JPH10106881A - Multilayered ceramic capacitor - Google Patents

Multilayered ceramic capacitor

Info

Publication number
JPH10106881A
JPH10106881A JP8258818A JP25881896A JPH10106881A JP H10106881 A JPH10106881 A JP H10106881A JP 8258818 A JP8258818 A JP 8258818A JP 25881896 A JP25881896 A JP 25881896A JP H10106881 A JPH10106881 A JP H10106881A
Authority
JP
Japan
Prior art keywords
generating portion
capacitance
capacitor
layers
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8258818A
Other languages
Japanese (ja)
Inventor
Yoshihiro Fujioka
芳博 藤岡
Shinichi Osawa
真一 大沢
Kenichi Iwasaki
健一 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP8258818A priority Critical patent/JPH10106881A/en
Publication of JPH10106881A publication Critical patent/JPH10106881A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a multilayered ceramic capacitor capable of maintaining reliability as a capacitor, by preventing deterioration of dielectric characteristics which is to be caused by thinning layers and increasing the number of layers, and restraining generation of cracks in a surface mounting process. SOLUTION: A multilayered ceramic capacitor is provided with the following; a part 3 which is composed of a plurality of dielectric ceramic layers 1 clamped by a pair of internal electrode layers 2 and generates capacitance, a part 8 formed on the outer peripheral surface of the part 3 which is composed of ceramic and does not generate capacitance, and an external electrode 9 connected with the internal electrode layers 2. The thermal expansion coefficient of the part 8 is smaller than that of the dielectric ceramic layer 1 of the part 3, by 4-10-10×10<-7> / deg.C. The volume of the part 8 is 5-50% of the total volume except the external electrode 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】近時、電子部品としてチップ型積層セラ
ミックコンデンサが大量に使用されるようになった。か
かる積層セラミックコンデンサはチタン酸バリウムやチ
タン酸ネオジウム等からなる厚さ5〜30μmの誘電体
セラミック層と、銀パラジウムやニッケル等からなる厚
さ0.5〜2μmの内部電極層と、前記誘電体セラミッ
ク層と同質の誘電体セラミックからなる厚さ100〜5
00μmの保護層を接着して一体的に焼成した後、該積
層焼結体の両端面に内部電極層と接続される外部電極を
焼付けて形成されている。
2. Description of the Related Art Recently, chip-type multilayer ceramic capacitors have been widely used as electronic components. The multilayer ceramic capacitor includes a dielectric ceramic layer having a thickness of 5 to 30 μm made of barium titanate or neodymium titanate, an internal electrode layer having a thickness of 0.5 to 2 μm made of silver palladium or nickel, and the like. Thickness 100 to 5 made of dielectric ceramic of the same quality as the ceramic layer
After a protective layer of 00 μm is bonded and integrally fired, an external electrode connected to an internal electrode layer is formed on both end surfaces of the laminated sintered body by firing.

【0003】このようなチップ型積層コンデンサは、近
年においては小型化と共に大容量化が要求されている。
この要求に応えるため誘電体セラミック層を薄層化する
ことにより高積層化を図っている。また、できるだけ大
きな容量を得るために取得容量に寄与しないマージン部
分を縮小化することにより、各層の内部電極面積の拡大
を図る必要があった。
In recent years, such chip type multilayer capacitors have been required to have a large capacity as well as a small size.
To meet this demand, the dielectric ceramic layers are made thinner to achieve higher lamination. In addition, it is necessary to increase the internal electrode area of each layer by reducing a margin portion that does not contribute to the obtained capacitance in order to obtain a capacitance as large as possible.

【0004】マージン部分を縮小化する積層セラミック
コンデンサの製造方法として、特開平6−13259号
に開示されるように、サイドマージン部をセラミックス
ラリーの印刷または塗布により形成する方法が提案され
ている。この積層セラミックコンデンサの製造方法によ
れば、積層コンデンサの内部における内部電極の位置ず
れによる対向面積の減少を防止することができ、大きな
容量が得られ、ばらつきの少ない積層セラミックコンデ
ンサが得られる。
As a method for manufacturing a multilayer ceramic capacitor for reducing a margin portion, a method has been proposed in which a side margin portion is formed by printing or coating a ceramic slurry, as disclosed in Japanese Patent Application Laid-Open No. Hei 6-13259. According to this method for manufacturing a multilayer ceramic capacitor, it is possible to prevent a decrease in the facing area due to the displacement of the internal electrodes inside the multilayer capacitor, to obtain a large capacitance, and to obtain a multilayer ceramic capacitor with little variation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
開平6−13259号に開示された製造方法において
は、内部電極に含まれる金属と誘電体セラミック層との
焼成時における収縮率や熱膨張係数等の違いにより、コ
ンデンサに発生する内部応力が大きくなり、歪が大きく
なる。この歪によって、同じ誘電体厚みであっても積層
数の増大により誘電特性が悪化するとともに、表面実装
工程で生じる熱応力や機械的応力さらには熱衝撃等によ
りコンデンサにクラックを生じ、その信頼性の低下を引
き起こすという問題があった。
However, in the manufacturing method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Hei 6-13259, the shrinkage ratio, the coefficient of thermal expansion and the like during firing of the metal contained in the internal electrode and the dielectric ceramic layer are reduced. Due to the difference, the internal stress generated in the capacitor increases, and the distortion increases. Due to this distortion, even if the dielectric thickness is the same, the dielectric characteristics are degraded due to the increase in the number of stacked layers, and the thermal stress and mechanical stress generated in the surface mounting process, as well as cracks in the capacitor due to thermal shock, etc. There is a problem that causes a decrease in

【0006】実際に積層コンデンサを作製した場合、積
層数が多くなると、内部電極の厚みにより、積層体内部
でセラミック層を介して内部電極が重なり合っている部
分とそれ以外のマージン部分との積層厚みの差が大きく
なり、上記したような問題が起こり易かった。
When a multilayer capacitor is actually manufactured, if the number of layers increases, the thickness of the internal electrodes causes the stacking thickness of the portion where the internal electrodes overlap via the ceramic layer inside the multilayer body and the other margin portion to be increased. And the problem described above was likely to occur.

