JPH08236351A - Erasing method of residual magnetic flux of current transformer core and demagnetizing device - Google Patents

Erasing method of residual magnetic flux of current transformer core and demagnetizing device

Info

Publication number
JPH08236351A
JPH08236351A JP3957395A JP3957395A JPH08236351A JP H08236351 A JPH08236351 A JP H08236351A JP 3957395 A JP3957395 A JP 3957395A JP 3957395 A JP3957395 A JP 3957395A JP H08236351 A JPH08236351 A JP H08236351A
Authority
JP
Japan
Prior art keywords
power supply
magnetic flux
current transformer
current
residual magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3957395A
Other languages
Japanese (ja)
Inventor
Yukihiko Enomoto
就彦 榎本
Eiji Ozaki
英二 尾崎
Katsuo Sato
勝男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3957395A priority Critical patent/JPH08236351A/en
Publication of JPH08236351A publication Critical patent/JPH08236351A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method of erasing the residual magnetic flux of a current transformer core and a demagnetizing device, wherein the magnetizing device is capable of erasing a residual magnetic flux with a power supply of small capacity without inducing a high voltage in the winding wire of an equipment under test. CONSTITUTION: An alternating/direct current overlapping power supply 1 which is capable of feeding an alternating current and a direct current of a low voltage at the same time or an alternating/direct current switch power supply 2 which is capable of alternately feeding an alternating current and a direct current of a low voltage is connected in series to an equipment 3 such as a static induction equipment under test. Furthermore, a frequency analyzer 5 for the waveform of an exciting current of the alternating/direct current overlapping power supply 1 or the alternating/direct current switch power supply 2 is also connected in series to the equipment 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変流器の鉄心に残留し
た磁気を、変流器の運転前に減磁する変流器鉄心の残留
磁束の消去方法及び減磁装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of eliminating residual magnetic flux of a current transformer core and a demagnetizing device for demagnetizing the magnetism remaining in the core of the current transformer before operating the current transformer. .

【0002】[0002]

【従来の技術】巻線と鉄心からなる静止誘導機器などの
変流器に、直流または交流の電圧を印加し、巻線に電流
を流してから遮断すると、変流器の鉄心には残留磁束が
残る。この様に変流器の鉄心に直流磁気が残留した場
合、例えば、最高磁束密度の80%の直流磁気が残留し
た状態で事故電流が通電されたとすると、その変流器は
単純にいって過電流領域性能の20%しか実力を発揮し
ない。
2. Description of the Related Art When a DC or AC voltage is applied to a current transformer such as a static induction device consisting of a winding and an iron core, and a current is passed through the winding and then cut off, the residual magnetic flux is transferred to the iron core of the current transformer. Remains. In this way, if DC magnetism remains in the iron core of the current transformer, for example, if the fault current is applied with 80% DC magnetic flux of the maximum magnetic flux density remaining, the current transformer will simply be overwritten. Only 20% of current range performance is demonstrated.

【0003】したがって、残留した直流磁気は、変流器
の運転前に減磁する必要があり、もし、減磁されていな
い場合には、保護継電器などの誤動作及び誤不動作の原
因となる恐れがある。
Therefore, the residual DC magnetism must be demagnetized before the operation of the current transformer, and if it is not demagnetized, it may cause malfunction or malfunction of the protective relay or the like. There is.

【0004】そこで、従来、上記残留磁束を減磁して零
にするために、図9に示した様な装置が用いられてい
る。すなわち、静止誘導機器などの供試機器13には、
計器用変成器14が並列に接続され、また交流電源12
が直列に接続されている。なお、前記計器用変成器14
には、交流電圧計15が並列に接続され、また、励磁電
流波形を測定するオシロスコープ17が、静止誘導機器
などの供試機器13及び交流電源12と直列に接続され
ている。
Therefore, conventionally, in order to demagnetize the residual magnetic flux to zero, a device as shown in FIG. 9 is used. That is, the EUT 13 such as the stationary induction device is
An instrument transformer 14 is connected in parallel, and an AC power source 12
Are connected in series. The instrument transformer 14
An AC voltmeter 15 is connected in parallel with the AC voltage meter 15, and an oscilloscope 17 for measuring the excitation current waveform is connected in series with the DUT 13 such as a static induction device and the AC power supply 12.

