during the process, and in particular, when the fired product is processed as described above, the cracks are inevitable. In addition, the strength of these microcracks decreases, and in particular, they do not have sufficient strength to withstand repeated thermal shock from low temperature to high temperature, such as in automobiles. As a capacitor used under severe conditions, its reliability was extremely low.

【0006】このようなマイクロクラックの発生に対す
る対策として、特開平3ー235314号公報によれ
ば、積層した成形体を一旦仮焼した後、これをバレル研
磨して加工した後に、仮焼温度よりも高い温度で焼成し
て緻密化させることで、加工時に発生したマイクロクラ
ック等を修復することが提案されている。
As a countermeasure against such generation of microcracks, according to Japanese Patent Application Laid-Open No. 3-235314, the laminated compacts are once calcined, then barrel-polished and processed, and then the calcining temperature is higher than the calcining temperature. It has also been proposed to repair microcracks and the like generated during processing by firing at a high temperature to densify.

【0007】ところが、この方法によれば、仮焼後では
セラミックスの密度や強度が不足しているために、バレ
ルミル(研磨)で多くのマイクロクラックが導入されて
しまい、その後の焼成でもクラック先端は焼きなまされ
るが、大きなクラックはそのまま残存してしまうという
問題が生じていた。
However, according to this method, many microcracks are introduced in the barrel mill (polishing) because the density and strength of the ceramics are insufficient after the calcination, and the crack tips are not formed even in the subsequent firing. Although it was annealed, there was a problem that large cracks remained.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、積層セ
ラミックコンデンサの機械的強度の向上という観点から
鋭意検討した結果、誘電体層のセラミック結晶に作用し
ている圧縮残留応力が、X線残留応力測定による測定の
結果50MPa以下であると、積層セラミックコンデン
サの機械的強度を大きく向上することができることを見
出し、本発明に至った。また、このように、コンデンサ
を構成するセラミック結晶に作用している圧縮残留応力
を、X線残留応力測定による測定の結果50MPa以下
とするためには、加工処理を行う前に磁器として完全に
緻密化させ、加工後に酸化性雰囲気において所定温度で
熱処理することが有効であることを見い出し、本発明に
至った。
The inventors of the present invention have made earnest studies from the viewpoint of improving the mechanical strength of a monolithic ceramic capacitor. As a result, the compressive residual stress acting on the ceramic crystal of the dielectric layer is As a result of measurement by line residual stress measurement, it was found that a mechanical strength of the monolithic ceramic capacitor can be greatly improved when it is 50 MPa or less, and the present invention has been completed. In addition, in order to keep the compressive residual stress acting on the ceramic crystal that constitutes the capacitor to 50 MPa or less as a result of the X-ray residual stress measurement, the porcelain must be completely dense before processing. It was found that it is effective to heat the material at a predetermined temperature in an oxidizing atmosphere after processing, and the present invention has been completed.

【0009】即ち、本発明の積層セラミックコンデンサ
は、誘電体セラミック層と、PdまたはPd−Agから
なる内部電極層とを交互に積層してなり、両端部に端子
電極を有する積層セラミックコンデンサであって、X線
残留応力測定により算出されるセラミック結晶に作用し
ている圧縮残留応力が50MPa以下であるものであ
る。
That is, the monolithic ceramic capacitor of the present invention is a monolithic ceramic capacitor in which dielectric ceramic layers and internal electrode layers made of Pd or Pd-Ag are alternately laminated and terminal electrodes are provided at both ends. The compressive residual stress acting on the ceramic crystal calculated by X-ray residual stress measurement is 50 MPa or less.