【0007】本発明は、薄層、高積層化による誘電特性
の悪化を防止し、さらには表面実装工程でのクラック発
生を抑制し、コンデンサとしての信頼性を維持し得る積
層セラミックコンデンサを提供することを目的とする。
The present invention provides a multilayer ceramic capacitor capable of preventing deterioration of dielectric properties due to thin layers and high lamination, suppressing cracks in a surface mounting process, and maintaining reliability as a capacitor. The purpose is to:

【0008】[0008]

【課題を解決するための手段】即ち、本発明の積層セラ
ミックコンデンサは、一対の内部電極層により挟持され
た複数の誘電体セラミック層からなる容量発生部と、該
容量発生部の外周囲に形成されたセラミックからなる非
容量発生部と、前記内部電極層と接続される外部電極と
を具備する積層セラミックコンデンサにおいて、前記非
容量発生部の熱膨張係数が前記容量発生部の誘電体セラ
ミック層の熱膨張係数より4〜10×10-7/℃だけ小
さく、かつ前記非容量発生部の体積が全体積(外部電極
を除く)の5〜50%であることを特徴とする。
That is, a multilayer ceramic capacitor according to the present invention has a capacitance generating portion composed of a plurality of dielectric ceramic layers sandwiched between a pair of internal electrode layers, and is formed around the outer periphery of the capacitance generating portion. In a multilayer ceramic capacitor including a non-capacitance generating portion made of ceramic and an external electrode connected to the internal electrode layer, a thermal expansion coefficient of the non-capacitance generating portion is smaller than that of the dielectric ceramic layer of the capacitance generating portion. The thermal expansion coefficient is smaller by 4 to 10 × 10 −7 / ° C., and the volume of the non-capacity generating portion is 5 to 50% of the total volume (excluding external electrodes).

【0009】[0009]

【作用】本発明の積層セラミックコンデンサは、焼結後
の冷却過程で容量発生部に引張応力が、非容量発生部に
圧縮応力が蓄積され残留し、この応力によって容量発生
部の誘電体セラミック層は本来の特性を示すことができ
る。
According to the multilayer ceramic capacitor of the present invention, during the cooling process after sintering, tensile stress is accumulated in the capacity generating portion and compressive stress is accumulated in the non-capacity generating portion, and the residual stress is retained. Can show the original characteristics.

【0010】即ち、例えば、図3に示すように、本発明
の積層セラミックコンデンサの一対の外部電極9を、銅
配線されたガラスエポキシ等の基板11上にハンダ13
により実装する場合、両側を外部電極9により固定され
るため、この外部電極9の間の容量発生部3には、実装
過程で生じる熱応力、機械的応力さらには熱衝撃(基板
11に加わる曲げ応力やハンダ付けの際の熱負荷等によ
る)等による引張応力が作用するが、この引張応力は非
容量発生部8の圧縮応力により吸収され、その結果、非
容量発生部8と容量発生部3との間にストレスが生じ
ず、クラックの発生が未然に防止される。尚、図3にお
いては、容量発生部3の内部電極層は省略している。
That is, for example, as shown in FIG. 3, a pair of external electrodes 9 of the multilayer ceramic capacitor of the present invention are mounted on a substrate 11 made of glass epoxy or the like, which is wired with copper.
When mounting is carried out, since both sides are fixed by the external electrodes 9, the thermal stress and mechanical stress generated in the mounting process and the thermal shock (bending applied to the substrate 11) are applied to the capacitance generating portion 3 between the external electrodes 9. Stress or thermal load during soldering), the tensile stress is absorbed by the compressive stress of the non-capacitance generating section 8, and as a result, the non-capacitance generating section 8 and the capacity generating section 3 Stress is not generated between them and cracks are prevented from occurring. In FIG. 3, the internal electrode layer of the capacitance generating section 3 is omitted.

【0011】また、積層セラミックコンデンサの幅及び
厚みが同等の場合、実装方向の峻別が難しいが、応力が
集中するコーナー部は熱膨張係数の特定された非容量発
生部であるため、どの方向に実装しても引張応力の大半
を吸収することができる。
When the width and thickness of the multilayer ceramic capacitor are the same, it is difficult to distinguish the mounting direction. However, since the corner where the stress is concentrated is the non-capacitance generating portion having a specified thermal expansion coefficient, Even when mounted, most of the tensile stress can be absorbed.

【0012】[0012]

【発明の実施の形態】本発明の積層セラミックコンデン
サは、図1および図2に示すように、複数の誘電体セラ
ミック層1と複数の内部電極層2とが交互に積層され、
一対の内部電極層2により挟持された複数の誘電体セラ
ミック層1からなる容量発生部3が形成されている。容
量発生部3の側面には一対のセラミックからなる側面マ
ージン部4、5が、容量発生部3の上下面に上下面マー
ジン部6、7が形成されている。容量発生部3とはこれ
らの側面マージン部4、5および上下面マージン部6、
7が非容量発生部8とされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In a multilayer ceramic capacitor according to the present invention, as shown in FIGS. 1 and 2, a plurality of dielectric ceramic layers 1 and a plurality of internal electrode layers 2 are alternately laminated.
A capacitance generating section 3 composed of a plurality of dielectric ceramic layers 1 sandwiched between a pair of internal electrode layers 2 is formed. Side surface margin portions 4 and 5 made of a pair of ceramics are formed on the side surface of the capacitance generation portion 3, and upper and lower surface margin portions 6 and 7 are formed on upper and lower surfaces of the capacitance generation portion 3. The capacitance generating section 3 includes these side margin sections 4, 5 and upper and lower margin sections 6,
Reference numeral 7 denotes a non-capacity generating unit 8.

【0013】容量発生部3と非容量発生部8からなるコ
ンデンサ本体15の両端部には、内部電極層2と接続さ
れた外部電極9が形成されている。
External electrodes 9 connected to the internal electrode layer 2 are formed at both ends of the capacitor body 15 including the capacitance generating section 3 and the non-capacitance generating section 8.