【0005】そして、この様な減磁装置においては、静
止誘導機器などの供試機器13に接続された交流電源1
2により、供試機器13の鉄心が十分飽和するまで所定
の電圧(定格電圧の約1.1倍程度)を加えて、図10
に示した様な交番磁界を発生させ、その電圧を徐々に小
さくして減磁する方法(交流電圧法)が一般的であっ
た。
In such a demagnetizing device, the AC power source 1 connected to the device under test 13 such as a static induction device.
2, a predetermined voltage (about 1.1 times the rated voltage) is applied until the iron core of the EUT 13 is sufficiently saturated,
A method of generating an alternating magnetic field as shown in (3) and gradually decreasing the voltage to demagnetize (AC voltage method) was general.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た様な従来の変流器鉄心の残留磁束の消去方法及び減磁
装置には、以下に述べる様な欠点があった。すなわち、
上述した方法では、一般的に大容量の交流電源設備を必
要とするため、現地など大容量の電源設備がないような
ところでは残留磁束を消去することができなかった。ま
た、前記飽和電圧が数千ボルトとなる場合があり、供試
機器の巻線に高電圧が発生するため、絶縁上も問題があ
った。
However, the above-described conventional method of eliminating the residual magnetic flux of the current transformer core and the demagnetizing apparatus have the following drawbacks. That is,
The above-mentioned method generally requires a large-capacity AC power supply facility, so that the residual magnetic flux cannot be erased in a place where there is no large-capacity power supply facility. In addition, the saturation voltage may be several thousand volts, and a high voltage is generated in the winding of the EUT, which causes a problem in insulation.

【0007】本発明は、上述した様な従来技術の問題点
を解消するために提案されたもので、その目的は、供試
機器の巻線に高電圧を発生することなく、小容量の電源
設備で残留磁束を消去することができる変流器鉄心の残
留磁束の消去方法及び減磁装置を提供することにある。
The present invention has been proposed in order to solve the problems of the prior art as described above, and an object thereof is to generate a high voltage in a winding of a device under test and to supply a small capacity power source. An object of the present invention is to provide a method for eliminating residual magnetic flux of a current transformer iron core and a demagnetizing device capable of eliminating residual magnetic flux with equipment.

【0008】[0008]

【課題を解決するための手段】請求項1記載の変流器鉄
心の残留磁束の消去方法は、低電圧の交流と直流両方の
電源を交互にあるいは同時に用いて、変流器の交流電流
波形の+側と−側を周波数分析装置により周波数分析
し、各周波数における交流電流の絶対値が等しくなるよ
うに、前記直流電源を調整することを特徴とするもので
ある。
According to the method of eliminating residual magnetic flux of a current transformer core according to claim 1, alternating current waveforms of a current transformer are used by alternately or simultaneously using low-voltage AC and DC power supplies. The + side and the-side are subjected to frequency analysis by a frequency analysis device, and the DC power supply is adjusted so that the absolute values of the alternating currents at the respective frequencies become equal.

【0009】また、請求項2記載の変流器鉄心の残留磁
束の消去方法は、低電圧の交流と直流両方の電源を交互
にあるいは同時に用いて、変流器の交流電流波形を周波
数分析し、偶数調波を含まず奇数調波だけとなるように
直流電源を調整することを特徴とするものである。
According to a second aspect of the present invention, the residual magnetic flux of the current transformer iron core is erased by alternately or simultaneously using both low-voltage AC and DC power supplies to frequency-analyze the AC current waveform of the current transformer. The feature is that the DC power supply is adjusted so that only odd harmonics are included without including even harmonics.

【0010】さらに、請求項3記載の変流器鉄心の残留
磁束の消去方法は、低電圧の交流と直流両方の電源を交
互にあるいは同時に用いて、変流器の交流電流波形の+
側と−側のピーク値の絶対値が等しくなるように、直流
電源を調整することを特徴とするものである。
Further, in the method for eliminating the residual magnetic flux of the current transformer core according to the third aspect of the present invention, the alternating current waveform of the current transformer is set to + by alternately or simultaneously using both low voltage AC and DC power supplies.
The DC power supply is adjusted so that the absolute values of the peak values on the negative side and the negative side are equal.

【0011】また、請求項4記載の変流器鉄心の残留磁
束の減磁装置は、極性切換器を介して、交流電源と直流
電源を並列に接続した交直切換電源に、周波数分析装置
を直列に接続したことを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a demagnetization device for residual magnetic flux of a current transformer iron core, wherein a frequency analysis device is connected in series to an AC / DC switching power source in which an AC power source and a DC power source are connected in parallel via a polarity switching device. It is characterized by being connected to.

【0012】請求項5記載の変流器鉄心の残留磁束の減
磁装置は、交流電源と直流電源を並列に接続した交直重
畳電源に、周波数分析装置を直列に接続したことを特徴
とするものである。
According to a fifth aspect of the present invention, there is provided a demagnetization device for residual magnetic flux of a current transformer iron core, wherein a frequency analysis device is connected in series to an AC / DC superposed power supply in which an AC power supply and a DC power supply are connected in parallel. Is.