【0010】また、本発明の積層セラミックコンデンサ
の製造方法は、複数の誘電体層と、PdまたはPd−A
gからなる複数の内部電極層とを交互に積層して一体化
した成形体を酸化性雰囲気で焼成する工程と、該焼成物
を所定形状に加工する工程と、加工後の焼成物を600
℃以上、焼成温度以下の酸化性雰囲気で熱処理する工程
と、熱処理後の焼成物の両端部に端子電極を形成する工
程とを具備することを特徴とするものである。
The method of manufacturing a monolithic ceramic capacitor according to the present invention includes a plurality of dielectric layers and Pd or Pd-A.
The step of firing a formed body in which a plurality of internal electrode layers of g are alternately laminated and integrated in an oxidizing atmosphere, the step of processing the fired product into a predetermined shape, and the fired product after processing
The method is characterized by comprising a step of performing heat treatment in an oxidizing atmosphere at a temperature of not less than ° C and not more than a firing temperature, and a step of forming terminal electrodes at both ends of the fired product after the heat treatment.

【0011】以下、本発明を詳述する。本発明では、P
dまたはPd−Agからなる内部電極層を有する積層セ
ラミックコンデンサであって、X線残留応力測定により
算出されるセラミック結晶に作用している圧縮残留応力
が50MPa以下であることが必要である。これは、セ
ラミック結晶に作用している圧縮残留応力が50MPa
よりも大きい場合には、加工ダメージが大きく、強度低
下を引き起こし、信頼性に欠けるからである。圧縮残留
応力が20MPa以下である場合には、殆ど加工ダメー
ジが残っておらず、信頼性に優れるため特に望ましい。
The present invention will be described in detail below. In the present invention, P
In a laminated ceramic capacitor having an internal electrode layer made of d or Pd-Ag, the compressive residual stress acting on the ceramic crystal calculated by X-ray residual stress measurement needs to be 50 MPa or less. This is because the compressive residual stress acting on the ceramic crystal is 50 MPa.
If it is larger than the above value, the processing damage is large, the strength is lowered, and the reliability is poor. When the compressive residual stress is 20 MPa or less, almost no processing damage remains and the reliability is excellent, which is particularly desirable.

【0012】セラミックは金属に比較し、一般に加工ダ
メ−ジを受けやすく、加工ダメ−ジを受けた場合、磁器
表面に残留応力が作用することが知られている。さら
に、加工ダメ−ジが大きい程、残留圧縮応力が大きくな
り、同様に強度低下を引き起こす。このようなセラミッ
クの残留応力の測定方法としては、X線残留応力測定方
法が用いられる。X線残留応力測定方法は、材料に力が
加わると、弾性限界以内で応力の大きさに比例して、結
晶の原子間距離が伸びたり縮んだりすることを利用し、
X線回折法で、結晶面間隔dの変化を測定することによ
って応力を算出するものである。Braggの回折条件
より、X線の波長λと結晶面間隔dと回折角θを用いて
次の様に示される。
It is known that ceramics are generally more susceptible to processing damage than metals, and that when they are subjected to processing damage, residual stress acts on the porcelain surface. Further, the larger the processing failure is, the larger the residual compressive stress is, and similarly the strength is lowered. An X-ray residual stress measuring method is used as a measuring method of such a residual stress of ceramics. The X-ray residual stress measurement method utilizes that, when a force is applied to a material, the interatomic distance of the crystal expands or contracts in proportion to the magnitude of the stress within the elastic limit,
The stress is calculated by measuring the change in the crystal plane spacing d by the X-ray diffraction method. From the Bragg diffraction condition, the following is shown using the X-ray wavelength λ, the crystal plane spacing d, and the diffraction angle θ.

【0013】n・λ=2dsinθ 従って、歪み量εは、結晶面間隔の変化量δd、回折角
の変化量δθを用いて、次の用に示される。
N · λ = 2d sin θ Therefore, the strain amount ε is shown as follows using the variation amount δd of the crystal plane spacing and the variation amount δθ of the diffraction angle.

【0014】ε=δd/d=−cotθ・δθ 即ち、X線回折角の変化量δθから、歪み量が計算で
き、試料面法線と結晶面法線のなす角ψを変化させたと
きのsin2ψと2θの関係より、残留応力σは次のよ
うに示される。
Ε = δd / d = −cot θ · δθ That is, the amount of strain can be calculated from the amount of change δθ in the X-ray diffraction angle, and the angle ψ between the normal to the sample plane and the normal to the crystal plane can be changed. From the relationship between sin2ψ and 2θ, the residual stress σ is shown as follows.