【0014】そして、非容量発生部8の熱膨張係数が容
量発生部3の誘電体セラミック層1の熱膨張係数より4
〜10×10-7/℃だけ小さく、かつ、非容量発生部8
の体積が外部電極9を除くコンデンサ全体の体積、即
ち、容量発生部3と非容量発生部8の体積を合わせた体
積の5〜50%とされている。
The coefficient of thermal expansion of the non-capacitance generating section 8 is 4 times larger than the coefficient of thermal expansion of the dielectric ceramic layer 1 of the capacity generating section 3.
10 to 10 × 10 −7 / ° C., and a non-capacity generating portion 8
Is 5 to 50% of the total volume of the capacitor excluding the external electrodes 9, that is, the total volume of the capacitance generating section 3 and the non-capacitance generating section 8.

【0015】非容量発生部8の熱膨張係数を容量発生部
3の誘電体セラミック層1の熱膨張係数より4〜10×
10-7/℃だけ小さくし、非容量発生部8の体積の割合
を5〜50%としたのは、熱膨張係数差が4×10-7
℃未満の場合や非容量発生部8の体積の割合が全体の5
%未満では、誘電特性の悪化を防止するための引っ張り
応力を容量発生部3に付加できず、かつ表面実装工程で
生じる熱応力、機械的応力更には熱衝撃を吸収し得るに
十分な圧縮応力を非容量発生部8に付与できず、表面か
らクラックが生じ易くなるからである。
The thermal expansion coefficient of the non-capacitance generating section 8 is 4 to 10 × the thermal expansion coefficient of the dielectric ceramic layer 1 of the capacitance generating section 3.
10 -7 / ° C. only small, of the ratio of the volume of the non-capacitance generation portion 8 and 5 to 50 percent, the difference of thermal expansion coefficient of 4 × 10 -7 /
° C or the volume ratio of the non-capacity generating portion 8 is 5% of the whole.
%, A tensile stress for preventing deterioration of the dielectric properties cannot be applied to the capacitance generating portion 3 and a compressive stress sufficient to absorb thermal stress, mechanical stress and thermal shock generated in the surface mounting process. Cannot be applied to the non-capacity generating portion 8, and cracks are likely to be generated from the surface.

【0016】一方、熱膨張係数差が10×10-7/℃を
越え、あるいは非容量発生部8の割合が50%を越えた
場合、容量発生部3の引っ張り応力が大きくなり過ぎ
て、容量発生部3からクラックが生じ易くなるからであ
る。
On the other hand, if the difference in thermal expansion coefficient exceeds 10 × 10 −7 / ° C. or the proportion of the non-capacity generating portion 8 exceeds 50%, the tensile stress of the capacity generating portion 3 becomes too large, and This is because a crack is easily generated from the generation part 3.

【0017】非容量発生部8と容量発生部3の誘電体セ
ラミック層1との熱膨張係数差は、誘電特性の悪化を防
止するとともに、表面実装工程等で生じる圧縮応力を低
減するために、容量発生部3に最適な引張応力を付与す
るという理由から、容量発生部3が6〜10×10-7
℃大きいことが望ましい。
The difference in the coefficient of thermal expansion between the non-capacitance generating portion 8 and the dielectric ceramic layer 1 of the capacitance generating portion 3 is used to prevent the deterioration of the dielectric properties and to reduce the compressive stress generated in the surface mounting step and the like. Because the optimal tensile stress is applied to the capacity generating section 3, the capacity generating section 3 is 6 to 10 × 10 −7 /
It is desirable that the temperature is higher by ° C.

【0018】また、外部電極9を除くコンデンサ全体の
体積に占める非容量発生部8の体積の割合は、誘電特性
の悪化を防止するとともに、表面実装工程等で生じる圧
縮応力を低減するために、容量発生部3に最適な引張応
力を付与するという理由から、12〜40%であること
が望ましい。
The ratio of the volume of the non-capacitance generating portion 8 to the entire volume of the capacitor excluding the external electrodes 9 is to prevent the deterioration of the dielectric characteristics and to reduce the compressive stress generated in the surface mounting step and the like. It is desirable to be 12 to 40% from the viewpoint that the optimal tensile stress is applied to the capacity generating portion 3.

【0019】尚、容量発生部3の体積は、最下層の内部
電極層2と最上層の内部電極層2を含み、これらの最下
層の内部電極層2よりも内部側に形成され該最下層の内
部電極層2に当接する誘電体セラミック層1と、最上層
の内部電極層2よりも内部側に形成され該最上層の内部
電極2に当接する誘電体セラミック層1により挟持され
た部分の体積であり、かつ側面マージン部4、5を除い
た体積をいう。
The volume of the capacitance generating section 3 includes the lowermost internal electrode layer 2 and the uppermost internal electrode layer 2, and is formed on the inner side of the lowermost internal electrode layer 2 and formed on the inner side. Of the dielectric ceramic layer 1 in contact with the internal electrode layer 2 and the portion formed between the dielectric ceramic layer 1 formed on the inner side of the uppermost internal electrode layer 2 and in contact with the uppermost internal electrode 2 It is the volume and the volume excluding the side margin portions 4 and 5.