【0013】請求項6記載の変流器鉄心の残留磁束の減
磁装置は、極性切換器を介して、交流電源と直流電源を
並列に接続した交直切換電源に、残留磁気検出器を直列
に接続したことを特徴とするものである。
According to a sixth aspect of the present invention, there is provided a demagnetization device for residual magnetic flux of a current transformer iron core, wherein a residual magnetism detector is connected in series to an AC / DC switching power source in which an AC power source and a DC power source are connected in parallel via a polarity switching device. It is characterized by being connected.

【0014】請求項7記載の変流器鉄心の残留磁束の減
磁装置は、交流電源と直流電源を並列に接続した交直重
畳電源に、残留磁気検出器を直列に接続したことを特徴
とするものである。
According to a seventh aspect of the present invention, there is provided a residual magnetic flux demagnetizing device for a residual current transformer core, wherein a residual magnetism detector is connected in series to an AC / DC superimposing power source in which an AC power source and a DC power source are connected in parallel. It is a thing.

【0015】請求項8記載の発明は、請求項6または請
求項7記載の変流器鉄心の残留磁束の減磁装置におい
て、前記残留磁気検出器が、変流器の鉄心の減磁を検出
するための分流器と、閉磁路鉄心および磁束密度を直流
電圧に変換するホール素子にて構成されることを特徴と
するものである。
According to an eighth aspect of the present invention, in the apparatus for demagnetizing the residual magnetic flux of the current transformer core according to the sixth or seventh aspect, the residual magnetism detector detects demagnetization of the iron core of the current transformer. And a Hall element for converting the magnetic flux density into a direct current voltage.

【0016】[0016]

【作用】請求項1乃至請求項3に記載の発明によれば、
小容量の電源設備で、供試機器に高電圧を発生させるこ
となく残留磁束零点を検出して、残留磁束を消去するこ
とができる変流器鉄心の残留磁束の消去方法を提供する
ことができる。
According to the inventions of claims 1 to 3,
A small-capacity power supply facility can detect a residual magnetic flux zero point without generating a high voltage in a device under test and can eliminate the residual magnetic flux. .

【0017】また、請求項4乃至請求項8に記載の発明
によれば、小容量の電源設備で、供試機器に高電圧を発
生させることなく残留磁束零点を検出して、残留磁束を
消去することができる変流器鉄心の残留磁束の減磁装置
を提供することができる。
According to the invention described in claims 4 to 8, the residual magnetic flux is erased by detecting the residual magnetic flux zero point in the small-capacity power supply equipment without generating a high voltage in the EUT. It is possible to provide a demagnetization device for the residual magnetic flux of the current transformer iron core.

【0018】[0018]

【実施例】以下、本発明の実施例を図を参照して具体的
に説明する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

【0019】[A.変流器鉄心の残留磁束の消去方法] [1.第1実施例]本実施例においては、図1に示した
様に、静止誘導機器などの供試機器3には、低電圧の交
流と直流の両方を同時に供給することができる交直重畳
電源1、あるいは低電圧の交流と直流を交互に供給する
ことができる交直切換電源2が直列に接続されている。
また、前記静止誘導機器などの供試機器3には、前記交
直重畳電源1または交直切換電源2によって励磁された
励磁電流の波形を周波数分析するための周波数分析装置
5が直列に接続されている。なお、図2は、静止誘導機
器の等価回路を示したものである。すなわち、巻線抵抗
6とインダクタンス7が直列に接続された回路と等価で
ある。
[A. Method of Eliminating Residual Magnetic Flux of Current Transformer Core] [1. First Embodiment] In the present embodiment, as shown in FIG. 1, an AC / DC power supply 1 capable of simultaneously supplying both low-voltage AC and DC to a device under test 3 such as a stationary induction device. Alternatively, an AC / DC switching power supply 2 capable of alternately supplying low voltage AC and DC is connected in series.
A frequency analyzer 5 for frequency-analyzing the waveform of the exciting current excited by the AC / DC superimposing power supply 1 or the AC / DC switching power supply 2 is connected in series to the DUT 3 such as the stationary induction device. . Note that FIG. 2 shows an equivalent circuit of the static induction device. That is, it is equivalent to a circuit in which the winding resistance 6 and the inductance 7 are connected in series.