【0015】 σ= E/(1+ν)・δε(ψ)/δsin2ψ =−Ecotθ/2(1+ν)・δ2θ/δsin2ψ ここでE、および、νはそれぞれ、ヤング率、及び、ポ
アソン比である。
Σ = E / (1 + ν) · δε (ψ) / δsin2ψ = −Ecotθ / 2 (1 + ν) · δ2θ / δsin2ψ Here, E and ν are Young's modulus and Poisson's ratio, respectively.

【0016】具体的には、端子電極の影響を極力小さく
するために、微小部X線応力測定装置で、コリメ−タ径
を1mmとし、並傾法を用い、特性X線としては、X線
の侵入深さの浅いCr−Kα線を用いる。
More specifically, in order to minimize the influence of the terminal electrode, a micropart X-ray stress measuring device has a collimator diameter of 1 mm and a parallel tilt method is used. The characteristic X-ray is an X-ray. A Cr-Kα ray having a small penetration depth of is used.

【0017】本発明における積層セラミックコンデンサ
の誘電体層は、公知の誘電体セラミックスにより構成さ
れるものであり、例えば、チタン酸バリウム(BaTi
3)系や鉛系(PbZrTiO3 系、PbFeNb
系、PbFe系)のリラクサー材料系のいずれでも用い
ることができる。
The dielectric layer of the monolithic ceramic capacitor according to the present invention is made of a known dielectric ceramic, for example, barium titanate (BaTi).
O 3 ) type, lead type (PbZrTiO 3 type, PbFeNb)
System, PbFe-based relaxor material system.

【0018】これら誘電体層は、誘電体組成物に対して
分散剤や可塑剤、バインダーを加えて混合後、これをド
クターブレード法によりシート状に成形した後、パラジ
ウムまたはパラジウム−銀からなる内部電極ペーストを
シート状成形体の表面に塗布し、これを所定数積層し、
さらにこの積層物の上下に誘電体層と同質の保護層を接
着して、積層成形体を作製する。
These dielectric layers are formed by adding a dispersant, a plasticizer, and a binder to the dielectric composition and mixing them, and then forming the mixture into a sheet by the doctor blade method, and then forming an inner layer made of palladium or palladium-silver. Apply the electrode paste to the surface of the sheet-shaped molded body, stack a predetermined number of this,
Further, a protective layer of the same quality as the dielectric layer is adhered to the upper and lower sides of this laminated body to produce a laminated molded body.

【0019】そして、この積層成形体をチップ形状に切
断した後、生チップを大気などの酸化性雰囲気中で熱処
理して有機バインダーを熱分解させ、その後、酸化性雰
囲気中において所定の温度で焼成する。焼成は、用いる
誘電体セラミックスの種類により適宜制御されるが、内
部電極も同時焼成できる条件に設定される。この焼成温
度はおよそ900〜1400℃程度である。
Then, after cutting this laminated molded body into a chip shape, the raw chips are heat-treated in an oxidizing atmosphere such as the air to thermally decompose the organic binder, and then fired at a predetermined temperature in the oxidizing atmosphere. To do. The firing is appropriately controlled depending on the type of dielectric ceramic used, but the conditions are set so that the internal electrodes can be fired simultaneously. The firing temperature is about 900 to 1400 ° C.

【0020】次に、作製したチップ形状の焼成物をアル
ミナ砥粒などを使用し、所定時間バレルミルを行い、チ
ップの角部が半径50〜150μm程度のR形状になる
まで研磨加工仕上げする。
Next, the produced chip-shaped fired product is barrel-milled for a predetermined time using alumina abrasive grains or the like, and polished and finished until the corner portion of the chip has an R shape with a radius of about 50 to 150 μm.