【0020】誘電体セラミック層は、誘電特性向上とい
う点から、主に、チタン酸バリウム、チタン酸ランタ
ン、チタン酸カルシウム、チタン酸ネオジウム及びチタ
ン酸マグネシウム等のチタン酸塩を主成分とする誘電体
セラミックから構成することが望ましい。この場合は、
セラミックスからなる非容量発生部が容量発生部の誘電
体セラミック層よりジルコニウム酸塩を5〜15mol
%多く含むよう調整することにより、非容量発生部と容
量発生部の誘電体セラミック層との熱膨張係数の差を上
記のごとく設定することができる。非容量発生部に於け
るジルコニウム酸塩の過剰含有量が5mol%未満の場
合、上記熱膨張係数差が4×10-7/℃よりも小さくな
る傾向にあり、逆に15mol%を越えると同熱膨張係
数差が10×10-7/℃よりも大きくなる傾向にある。
From the viewpoint of improving the dielectric properties, the dielectric ceramic layer is mainly made of a dielectric material mainly composed of a titanate such as barium titanate, lanthanum titanate, calcium titanate, neodymium titanate and magnesium titanate. It is desirable to be composed of ceramic. in this case,
Non-capacitance generation part made of ceramics contains 5 to 15 mol of zirconate from dielectric ceramic layer of capacitance generation part
By adjusting so as to include more by%, the difference in the coefficient of thermal expansion between the non-capacitance generating portion and the dielectric ceramic layer of the capacitance generating portion can be set as described above. When the excess content of the zirconate in the non-capacity generating portion is less than 5 mol%, the difference in thermal expansion coefficient tends to be smaller than 4 × 10 -7 / ° C. The difference in thermal expansion coefficient tends to be larger than 10 × 10 −7 / ° C.

【0021】尚、誘電体セラミック層の原料として、ジ
ルコニウム酸塩を用いてはいないが、原料中に不可避的
に含まれる場合があること、誘電体セラミックの一組成
材料としてジルコニウム酸塩を後添加する場合もあるこ
とから、ジルコニウム酸塩について非容量発生部が5〜
15mol%多く含むと表現した。このように、誘電体
セラミック層の原料としてジルコニウム酸塩を添加する
と、コンデンサとしての磁器強度も大となるのでより望
ましい。
Although zirconate is not used as a raw material of the dielectric ceramic layer, it may be inevitably contained in the raw material, and zirconate is post-added as one composition material of the dielectric ceramic. In some cases, the non-capacity generating portion of zirconate is 5 to 5.
It was described as containing 15 mol% more. As described above, it is more preferable to add zirconate as a raw material of the dielectric ceramic layer because the ceramic strength as a capacitor increases.

【0022】本発明の積層セラミックコンデンサは、例
えば、チタン酸バリウム、酸化イットリウム(Y
2 3 ) 、酸化マグネシウムを主成分とした誘電体材料
粉末に、分散剤等を添加し、これらを粉砕混合してスラ
リーを作製する。得られたスラリーを公知の成形法、例
えば、ドクターブレード法により所定の厚みのグリーン
シートを作製し、容量発生部用のグリーンシートとす
る。
The multilayer ceramic capacitor of the present invention can be made of, for example, barium titanate, yttrium oxide (Y
A dispersant or the like is added to a dielectric material powder mainly composed of 2 O 3 ) and magnesium oxide, and these are pulverized and mixed to prepare a slurry. A green sheet having a predetermined thickness is prepared from the obtained slurry by a known molding method, for example, a doctor blade method, and is used as a green sheet for a capacity generating portion.

【0023】容量発生部の誘電体セラミック層の原料粉
末に、ジルコン酸塩、例えば、ジルコン酸カルシウム
(CaZrO3 ) 、ジルコン酸バリウム(BaZr
3 ) 粉末を加え、上記と同様に処理して側面マージン
部用のスラリーを作製する。また、このスラリーを公知
の成形法、例えば、ドクターブレード法により所定の厚
みのグリーンシートを作製し、上下面マージン部用のグ
リーンシートとする。
The raw material powder of the dielectric ceramic layer of the capacity generating section may be made of a zirconate, for example, calcium zirconate (CaZrO 3 ), barium zirconate (BaZr
O 3 ) powder is added and treated in the same manner as above to produce a slurry for the side margin. Further, a green sheet having a predetermined thickness is prepared from the slurry by a known molding method, for example, a doctor blade method, and is used as a green sheet for the upper and lower surface margins.

【0024】先ず、容量発生部用のグリーンシートの片
面に内部電極ペーストを印刷し、この内部電極ペースト
を印刷したグリーンシートを複数積層し容量発生部の積
層成形体を形成した。この積層成形体の上下面に、上面
マージン部用および下面マージン部用のグリーンシート
をそれぞれ積層し、熱圧着した後、内部電極層が側面に
露出するように所定の寸法に切断する。
First, an internal electrode paste was printed on one side of the green sheet for the capacity generating section, and a plurality of green sheets on which the internal electrode paste was printed were laminated to form a laminated molded body of the capacity generating section. Green sheets for an upper surface margin portion and a lower surface margin portion are respectively laminated on the upper and lower surfaces of the laminated molded body, and after thermocompression bonding, cut into predetermined dimensions so that the internal electrode layers are exposed on the side surfaces.

【0025】次に、側面マージン部用スラリーを容量発
生部の積層成形体の側面の内部電極層が露出した部分
に、公知の方法、例えばオフセット印刷法により所定の
厚みに印刷塗布し、乾燥し、生チップを作製する。
Next, the slurry for the side margin portion is applied by printing to a predetermined thickness by a known method, for example, an offset printing method, on a portion where the internal electrode layer is exposed on the side surface of the laminated molded body of the capacity generating portion, and dried. , To make a raw chip.

【0026】この生チップを、大気中等の酸化性雰囲気
や窒素雰囲気等の還元雰囲気において、1150〜13
00℃で0.5〜4時間焼成し、この後、内部電極と接
続する外部電極を形成して本発明の積層セラミックコン
デンサを得る。
The raw chips are placed in an oxidizing atmosphere such as the air or a reducing atmosphere such as a nitrogen atmosphere, and
After firing at 00 ° C. for 0.5 to 4 hours, external electrodes connected to the internal electrodes are formed to obtain the multilayer ceramic capacitor of the present invention.