【0020】以下に、本実施例の変流器鉄心の残留磁束
の消去方法について説明する。すなわち、静止誘導機器
などの供試機器3に残留磁束が残っている場合には、そ
のB−H曲線は図3の実線9で示したようになる。この
時、上述した様に、図9に示す様な交流電源12を用い
て供試機器13を励磁すると、オシロスコープ17で観
測される励磁電流波形は、図4に示した様に、+側と−
側とで非対称な波形となり、それぞれのピーク値の絶対
値も異なる。
The method of eliminating the residual magnetic flux of the current transformer core of this embodiment will be described below. That is, when the residual magnetic flux remains in the device under test 3 such as the stationary induction device, the BH curve is as shown by the solid line 9 in FIG. At this time, as described above, when the EUT 13 is excited by using the AC power source 12 as shown in FIG. 9, the excitation current waveform observed by the oscilloscope 17 is as shown in FIG. −
The waveform is asymmetrical with the side, and the absolute values of the peak values are different.

【0021】そこで、この様な残留磁束が残っている状
態の供試機器3を、図1に示した様な低電圧の交流と直
流の両方を同時にあるいは交互に供給できる交直重畳電
源1または交直切換電源2で励磁し、流れる励磁電流の
波形を周波数分析装置5で周波数分析する。すると、直
流電圧が0で交流電圧のみの励磁では、図4に示したと
同様の非対称電流が流れ、+側と−側の周波数成分には
差異がある。続いて、直流電流をピーク値の高い側の極
性に合わせて少しずつ供給することにより、その+側と
−側の周波数成分が等しくなる点があり、ここが残留磁
束零点である。なお、この時の電流波形は、図5に示し
た様に、+側と−側とで対称な波形となる。
Therefore, the device under test 3 in which such residual magnetic flux remains remains, the AC / DC power supply 1 or AC / DC capable of supplying both low voltage AC and DC at the same time or alternately as shown in FIG. The switching power supply 2 excites, and the waveform of the flowing exciting current is frequency-analyzed by the frequency analyzer 5. Then, when the DC voltage is 0 and only the AC voltage is excited, an asymmetric current similar to that shown in FIG. 4 flows, and there is a difference between the + side and − side frequency components. Then, by supplying the DC current little by little according to the polarity on the higher peak side, there is a point where the + side and − side frequency components become equal, and this is the residual magnetic flux zero point. The current waveform at this time is a symmetrical waveform on the + side and the-side, as shown in FIG.

【0022】[2.第2実施例]本実施例の構成は上記
第1実施例と同様であるので、その説明は省略する。な
お、残留磁束零点の検出方法が上記第1実施例と異なっ
ている。すなわち、本実施例においても、直流電圧が0
で交流電圧のみの励磁では、図4に示したと同様の非対
称電流が流れるが、1周期分の周波数分析の結果には、
電源の周波数の奇数、偶数倍の調波が存在している。こ
こで、上記第1実施例と同様に直流電流を少しずつ供給
すると、偶数倍調波が0になる点がある。ここが残留磁
束零点である。これは、測定した交流電流波形の周波数
分析結果に、電源周波数の2倍、4倍、6倍…等の偶数
倍調波が含まれないと、+側と−側の波形が対称である
ことを利用したものである。
[2. Second Embodiment] The configuration of this embodiment is the same as that of the first embodiment, and the description thereof will be omitted. The method of detecting the residual magnetic flux zero point is different from that of the first embodiment. That is, also in this embodiment, the DC voltage is 0
In the case of excitation with AC voltage only, the same asymmetric current as shown in FIG. 4 flows, but the result of frequency analysis for one period shows that
There are harmonics that are odd and even times the frequency of the power supply. Here, as in the first embodiment, when a direct current is supplied little by little, the even harmonics become zero. This is the residual magnetic flux zero point. This is because if the frequency analysis result of the measured AC current waveform does not include even harmonics such as 2 times, 4 times, 6 times, etc. of the power supply frequency, the + side and-side waveforms are symmetric. Is used.

【0023】[3.第3実施例]本実施例の構成も上記
第1実施例と同様であるので、その説明は省略する。な
お、残留磁束零点の検出方法が上記第1実施例と異なっ
ている。すなわち、本実施例においても、直流電圧が0
で交流電圧のみの励磁では、図4に示したと同様の非対
称電流が流れるが、この電流波形の+側と−側のピーク
値の絶対値が等しくなるように直流電流をコントロール
することにより、残留磁束を消去することができる。こ
れは、電流波形の+側と−側のピーク値の絶対値が等し
くなる点が、残留磁束零点であることを利用したもので
ある。
[3. Third Embodiment] The configuration of this embodiment is also the same as that of the first embodiment, and the description thereof will be omitted. The method of detecting the residual magnetic flux zero point is different from that of the first embodiment. That is, also in this embodiment, the DC voltage is 0
In the case of excitation with an AC voltage only, an asymmetric current similar to that shown in FIG. 4 flows, but by controlling the DC current so that the absolute values of the + side and-side peak values of this current waveform become equal, The magnetic flux can be erased. This is because the point where the absolute values of the peak values on the + side and − side of the current waveform are equal is the residual magnetic flux zero point.