【0021】そして、研磨加工処理した焼成物を600
℃以上、焼成温度未満の酸化性雰囲気で熱処理する。こ
の時の熱処理温度を上記の範囲に限定したのは、600
℃未満では、クラックの焼きなまし効果が生じずにクラ
ックが残存するためであり、熱処理温度が焼成温度以上
では焼成物表面がエッチングされ、表面荒れが生じると
ともに磁器の結晶の粒子成長を引き起こし、磁器の強度
を低下させるとともに磁器特性の変化が生じてしまうた
めである。特に、800℃以上から、焼成温度より20
0℃低い温度までの範囲が好ましい。また、雰囲気を酸
化性雰囲気に限定したのは、窒素ガスやアルゴンガス等
の不活性ガス中では、クラックの焼きなまし効果が小さ
く、還元雰囲気では磁器特性が変化してしまうためであ
る。酸化性雰囲気としては、酸素分圧が0.2〜1.0
barのものが望ましく、特には、大気中よりも酸素分
圧が高いものが最適である。
Then, the burned material subjected to the polishing process is processed to 600
Heat treatment is performed in an oxidizing atmosphere at a temperature of ℃ or higher and lower than the firing temperature. The heat treatment temperature at this time was limited to the above range by 600
If less than ℃, because the cracks remain without annealing effect of cracks, the heat treatment temperature is higher than the firing temperature, the surface of the fired product is etched, causing surface roughness and causing grain growth of the crystal of the porcelain, and This is because the strength is lowered and the porcelain characteristics change. In particular, from 800 ° C or higher, the firing temperature is 20
A range up to 0 ° C. lower is preferred. Further, the reason why the atmosphere is limited to the oxidizing atmosphere is that the annealing effect of cracks is small in an inert gas such as nitrogen gas or argon gas, and the porcelain characteristics change in the reducing atmosphere. The oxidizing atmosphere has an oxygen partial pressure of 0.2 to 1.0.
A bar having a higher oxygen partial pressure than that in the atmosphere is most preferable.

【0022】[0022]

【作用】積層セラミックコンデンサの低温と高温の繰り
返しによる熱衝撃における耐久性は磁器の機械的強度特
性によってほぼ決定される。従って、熱衝撃に対する耐
久性を高めるには、磁器自体の抗折強度を高めることが
必要である。
The durability of the monolithic ceramic capacitor under thermal shock due to repeated low temperature and high temperature is almost determined by the mechanical strength characteristics of the porcelain. Therefore, in order to increase the durability against thermal shock, it is necessary to increase the bending strength of the porcelain itself.

【0023】本発明によれば、積層セラミックコンデン
サの成形体を酸化性雰囲気において焼成してさらに研磨
加工を施した後、この焼成物を酸化性雰囲気において6
00℃以上、焼成温度より低い温度で熱処理することに
より、製造工程や研磨工程で生じたマイクロクラックが
焼きなまされ、X線残留応力測定によるセラミック結晶
に作用している圧縮残留応力が50MPa以下となり、
その結果磁器の機械的強度を高めることができる。これ
により、低温と高温の繰り返しによる熱衝撃が付加され
ても機械的強度は劣化することがなく、車載用をはじ
め、過酷な条件で使用されるコンデンサとして優れた信
頼性を付与することができる。
According to the present invention, a molded body of a laminated ceramic capacitor is fired in an oxidizing atmosphere and further polished, and then the fired product is subjected to 6-hour heating in an oxidizing atmosphere.
By heat-treating at a temperature of 00 ° C or higher and lower than the firing temperature, the microcracks generated in the manufacturing process and polishing process are annealed, and the compressive residual stress acting on the ceramic crystal by X-ray residual stress measurement is 50 MPa or less. Next to
As a result, the mechanical strength of the porcelain can be increased. As a result, the mechanical strength does not deteriorate even when thermal shock is applied due to repeated low temperature and high temperature, and it is possible to provide excellent reliability as a capacitor used under severe conditions including in-vehicle use. .