【0027】尚、還元雰囲気で焼成する場合には、磁器
の酸化処理を大気中等の酸化性雰囲気で行ってもよい。
また、本発明の積層セラミックコンデンサは、誘電体セ
ラミック層を40層以上積層したものにおいて特に有効
である。さらに、非容量発生部の熱膨張係数を小さくす
る手段として、非容量発生部の誘電体セラミックにジル
コン酸塩を添加する方法を採用したが、他の方法の採用
を除外するものではない。
When firing in a reducing atmosphere, the porcelain may be oxidized in an oxidizing atmosphere such as the air.
Further, the multilayer ceramic capacitor of the present invention is particularly effective in a case where 40 or more dielectric ceramic layers are stacked. Furthermore, as a means for reducing the coefficient of thermal expansion of the non-capacitance generating portion, a method of adding zirconate to the dielectric ceramic of the non-capacitance generating portion is employed, but the use of other methods is not excluded.

【0028】さらにまた、側面マージン部用のスラリ
ー、上下面マージン部用のグリーンシートにジルコン酸
塩を加え、非容量発生部の熱膨張係数を容量発生部の誘
電体セラミック層の熱膨張係数より4〜10×10-7
℃だけ小さくしたが、側面マージン部用のスラリーを容
量発生部の誘電体セラミック層と同一組成とし、上下面
マージン部用のグリーンシートのみにジルコン酸塩を加
え、作製しても良い。即ち、外部電極との接続部分のみ
を露出させるように、グリーンシートに内部電極ペース
トを塗布し、該グリーンシートを複数積層して容量発生
部の積層成形体を作製し、この積層成形体の上下面に、
容量発生部の誘電体セラミック層よりもジルコン酸塩を
多く添加した上下面マージン部用のグリーンシートをそ
れぞれ積層する従来の製造方法により作製しても良い。
Further, zirconate is added to the slurry for the side margin portion and the green sheet for the upper and lower margin portions, and the thermal expansion coefficient of the non-capacity generating portion is calculated from the thermal expansion coefficient of the dielectric ceramic layer of the capacitance generating portion. 4-10 × 10 -7 /
Although the temperature is decreased by only ° C, the slurry for the side margin may be made to have the same composition as the dielectric ceramic layer of the capacity generating part, and zirconate may be added only to the green sheets for the upper and lower margins. That is, an internal electrode paste is applied to a green sheet so as to expose only a connection portion with an external electrode, and a plurality of the green sheets are laminated to produce a laminated molded body of a capacity generating portion. On the bottom,
It may be manufactured by a conventional manufacturing method in which green sheets for the upper and lower margins to which zirconate is added in a larger amount than the dielectric ceramic layer of the capacitance generating portion are respectively laminated.

【0029】[0029]

【実施例】【Example】

(a)チタン酸バリウム(BaTiO3 )と、BaTi
3 100重量部に対して酸化イットリウム(Y
2 3 ) を1重量部、酸化マグネシウム(MgO)を
0.4重量部添加してなる誘電体材料粉末に、分散剤及
びエチルセルソルブを加え、これらをZrO2 ボールを
用いたボールミルで20時間粉砕混合してスラリーを得
た。
(A) Barium titanate (BaTiO 3 ) and BaTi
O 3 yttrium oxide relative to 100 parts by weight of (Y
2 O 3 ) and 0.4 parts by weight of magnesium oxide (MgO) were added to a dielectric material powder to which a dispersant and ethyl cellosolve were added, and these were added to a ball mill using ZrO 2 balls. The mixture was ground and mixed for an hour to obtain a slurry.

【0030】(b)得られたスラリーにポリビニルブチ
ラール及び可塑剤を加えて混合後、ドクターブレード法
により厚さ約8μmの容量発生部の誘電体セラミック用
のグリーンシートを得た。
(B) Polyvinyl butyral and a plasticizer were added to the obtained slurry and mixed, and then a green sheet for a dielectric ceramic having a capacity generating portion having a thickness of about 8 μm was obtained by a doctor blade method.

【0031】(c)このグリーンシートの片面にニッケ
ル50重量%とエチルセルロースとブチルカルビトール
アセテートとからなる内部電極ペーストを印刷し、この
グリーンシートを表1に示す積層数積み重ね、容量発生
部の積層成形体を作製した。
(C) An internal electrode paste composed of 50% by weight of nickel, ethylcellulose and butyl carbitol acetate was printed on one side of the green sheet, and the green sheets were stacked in the number of layers shown in Table 1 to form a capacity generating section. A molded body was produced.

【0032】(d)上記誘電体材料粉末にジルコン酸カ
ルシウム(CaZrO3 ) および/またはジルコン酸バ
リウム(BaZrO3 ) 粉末を、表1に示す量だけ加
え、上記誘電体セラミック用のスラリーと同様に処理し
て側面マージン部用のスラリーを得た。また、このスラ
リーを用い、(b)と同様にして厚さ10〜50μmの
上面および下面マージン部用のグリーンシートを作製し
た。
(D) Calcium zirconate (CaZrO 3 ) and / or barium zirconate (BaZrO 3 ) powders are added to the above-mentioned dielectric material powder in the amounts shown in Table 1, and the same as the above-mentioned slurry for dielectric ceramics. This was processed to obtain a slurry for a side margin portion. Using this slurry, green sheets for the upper and lower margins having a thickness of 10 to 50 μm were prepared in the same manner as in (b).

【0033】(e)上面および下面マージン部用のグリ
ーンシートを、(c)工程で得られた積層成形体の上面
および下面にそれぞれ2枚積層した後、熱圧着して積層
成形体を作製し、この後内部電極が側面に露出するよう
に所定の寸法に切断した。
(E) Two green sheets for the upper and lower margin portions are laminated on the upper and lower surfaces of the laminated molded product obtained in the step (c), respectively, and then thermocompression-bonded to produce a laminated molded product. Thereafter, the internal electrodes were cut to predetermined dimensions such that the internal electrodes were exposed on the side surfaces.

【0034】(f)次に、側面マージン部用のスラリー
を、(e)の積層成形体の内部電極が露出した側面にオ
フセット印刷法により印刷塗布し、乾燥し内部電極を絶
縁する層を形成して生チップを得た。尚、上面および下
面マージン部用のグリーンシートの厚み、側面マージン
部用のスラリー塗布厚みは、焼結後の非容量発生部の体
積割合が表1になるように調整した。
(F) Next, the slurry for the side surface margin portion is applied by printing on the side surface of the laminated molded body of (e) where the internal electrodes are exposed by offset printing, and dried to form a layer for insulating the internal electrodes. To obtain raw chips. The thickness of the green sheet for the upper and lower margin portions and the slurry application thickness for the side margin portions were adjusted so that the volume ratio of the non-capacity generating portion after sintering was as shown in Table 1.