【0024】[B.変流器鉄心の減磁装置] [1.第1実施例]本実施例の変流器鉄心の減磁装置
は、図6に示した様に構成されている。すなわち、交流
電源21に、極性切換器22を介して直流電流発生器2
3が並列に接続され、さらに、変流器巻線25及び変流
器鉄心26を有する変流器と、残留磁気検出器24に直
列に接続されている。なお、前記残留磁気検出器24
は、閉磁路鉄心の一部にホール素子を装着して構成され
ている。すなわち、図8に示した様に、通電主回路31
には分流器32が接続され、この分流器32には、残留
磁気検出鉄心の励磁巻線33により残留磁気検出鉄心3
4が並列に接続されている。また、前記残留磁気検出鉄
心34には、その一部にホール素子35が装着されてい
る。さらに、このホール素子35には、ホール素子制御
電流電源36及び直流増幅器37が接続されている。
[B. Demagnetizing device for current transformer core] [1. First Embodiment] A demagnetizing device for a current transformer iron core according to the present embodiment is constructed as shown in FIG. That is, the AC power supply 21 is connected to the DC current generator 2 via the polarity switcher 22.
3 are connected in parallel, and are further connected in series with a current transformer having a current transformer winding 25 and a current transformer core 26, and a residual magnetism detector 24. The residual magnetism detector 24
Is configured by mounting a Hall element on a part of a closed magnetic circuit core. That is, as shown in FIG.
A shunt 32 is connected to the shunt 32, and the shunt 32 is provided with an exciting winding 33 of the residual magnetic detection iron core 3 to detect the residual magnetic detection iron core 3.
4 are connected in parallel. A Hall element 35 is attached to a part of the residual magnetism detecting iron core 34. Further, to the hall element 35, a hall element control current power source 36 and a DC amplifier 37 are connected.

【0025】この様な構成を有する本実施例の変流器鉄
心の減磁装置は、以下に述べる様に作用する。すなわ
ち、前記減磁装置の出力端子を変流器の一次巻線または
二次巻線へ接続し、図7に示した様なヒステリシスを描
くように、直流電流発生器23の正極性出力電流を鉄心
が飽和するA点まで増加させた後、電流を減少してB点
で遮断する。続いて、極性を反転し、再び負極性出力電
流を鉄心が飽和するC点まで増加させて遮断する。な
お、この間、閉磁路鉄心の一部にホール素子を装着した
残留磁気検出器24は、正または負の最高出力電圧を示
しながら、絶対量は異なるが変流器鉄心のヒステリシス
と同一な軌跡を辿っている。
The demagnetizing device for the current transformer iron core of this embodiment having such a structure operates as described below. That is, the output terminal of the demagnetizer is connected to the primary winding or the secondary winding of the current transformer, and the positive output current of the DC current generator 23 is drawn so as to draw the hysteresis as shown in FIG. After increasing to the point A where the iron core saturates, the current is reduced and cut off at the point B. Then, the polarity is reversed, and the negative output current is again increased to the point C where the iron core is saturated and cut off. During this period, the residual magnetism detector 24, in which a Hall element is attached to a part of the closed magnetic circuit core, shows the same positive or negative maximum output voltage, but the same locus as the hysteresis of the current transformer core although the absolute amount is different. I am following.

【0026】ここまでの操作で、変流器鉄心の磁気は、
図7に示したヒステリシスのD点に停止していることか
ら、最初と同じ正極性の電流を暫増させ、残留磁気検出
器24の出力電圧が零点を指示した時点、すなわち図7
のE点で電源を遮断する。
With the above operation, the magnetism of the current transformer core is
Since it is stopped at the point D of the hysteresis shown in FIG. 7, the same positive current as at the beginning is temporarily increased and the output voltage of the residual magnetism detector 24 indicates the zero point, that is, FIG.
Turn off the power at point E.