【0024】[0024]

【実施例】チタン酸バリウムを主成分とし、酸化ニオブ
(Nb2 5 )を1.5mol%含み、さらに鉱化剤を
含む誘電体材料粉末と、アルミナボール、水及び分散剤
を磁製ポットに入れ、20時間回転させてスラリーを得
た。得られたスラリーに有機バインダー及び可塑剤を加
えて混合後、ドクターブレード法により厚さ25μmの
誘電体のグリーンシートを得た。
Example A porcelain pot containing dielectric material powder containing barium titanate as a main component, niobium oxide (Nb 2 O 5 ) of 1.5 mol% and a mineralizer, alumina balls, water and a dispersant. And then rotated for 20 hours to obtain a slurry. An organic binder and a plasticizer were added to the obtained slurry and mixed, and a 25 μm thick dielectric green sheet was obtained by the doctor blade method.

【0025】このグリーンシートに内部電極として、パ
ラジウムと銀の比率が9:1からなるパラジウム銀ペー
ストを印刷しこれらを30層積み重ね、更にこの積層物
の上下に銀パラジウムペーストを印刷していないグリー
ンシートを保護層として10枚づつ積層した。そしてこ
れらを熱圧着した後コンデンササイズの所定の寸法に切
断した。この熱圧着成形物をジルコニア板の上に乗せて
大気中において1300℃で焼成し、最終的に3.2×
1.6mm、厚さ約1mmのチップコンデンサ用焼結体
を得た。この焼結体の角部が90μmRになるようにバ
レル研磨を施した。
On this green sheet, as an internal electrode, a palladium-silver paste having a ratio of palladium to silver of 9: 1 was printed, 30 layers of these were stacked, and further, a green layer on which silver-palladium paste was not printed was printed on the top and bottom of this laminate. Ten sheets were laminated as the protective layer. Then, these were thermocompression bonded and then cut into a predetermined size of a capacitor. This thermocompression-bonded molded product was placed on a zirconia plate and fired at 1300 ° C. in the atmosphere to finally obtain 3.2 ×.
A sintered body for a chip capacitor having a thickness of 1.6 mm and a thickness of about 1 mm was obtained. Barrel polishing was performed so that the corners of this sintered body had a width of 90 μm.

【0026】そして、この焼結体を表1に示す酸素分圧
の酸化性雰囲気において、表1に示す条件で熱処理し
た。熱処理後のセラミック結晶に作用している圧縮残留
応力をX線残留応力測定により求めた。X線残留応力測
定は、端子電極の影響を極力小さくするために、微小部
X線応力測定装置で、コリメ−タ径を1mmとし、並傾
法を用い、特性X線としては、X線の侵入深さの浅いC
r−Kα線を用いた。
Then, the sintered body was heat-treated under the conditions shown in Table 1 in an oxidizing atmosphere having an oxygen partial pressure shown in Table 1. The compressive residual stress acting on the ceramic crystal after heat treatment was determined by X-ray residual stress measurement. X-ray residual stress measurement uses a micrometer X-ray stress measuring device with a collimator diameter of 1 mm and a parallel tilt method in order to minimize the influence of the terminal electrode. C with shallow penetration depth
The r-Kα ray was used.