【0035】(g)この生チップをジルコニア板の上に
載せて水素が3%含まれた窒素ガス中で1150〜13
00℃で焼成し、空気中600℃で30分酸化処理を行
い、縦2mm×横1.1mm、厚さ0.62〜0.80
mm、有効積層数100層、有効電極面積1.6mm×
0.66〜1.09mm、誘電体セラミック層厚み5μ
mのチップコンデンサ用焼結体を得た。尚、左右の側面
マージン部の厚みおよび上面および下面マージン部の厚
みは表1に示す厚みであった。
(G) Place the raw chips on a zirconia plate and place them in nitrogen gas containing 3% hydrogen for 1150 to 13
Baking at 00 ° C, oxidizing at 600 ° C in air for 30 minutes, length 2mm x width 1.1mm, thickness 0.62-0.80
mm, effective lamination number 100 layers, effective electrode area 1.6 mm x
0.66-1.09mm, dielectric ceramic layer thickness 5μ
m of a sintered body for a chip capacitor was obtained. The thickness of the left and right side margins and the thickness of the upper and lower margins were as shown in Table 1.

【0036】(h)この焼結体をバレル研磨後、側面マ
ージン部が形成されていない容量発生部の両側面に銅ペ
ーストを塗布し、900℃で焼付け、更にその表面にN
iメッキ及びSnメッキを施し、外部電極を形成して、
図1および図2に示す積層セラミックコンデンサを得
た。
(H) After barrel polishing of the sintered body, a copper paste is applied to both sides of the capacity generating portion where the side margins are not formed, and baked at 900 ° C.
i-plating and Sn-plating to form external electrodes,
The multilayer ceramic capacitor shown in FIGS. 1 and 2 was obtained.

【0037】(i)側面マージン部の厚みおよび上面お
よび下面マージン部の厚み、CaZrO3 及びBaZr
3 の添加量を変えた試料について、非容量発生部の全
体に占める体積を算出し、また容量発生部の誘電体セラ
ミック層の熱膨張係数から非容量発生部の熱膨張係数を
差し引いた値Δαを測定算出し、さらに残留応力(非容
量発生部の圧縮応力、容量発生部の引張応力)をFEM
解析法により求めた。
(I) The thickness of the side margin and the thickness of the upper and lower margins, CaZrO 3 and BaZr
For the sample in which the added amount of O 3 was changed, the volume occupied by the entire non-capacitance generating portion was calculated, and the value obtained by subtracting the thermal expansion coefficient of the non-capacitance generating portion from the thermal expansion coefficient of the dielectric ceramic layer of the capacitance generating portion. Δα is measured and calculated, and the residual stress (compressive stress at the non-capacity generating portion, tensile stress at the capacity generating portion) is further analyzed by FEM.
It was determined by an analytical method.

【0038】尚、容量発生部は、最下層の内部電極層と
最上層の内部電極層とを含み、これらの内部電極層より
も内部側部分で、かつ側面マージン部を除いた部分であ
り、それ以外の部分を非容量発生部とした。
The capacitance generating portion includes a lowermost internal electrode layer and an uppermost internal electrode layer, and is a portion on the inner side of these internal electrode layers and excluding a side margin portion. The other part was defined as a non-capacity generating part.

【0039】また、試料を、LCRメーター4284A
を用い、周波数1.0MHz、入力信号レベル1.0V
rmsにて−55〜125℃における静電容量を測定
し、+25℃での静電容量に対する各温度での静電容量
の変化率TCCを算出した。
Further, the sample was measured with an LCR meter 4284A.
Using a frequency of 1.0 MHz and an input signal level of 1.0 V
The capacitance at −55 to 125 ° C. was measured at rms, and the change rate TCC of the capacitance at each temperature with respect to the capacitance at + 25 ° C. was calculated.

【0040】(j)そして、図3に示すように、試料の
コンデンサを銅配線されたガラスエポキシ基板11上に
ハンダ13により接合し、該基板11を間隔が90mm
の支持台に載せ、基板11の裏面から押圧して試料のコ
ンデンサにクラックが入るまでの基板11のたわみ変形
量を求めた(日本電子機械工業会規格RC−3402に
準拠)。
(J) Then, as shown in FIG. 3, a sample capacitor is bonded on a copper epoxy glass epoxy substrate 11 by solder 13 and the substrate 11 is separated by 90 mm.
Of the substrate 11 was pressed from the back surface of the substrate 11 to determine the amount of flexural deformation of the substrate 11 until the sample capacitor cracked (based on the Japan Electronic Machinery Manufacturers Association standard RC-3402).

【0041】(k)上記(g)の焼結体の研磨断面を実
体顕微鏡(×40)で観察し、容量発生部におけるクラ
ックの有無を調べた。
(K) The polished cross section of the sintered body of (g) was observed with a stereoscopic microscope (× 40), and the presence or absence of cracks in the capacity generating portion was examined.