【0027】以上の操作により、磁束密度が約0(GA
USS)にて電源が遮断されたことから、起磁力は0点
にもどり、残留磁気は減磁される。また、前記残留磁気
検出器24をセンサーとして、一連の操作を自動化する
ことにより、直流電流発生器23へ出力電流を設定して
装置を駆動させるだけで、残留磁気は減磁され、操作が
より容易なものとなる。
By the above operation, the magnetic flux density is about 0 (GA
Since the power supply was cut off in USS), the magnetomotive force returns to the zero point and the residual magnetism is demagnetized. Further, by automating a series of operations using the residual magnetism detector 24 as a sensor, the residual magnetism is demagnetized only by setting the output current to the direct current generator 23 and driving the device, and the operation is further improved. It will be easy.

【0028】この様に、本実施例の変流器鉄心の残留磁
束の減磁装置は、減磁させる変流器と直列に、ホール素
子を用いた残留磁気検出器を接続することにより、直接
測定することが困難な変流器鉄心の残留磁気の量的な大
きさとは無関係に、強制的に直流励磁によるヒステリシ
スループを起動させ、磁束密度0(GAUSS)の点を
検出することができる。
In this way, the residual magnetic flux demagnetization device of the current transformer iron core of the present embodiment directly connects the residual magnetism detector using the Hall element in series with the current transformer for demagnetization. Regardless of the quantitative magnitude of the residual magnetism of the current transformer core, which is difficult to measure, it is possible to forcibly activate the hysteresis loop by DC excitation and detect the point of magnetic flux density 0 (GAUSS).

【0029】[0029]

【発明の効果】以上説明した様に、本発明によれば、供
試機器の巻線に高電圧を発生することなく、小容量の電
源設備で残留磁束を消去することができる変流器鉄心の
残留磁束の消去方法及び減磁装置を提供することができ
る。
As described above, according to the present invention, a current transformer core capable of eliminating residual magnetic flux with a small-capacity power supply facility without generating a high voltage in the winding of the EUT. It is possible to provide a residual magnetic flux erasing method and a demagnetizing device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例である変流器鉄心の残留磁
束の消去方法の一実施例を示す回路図
FIG. 1 is a circuit diagram showing an embodiment of a method for eliminating residual magnetic flux of a current transformer core which is a first embodiment of the present invention.

【図2】静止誘導機器の等価回路を示す図FIG. 2 is a diagram showing an equivalent circuit of a stationary induction device.

【図3】代表的な磁化特性を示す特性図FIG. 3 is a characteristic diagram showing typical magnetization characteristics.

【図4】供試機器に残留磁束がある状態における電流波
形の例を示す特性図
FIG. 4 is a characteristic diagram showing an example of a current waveform when the EUT has residual magnetic flux.

【図5】供試機器に残留磁束がない状態における電流波
形の例を示す特性図
FIG. 5 is a characteristic diagram showing an example of a current waveform when the EUT has no residual magnetic flux.

【図6】本発明の第2実施例である変流器鉄心の残留磁
束の減磁装置の一実施例を示す回路図
FIG. 6 is a circuit diagram showing an embodiment of a demagnetization device for residual magnetic flux of a current transformer core which is a second embodiment of the present invention.

【図7】変流器残留磁気の減磁ヒステリシスを示す図FIG. 7 is a diagram showing a demagnetization hysteresis of residual magnetism of a current transformer.

【図8】本発明の第2実施例に用いられる残留磁気検出
器の回路図
FIG. 8 is a circuit diagram of a residual magnetism detector used in the second embodiment of the present invention.

【図9】従来の変流器鉄心の残留磁束の消去方法の一例
を示す回路図
FIG. 9 is a circuit diagram showing an example of a conventional method of eliminating residual magnetic flux of a current transformer core.

【図10】交流による残留磁気の減磁メカニズムの説明
FIG. 10 is an explanatory diagram of a demagnetization mechanism of residual magnetism due to AC

【符号の説明】[Explanation of symbols]