【0027】また、熱処理効果を明確にするために、J
ISR1601に準じ、下スパン2mmの3点曲げ強度
試験を行った。測定の結果を表1に示す。
Further, in order to clarify the heat treatment effect, J
According to ISR1601, a 3-point bending strength test with a lower span of 2 mm was performed. The measurement results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果によると熱処理を加えない試料
No.1、及び熱処理温度が600℃未満である試料No.
2、さらには熱処理温度が焼成温度と等しい試料No.1
3は、セラミック粒子の残留圧縮応力が56MPa以上
であり、抗折強度も190MPa以下と低かった。これ
らの比較例に対し、その他の本発明に基づく試料は、い
ずれもセラミック粒子の残留圧縮応力が50MPa以下
であり、抗折強度が240MPa以上と高く、その中で
も800℃〜1100℃で処理したものは、セラミック
粒子の残留圧縮応力が37MPa以下であり、抗折強度
が320MPa以上と高く、非常に良好な特性を有する
ことが判る。また、試料No.7〜10より酸素分圧が高
いほど高強度となることが判る。
According to the results shown in Table 1, the sample No. 1 not subjected to the heat treatment and the sample No. 1 having the heat treatment temperature of less than 600 ° C.
2. Furthermore, sample No. 1 whose heat treatment temperature is equal to firing temperature
In No. 3, the residual compressive stress of the ceramic particles was 56 MPa or more, and the bending strength was 190 MPa or less, which was low. In contrast to these comparative examples, all of the other samples according to the present invention have a residual compressive stress of ceramic particles of 50 MPa or less and a high bending strength of 240 MPa or more, and among them, those treated at 800 ° C to 1100 ° C. It is found that the ceramic particles have a residual compressive stress of 37 MPa or less and a high bending strength of 320 MPa or more, and have very good characteristics. Further, it can be seen that the higher the oxygen partial pressure than the samples No. 7 to 10, the higher the strength.

【0030】[0030]

【発明の効果】以上詳述したように、本発明によれば、
抗折強度に優れた積層セラミックコンデンサを得ること
ができ、これにより低温と高温の繰り返しの熱衝撃が付
与されるような車載用等のコンデンサとして、例えば、
自動車や工事用建設機械等に装着される電子装置のコン
デンサとして、その信頼性を高めることができるととも
に、コンデンサの使用範囲をさらに拡大することができ
る。
As described in detail above, according to the present invention,
It is possible to obtain a monolithic ceramic capacitor excellent in transverse strength, and as a capacitor for use in a vehicle or the like to which a repeated thermal shock of low temperature and high temperature is given, for example,
As a capacitor for an electronic device mounted on an automobile, a construction machine for construction, etc., its reliability can be improved and the range of use of the capacitor can be further expanded.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】誘電体セラミック層と、PdまたはPd−
Agからなる内部電極層とを交互に積層してなり、両端
部に端子電極を有する積層セラミックコンデンサであっ
て、X線残留応力測定により算出されるセラミック結晶
に作用している圧縮残留応力が50MPa以下であるこ
とを特徴とする積層セラミックコンデンサ。
1. A dielectric ceramic layer and Pd or Pd-
A monolithic ceramic capacitor, which is formed by alternately laminating internal electrode layers made of Ag and has terminal electrodes at both ends, wherein a compressive residual stress acting on a ceramic crystal calculated by X-ray residual stress measurement is 50 MPa. A monolithic ceramic capacitor characterized in that:
【請求項2】複数の誘電体層と、PdまたはPd−Ag
からなる複数の内部電極層とを交互に積層して一体化し
た成形体を酸化性雰囲気で焼成する工程と、該焼成物を
所定形状に加工する工程と、加工後の焼成物を600℃
以上、焼成温度より低い酸化性雰囲気で熱処理する工程
と、熱処理後の焼成物の両端部に端子電極を形成する工
程とを具備することを特徴とする積層セラミックコンデ
ンサの製造方法。
2. A plurality of dielectric layers and Pd or Pd-Ag.
A plurality of internal electrode layers alternately laminated to form a body, which is integrally fired in an oxidizing atmosphere; a step of processing the fired product into a predetermined shape;
A method for manufacturing a monolithic ceramic capacitor comprising the steps of heat treatment in an oxidizing atmosphere lower than the firing temperature and the step of forming terminal electrodes on both ends of the fired article after the heat treatment.
JP3979495A 1994-12-26 1995-02-28 Laminated ceramic capacitor and manufacture thereof Pending JPH08236386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3979495A JPH08236386A (en) 1994-12-26 1995-02-28 Laminated ceramic capacitor and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-322550 1994-12-26
JP32255094 1994-12-26
JP3979495A JPH08236386A (en) 1994-12-26 1995-02-28 Laminated ceramic capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08236386A true JPH08236386A (en) 1996-09-13