【0042】CaZrO3 及びBaZrO3 の添加量、
外部電極を除く全体に占める非容量発生部の体積の割合
(%)、非容量発生部の熱膨張係数、非容量発生部と容
量発生部の誘電体セラミック層との熱膨張係数の差、残
留応力(kg/mm2 )、クラックが入るまでの基板の
たわみ変形量(mm)、焼成後の容量発生部のクラック
の有無、誘電特性TCC(%)の結果、および側面マー
ジン部の厚みおよび上面および下面マージン部の厚み、
一層の有効電極面積を表1、2に示す。
The amount of CaZrO 3 and BaZrO 3 added,
Ratio of the volume of the non-capacitance generating portion to the whole except the external electrodes (%), the coefficient of thermal expansion of the non-capacitance generating portion, the difference in the coefficient of thermal expansion between the non-capacitance generating portion and the dielectric ceramic layer of the capacitance generating portion, residual Stress (kg / mm 2 ), flexural deformation of substrate before cracking (mm), presence or absence of crack in capacity generating part after firing, result of dielectric property TCC (%), thickness and top surface of side margin part And the thickness of the bottom margin,
Tables 1 and 2 show the effective electrode area of one layer.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】表1、2から、試料No.3〜9,11,
12, 14,15,18,19は、いずれも非容量発生
部の圧縮応力が大きいため、上記規格RC−3402の
試験法によるクラックが入るまでの変形量が3.2mm
以上と大きく、表面実装時の引っ張り応力に十分耐える
ことが理解される。また、容量発生部の引っ張り応力が
小さく従って内部クラックが皆無である。
From Tables 1 and 2, Sample No. 3 to 9, 11,
12, 14, 15, 18, and 19 all have a large compressive stress in the non-capacitance generating portion, and therefore have a deformation amount of 3.2 mm before cracking according to the test method of the above-mentioned standard RC-3402.
It is understood that the above is large enough to withstand the tensile stress at the time of surface mounting. Further, since the tensile stress of the capacity generating portion is small, there is no internal crack.

【0046】これに対し、試料No.1,17は、非容
量発生部と容量発生部のとの熱膨張係数に差がないた
め、非容量発生部に圧縮応力が蓄積されず、従ってクラ
ックが入るまでの変形量が2.5mm以下と小さく、表
面実装の際の引っ張り応力によりクラックが発生する可
能性がある。試料No.1,17により積層数を増加す
るとたわみ変形量が大きくなり、大きな変形にも耐えら
れるようになるが、静電容量の温度変化率TCCが悪化
することが判る。本発明の試料では積層数が増加しても
TCCが良好であることが判る。また、試料No.13
は、非容量発生部の体積の割合が大きいため容量発生部
の引っ張り応力が大となり、焼結体内部にクラックが発
生した。
On the other hand, the sample No. In Nos. 1 and 17, there is no difference in the thermal expansion coefficient between the non-capacity generating portion and the capacity generating portion, so that the compressive stress is not accumulated in the non-capacity generating portion, and thus the deformation amount before cracking is 2.5 mm or less. Cracks may occur due to tensile stress during surface mounting. Sample No. When the number of laminations is increased by 1 and 17, the amount of flexural deformation increases, and it becomes possible to withstand large deformation, but it can be seen that the temperature change rate TCC of the capacitance deteriorates. It can be seen that the TCC of the sample of the present invention is good even when the number of layers increases. In addition, the sample No. 13
In the case of (2), since the volume ratio of the non-capacity generating portion was large, the tensile stress of the capacity generating portion was large, and cracks occurred inside the sintered body.

【0047】逆に試料No.10は非容量発生部の体積
の割合が小さいために容量発生部の引っ張り応力が小さ
くTCCを改善できない。また試料No.2は熱膨張係
数の差が小さいために容量発生部の引っ張り応力が小さ
くなりTCCを改善できない。更に、試料No.16
は、熱膨張係数の差が大きいため容量発生部の引っ張り
応力が大となり試料No.13と同様内部クラックが発
生した。
Conversely, for sample no. In No. 10, since the ratio of the volume of the non-capacitance generating portion is small, the tensile stress of the capacitance generating portion is small and the TCC cannot be improved. Sample No. In No. 2, since the difference in the coefficient of thermal expansion is small, the tensile stress in the capacity generating portion becomes small, and the TCC cannot be improved. Further, the sample No. 16
In the sample No., the tensile stress at the capacity generating portion became large due to a large difference in the coefficient of thermal expansion. As in the case of No. 13, internal cracks occurred.

【0048】尚、試料No.18、19は、外部電極との
接続部分のみを露出させるように、グリーンシートに内
部電極ペーストを塗布し、該グリーンシートを複数積層
して容量発生部および側面マージン部が形成された積層
成形体を作製し、この積層成形体の上下面に、容量発生
部の誘電体セラミック層よりもジルコン酸塩を多く添加
した上下面マージン部用のグリーンシートをそれぞれ積
層した従来の一般的な製法で作製した場合であり、この
場合にも、非容量発生部の圧縮応力が大きく、クラック
が入るまでの変形量が4mm以上と大きく、また、内部
クラックが皆無であった。
In Samples Nos. 18 and 19, an internal electrode paste was applied to a green sheet so as to expose only a connection portion with an external electrode, and a plurality of the green sheets were laminated to form a capacitance generating portion and side margins. Parts were formed, and green sheets for the upper and lower margins to which zirconate was added more than the dielectric ceramic layer of the capacity generating part were respectively laminated on the upper and lower surfaces of the laminated molded body. This is a case where it is manufactured by a conventional general manufacturing method. Also in this case, the compressive stress of the non-capacity generating portion is large, the deformation amount before cracking is as large as 4 mm or more, and there is no internal crack. .

【0049】[0049]

【発明の効果】本発明の積層セラミックコンデンサで
は、焼結後、容量発生部には引張応力が蓄積残留し、高
積層時においても誘電特性、特に静電容量の温度変化率
TCCが変化せず、また非容量発生部に圧縮応力が蓄積
残留し、この圧縮応力により表面実装時の引張応力を吸
収できるため、表面実装時のクラック発生が抑止され、
コンデンサの信頼性を維持できる。
According to the multilayer ceramic capacitor of the present invention, after sintering, tensile stress accumulates and remains in the capacitance generating portion, and the dielectric characteristics, particularly the temperature change rate TCC of the capacitance, do not change even at the time of high lamination. In addition, compressive stress accumulates and remains in the non-capacity generating portion, and the compressive stress can absorb the tensile stress at the time of surface mounting, thereby suppressing cracking at the time of surface mounting,
The reliability of the capacitor can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層セラミックコンデンサの非容量発
生部と容量発生部を説明するための斜視図である。
FIG. 1 is a perspective view illustrating a non-capacitance generating portion and a capacitance generating portion of a multilayer ceramic capacitor according to the present invention.