1…交直重畳電源 2…交直切換電源 3…静止誘導機器 4…電流測定用抵抗 5…周波数分析装置 6…静止誘導機器の巻線抵抗 7…静止誘導機器のインダクタンス 8…一般的なB−H曲線 9…供試機器に残留磁束が残っている時のB−H曲線 12…大容量交流電源 13…供試機器 14…計器用変成器 15…交流電圧計 16…電流測定用抵抗 17…オシロスコープ 21…交流電源 22…極性切換器 23…直流発生器 24…残留磁気検出器 31…通電主回路 32…分流器 33…残留磁気検出鉄心の励磁巻線 34…残留磁気検出鉄心 35…ホール素子 36…ホール素子制御電流電源 37…直流増幅器 A点…正極性電流の通電による変流器鉄心の最高磁束密
度点 B点…正極性電流が遮断されたことで発生した残留磁束
密度点 C点…負極性電流の通電による変流器鉄心の最高磁束密
度点 D点…負極性電流が遮断されたことで発生した残留磁束
密度点 E点…残留磁束密度0(GAUSS)点
1 ... AC / DC superposed power supply 2 ... AC / DC switching power supply 3 ... Stationary induction device 4 ... Current measuring resistor 5 ... Frequency analysis device 6 ... Stationary induction device winding resistance 7 ... Stationary induction device inductance 8 ... General BH Curve 9 ... BH curve when residual magnetic flux remains in the EUT 12 ... Large capacity AC power supply 13 ... EUT 14 ... Meter transformer 15 ... AC voltmeter 16 ... Current measuring resistance 17 ... Oscilloscope 21 ... AC power supply 22 ... Polarity switch 23 ... DC generator 24 ... Residual magnetism detector 31 ... Energizing main circuit 32 ... Shunter 33 ... Excitation winding of residual magnetism detecting iron core 34 ... Residual magnetism detecting iron core 35 ... Hall element 36 ... Hall element control current power supply 37 ... DC amplifier A point ... Maximum magnetic flux density point of current transformer core due to positive current flow B point ... Residual magnetic flux density point C generated due to interruption of positive current C point ... Negative electrode Point of maximum magnetic flux density of current transformer core due to energization of negative current D point ... Residual magnetic flux density point generated due to interruption of negative current E point ... Residual magnetic flux density 0 (GAUSS) point

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 低電圧の交流と直流両方の電源を交互に
あるいは同時に用いて、変流器の交流電流波形の+側と
−側を周波数分析装置により周波数分析し、各周波数に
おける交流電流の絶対値が等しくなるように、前記直流
電源を調整することを特徴とする変流器鉄心の残留磁束
の消去方法。
1. A low-voltage alternating current and direct current power source is alternately or simultaneously used to perform frequency analysis on a + side and a − side of an alternating current waveform of a current transformer with a frequency analyzer to determine the alternating current at each frequency. A method of erasing residual magnetic flux of a current transformer core, characterized in that the DC power supply is adjusted so that the absolute values become equal.
【請求項2】 低電圧の交流と直流両方の電源を交互に
あるいは同時に用いて、変流器の交流電流波形を周波数
分析し、偶数調波を含まず奇数調波だけとなるように直
流電源を調整することを特徴とする変流器鉄心の残留磁
束の消去方法。
2. A direct current power supply such that alternating current and low direct current of low voltage are alternately or simultaneously used for frequency analysis of the alternating current waveform of the current transformer so that only odd harmonics are included without including even harmonics. A method for eliminating residual magnetic flux in a current transformer core, the method comprising:
【請求項3】 低電圧の交流と直流両方の電源を交互に
あるいは同時に用いて、変流器の交流電流波形の+側と
−側のピーク値の絶対値が等しくなるように、直流電源
を調整することを特徴とする変流器鉄心の残留磁束の消
去方法。
3. A low-voltage alternating current and direct current power supplies are used alternately or simultaneously, and a direct current power supply is used so that the absolute values of the peak values on the + side and − side of the alternating current waveform of the current transformer are equal. A method for eliminating the residual magnetic flux of a current transformer core, which is characterized by adjusting.
【請求項4】 極性切換器を介して、交流電源と直流電
源を並列に接続した交直切換電源に、周波数分析装置を
直列に接続したことを特徴とする変流器鉄心の残留磁束
の減磁装置。
4. A demagnetization of residual magnetic flux of a current transformer core, characterized in that a frequency analysis device is connected in series to an AC / DC switching power supply in which an AC power supply and a DC power supply are connected in parallel via a polarity switching device. apparatus.
【請求項5】 交流電源と直流電源を並列に接続した交
直重畳電源に、周波数分析装置を直列に接続したことを
特徴とする変流器鉄心の残留磁束の減磁装置。
5. A demagnetization device for residual magnetic flux of a current transformer core, wherein a frequency analysis device is connected in series to an AC / DC power supply in which an AC power supply and a DC power supply are connected in parallel.
【請求項6】 極性切換器を介して、交流電源と直流電
源を並列に接続した交直切換電源に、残留磁気検出器を
直列に接続したことを特徴とする変流器鉄心の残留磁束
の減磁装置。
6. The residual magnetic flux reduction of a current transformer core, characterized in that a residual magnetism detector is connected in series to an AC / DC switching power supply in which an AC power supply and a DC power supply are connected in parallel via a polarity switching device. Porcelain device.
【請求項7】 交流電源と直流電源を並列に接続した交
直重畳電源に、残留磁気検出器を直列に接続したことを
特徴とする変流器鉄心の残留磁束の減磁装置。
7. A demagnetization device for residual magnetic flux of a current transformer core, wherein a residual magnetism detector is connected in series to an AC / DC superimposed power supply in which an AC power supply and a DC power supply are connected in parallel.
【請求項8】 前記残留磁気検出器が、変流器の鉄心の
減磁を検出するための分流器と、閉磁路鉄心および磁束
密度を直流電圧に変換するホール素子にて構成されるこ
とを特徴とする請求項6または請求項7記載の変流器鉄
心の残留磁束の減磁装置。
8. The residual magnetism detector comprises a shunt for detecting demagnetization of an iron core of a current transformer, a closed magnetic circuit iron core, and a Hall element for converting a magnetic flux density into a DC voltage. The demagnetization device for the residual magnetic flux of the current transformer core according to claim 6 or 7.
JP3957395A 1995-02-28 1995-02-28 Erasing method of residual magnetic flux of current transformer core and demagnetizing device Pending JPH08236351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3957395A JPH08236351A (en) 1995-02-28 1995-02-28 Erasing method of residual magnetic flux of current transformer core and demagnetizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3957395A JPH08236351A (en) 1995-02-28 1995-02-28 Erasing method of residual magnetic flux of current transformer core and demagnetizing device