Family

ID=26379187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3979495A Pending JPH08236386A (en) 1994-12-26 1995-02-28 Laminated ceramic capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08236386A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033589A1 (en) * 1999-11-01 2001-05-10 Tdk Corporation Multilayer ceramic electronic component
WO2005050679A1 (en) * 2003-11-21 2005-06-02 Tdk Corporation Layered ceramic capacitor
JP2011198874A (en) * 2010-03-18 2011-10-06 Murata Mfg Co Ltd Laminated ceramic capacitor, method of manufacturing the same, and method for evaluating internal stress

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033589A1 (en) * 1999-11-01 2001-05-10 Tdk Corporation Multilayer ceramic electronic component
US6510040B1 (en) 1999-11-01 2003-01-21 Tdk Corporation Multilayer ceramic electronic component
WO2005050679A1 (en) * 2003-11-21 2005-06-02 Tdk Corporation Layered ceramic capacitor
KR100861100B1 (en) * 2003-11-21 2008-09-30 티디케이가부시기가이샤 Layered ceramic capacitor
US7595974B2 (en) 2003-11-21 2009-09-29 Tdk Corporation Layered ceramic capacitor
JP2011198874A (en) * 2010-03-18 2011-10-06 Murata Mfg Co Ltd Laminated ceramic capacitor, method of manufacturing the same, and method for evaluating internal stress

Similar Documents

Publication Publication Date Title
EP2104152B1 (en) Piezoelectric ceramic and piezoelectric element employing it
EP1675191B1 (en) Piezoelectric/electrostrictive body, piezoelectric/electrostrictive laminate, and piezoelectric/electrostrictive actuator
EP2187462A2 (en) Piezoelectric/electrostrictive ceramics composition, piezoelectric/electrostrictive ceramics sintered body, pieroelectric/electrostrictive element, manufacturing method of piezoelectric/electrostrictive ceramics composition, and manufacturing method of piezoelectric/electrostrictive element
KR100861100B1 (en) Layered ceramic capacitor
EP1536438B1 (en) Multilayer ceramic capacitor
CN112216510B (en) Ceramic electronic device and method for manufacturing the same
JP2518703B2 (en) Laminated composite piezoelectric body and manufacturing method thereof
KR20190016441A (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP2004137106A (en) Piezoelectric porcelain composition, piezoelectric element, and method of manufacturing piezoelectric element
EP1575100B1 (en) Piezoelectric/electrostrictive ceramic composition and piezoelectric/electrostrictive film type device
EP1965450B1 (en) Piezoelectric/electrostrictive porcelain composition and piezoelectric/electrostrictive element
EP2338860A1 (en) Piezoelectric/electrostrictive ceramics sintered body
EP2104155B1 (en) Piezoelectric/electrostrictive ceramic composition manufacturing method
JP2005174974A (en) Manufacturing method for laminated piezoelectric body
JP2002308672A (en) Method for manufacturing piezoelectric ceramic, piezoelectric ceramic and piezoelectric ceramic device
JP4496579B2 (en) Piezoelectric ceramic composition
EP2309561A1 (en) Piezoelectric/electrostrictive ceramics sintered body
EP1480279B1 (en) Multilayered piezoelectric/electrostrictive device
JPH08236386A (en) Laminated ceramic capacitor and manufacture thereof
KR100990629B1 (en) Method of manufacturing piezoelectric ceramic
WO2006035794A1 (en) Method for producing piezoelectric porcelain, method for producing piezoelectric element and piezoelectric element
EP1739064A1 (en) Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive body, and piezoelectric/electrostrictive film type device
EP2287128B1 (en) Piezoelectric/electrostrictive ceramic composition
JP3981221B2 (en) Piezoelectric ceramic
JPH10106881A (en) Multilayered ceramic capacitor