【図2】(a)は図1の縦断面図であり、(b)は図1
の横断面図である。
2A is a longitudinal sectional view of FIG. 1, and FIG.
FIG.

【図3】積層セラミックコンデンサの基板への表面実装
を示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing surface mounting of the multilayer ceramic capacitor on a substrate.

【符号の説明】 1・・・誘電体セラミック層 2・・・内部電極層 3・・・容量発生部 4、5・・・側面マージン部 6、7・・・上下面マージン部 8・・・非容量発生部 9・・・外部電極 11・・・基板 13・・・ハンダ 15・・・コンデンサ本体[Description of Signs] 1 ... Dielectric ceramic layer 2 ... Internal electrode layer 3 ... Capacitance generating part 4, 5 ... Side margin part 6, 7 ... Upper and lower surface margin part 8 ... Non-capacitance generator 9 ・ ・ ・ External electrode 11 ・ ・ ・ Substrate 13 ・ ・ ・ Solder 15 ・ ・ ・ Capacitor body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一対の内部電極層により挟持された複数の
誘電体セラミック層からなる容量発生部と、該容量発生
部の外周囲に形成されたセラミックからなる非容量発生
部と、前記内部電極層と接続される外部電極とを具備す
る積層セラミックコンデンサにおいて、前記非容量発生
部の熱膨張係数が前記容量発生部の誘電体セラミック層
の熱膨張係数より4〜10×10-7/℃だけ小さく、か
つ前記非容量発生部の体積が全体積(外部電極を除く)
の5〜50%であることを特徴とする積層セラミックコ
ンデンサ。
A capacitor generating portion formed of a plurality of dielectric ceramic layers sandwiched between a pair of internal electrode layers; a non-capacitance generating portion made of ceramic formed around the capacitor generating portion; In the multilayer ceramic capacitor including the external electrodes connected to the layers, the coefficient of thermal expansion of the non-capacitance generating portion is 4 to 10 × 10 −7 / ° C. higher than the coefficient of thermal expansion of the dielectric ceramic layer of the capacitance generating portion. Small and the volume of the non-capacitance generating part is the whole volume (excluding external electrodes)
5% to 50% of the multilayer ceramic capacitor.
JP8258818A 1996-09-30 1996-09-30 Multilayered ceramic capacitor Pending JPH10106881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8258818A JPH10106881A (en) 1996-09-30 1996-09-30 Multilayered ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8258818A JPH10106881A (en) 1996-09-30 1996-09-30 Multilayered ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH10106881A true JPH10106881A (en) 1998-04-24

Family

ID=17325476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8258818A Pending JPH10106881A (en) 1996-09-30 1996-09-30 Multilayered ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH10106881A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8345405B2 (en) 2009-12-10 2013-01-01 Samsung Electronics Co., Ltd. Multilayer ceramic capacitor
JP2013055320A (en) * 2011-08-31 2013-03-21 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor
JP2014187055A (en) * 2012-12-06 2014-10-02 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic component
JP2015128177A (en) * 2011-06-23 2015-07-09 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor
KR20150135092A (en) * 2014-05-22 2015-12-02 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
JP2015222833A (en) * 2013-11-05 2015-12-10 株式会社村田製作所 Capacitor, capacitor mounting structure, and taping electronic component train

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371524U (en) * 1986-10-28 1988-05-13
JPH03136308A (en) * 1989-10-23 1991-06-11 Kyocera Corp Multilayer ceramic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371524U (en) * 1986-10-28 1988-05-13
JPH03136308A (en) * 1989-10-23 1991-06-11 Kyocera Corp Multilayer ceramic capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8345405B2 (en) 2009-12-10 2013-01-01 Samsung Electronics Co., Ltd. Multilayer ceramic capacitor
JP2015128177A (en) * 2011-06-23 2015-07-09 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor
JP2013055320A (en) * 2011-08-31 2013-03-21 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor
US8614877B2 (en) 2011-08-31 2013-12-24 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor
JP2014187055A (en) * 2012-12-06 2014-10-02 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic component
US9293258B2 (en) 2012-12-06 2016-03-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component including insulating layers formed on lateral and end surfaces thereof
JP2015222833A (en) * 2013-11-05 2015-12-10 株式会社村田製作所 Capacitor, capacitor mounting structure, and taping electronic component train
KR20150135092A (en) * 2014-05-22 2015-12-02 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
KR100463776B1 (en) Electroconductive paste, method of producing monolithic ceramic electronic part, and monolithic ceramic electronic part
KR101108958B1 (en) Laminated ceramic capacitor and method of manufacturing the same
KR101141372B1 (en) Laminated ceramic electronic component and method for producing laminated ceramic electronic component
EP0814486A1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using same
KR100861100B1 (en) Layered ceramic capacitor
EP1536438B1 (en) Multilayer ceramic capacitor
US20070009719A1 (en) Multilayer ceramic capacitor and method for manufacturing the same
JP2012033621A (en) Multilayer ceramic capacitor
JP2011049351A (en) Laminated ceramic capacitor
JP2003017356A (en) Laminated electronic component and manufacturing method therefor
JP3642282B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH11340083A (en) Multilayer ceramic capacitor
JP2013098312A (en) Multilayer ceramic capacitor
JP2000138129A (en) Laminated ceramic capacitor and its manufacture
JPH1050545A (en) Multilayer ceramic capacitor
JPWO2004063119A1 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JPH10106881A (en) Multilayered ceramic capacitor
JP2678206B2 (en) Monolithic ceramic capacitors
JP3199616B2 (en) Ceramic capacitors
KR100581398B1 (en) Dielectric ceramic composition, electronic device and manufacturing method thereof
JPH10335168A (en) Laminated ceramic capacitor
JP3464131B2 (en) Multilayer ceramic capacitors
JP2003318060A (en) Manufacturing method of laminated electronic component
JP2003238259A (en) Method of manufacturing ceramic parts
JP2003209304A (en) Manufacturing method for laminated piezoelectric ceramic element