Publications (1)

Publication Number Publication Date
JPH08236351A true JPH08236351A (en) 1996-09-13

Family

ID=12556832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3957395A Pending JPH08236351A (en) 1995-02-28 1995-02-28 Erasing method of residual magnetic flux of current transformer core and demagnetizing device

Country Status (1)

Country Link
JP (1) JPH08236351A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216630A (en) * 2010-03-31 2011-10-27 Takaoka Electric Mfg Co Ltd Method and device for controlling density of residual magnetic fluxes in transformer iron core
CN103177846A (en) * 2013-04-03 2013-06-26 北京北方车辆集团有限公司 Demagnetization device used for oversized workpiece
US8914557B2 (en) 2005-12-16 2014-12-16 Microsoft Corporation Optimizing write and wear performance for a memory
CN112068050A (en) * 2020-09-10 2020-12-11 云南电网有限责任公司电力科学研究院 Transformer residual magnetism quantitative evaluation and elimination method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8914557B2 (en) 2005-12-16 2014-12-16 Microsoft Corporation Optimizing write and wear performance for a memory
JP2011216630A (en) * 2010-03-31 2011-10-27 Takaoka Electric Mfg Co Ltd Method and device for controlling density of residual magnetic fluxes in transformer iron core
CN103177846A (en) * 2013-04-03 2013-06-26 北京北方车辆集团有限公司 Demagnetization device used for oversized workpiece
CN112068050A (en) * 2020-09-10 2020-12-11 云南电网有限责任公司电力科学研究院 Transformer residual magnetism quantitative evaluation and elimination method

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
JP4515905B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detection method, and magnetic bridge used in the sensor and detection method
US4188577A (en) Pulse eddy current testing apparatus for magnetic materials, particularly tubes
EP2430469B1 (en) Closed-loop fluxgate current sensor
JP2016188790A (en) Current detector
Wu et al. Residual flux measurement of power transformer based on transient current difference
JPH08236351A (en) Erasing method of residual magnetic flux of current transformer core and demagnetizing device
Gerdroodbari et al. Remanent flux negative effects on transformer diagnostic test results and a novel approach for its elimination
JPH07110345A (en) Demagnetizing method for zero flux control type current sensor
Bruce et al. Remanent flux in current-transformer cores
JP5594726B2 (en) Method and apparatus for controlling residual magnetic flux density of transformer core
JP5516079B2 (en) Current detector
JPH08122387A (en) Method and apparatus for testing polarity of current transformer
Oxley Apparatus for magnetization and efficient demagnetization of soft magnetic materials
US4359765A (en) Magnetizing system
JPH06249932A (en) Measuring instrument for residual magnet of transformer core
WO2015070345A1 (en) Simultaneous measurement technique for line current, geomagnetically induced currents (gic) and transient currents in power systems
GB2370363A (en) Measuring DC component of AC current
Würde et al. Influence of the Power Factor on the Vibration Behavior of Transformers for Primary and Secondary Distribution
JP3746359B2 (en) DC current sensor
JPH1068744A (en) Direct current sensor
KR102039268B1 (en) An Alternating and Direct Current Detection Circuit
JP2000055940A (en) Dc current sensor
JPH06118111A (en) Leak current detector
JPH05264704A (en) Method and apparatus for measuring coercive force of steel plate