JPH06249932A - Measuring instrument for residual magnet of transformer core - Google Patents

Measuring instrument for residual magnet of transformer core

Info

Publication number
JPH06249932A
JPH06249932A JP3379493A JP3379493A JPH06249932A JP H06249932 A JPH06249932 A JP H06249932A JP 3379493 A JP3379493 A JP 3379493A JP 3379493 A JP3379493 A JP 3379493A JP H06249932 A JPH06249932 A JP H06249932A
Authority
JP
Japan
Prior art keywords
current
transformer
voltage
loss
residual magnetism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3379493A
Other languages
Japanese (ja)
Other versions
JP3170933B2 (en
Inventor
Sadaomi Mihashi
貞臣 三橋
Tomio Hashimoto
富男 橋本
Motoo Wada
元生 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP03379493A priority Critical patent/JP3170933B2/en
Publication of JPH06249932A publication Critical patent/JPH06249932A/en
Application granted granted Critical
Publication of JP3170933B2 publication Critical patent/JP3170933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To accurately measure the size of residual magnet using a device for measuring magnetic characteristics by drawing hysteresis loop on the cathode ray tube of an oscilloscope using an AC power supply. CONSTITUTION:A loss compensation circuit 6 for outputting the current component corresponding to eddy current loss with the voltage of an AC power supply 2 as an input signal, the output current is subtracted from the output current of a current transformer 4 for measuring the excitation current of the transformer, and then the resultant current flows to a parallel resistor 41, thus obtaining an accurately hysteresis loop equivalent to the DC hysteresis loop where eddy DC current component is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、通常の変圧器や計器
用変成器などの変成器の鉄心の磁気特性としての残留磁
気の大きさ、特に過渡電流を精度よく求めるために残留
磁気の値が仕様で指定される計器用変流器の残留磁気の
大きさを測定によっ求めるための残留磁気測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the magnitude of residual magnetism as a magnetic characteristic of an iron core of a transformer such as an ordinary transformer or a transformer for measuring instruments, and in particular, the value of the residual magnetism for accurately determining a transient current. The present invention relates to a residual magnetism measuring device for obtaining the magnitude of residual magnetism of a current transformer for an instrument specified by specifications by measurement.

【0002】[0002]

【従来の技術】一般に、変成器に使用される鉄心は一部
のものを除いて鉄心が飽和しない領域で使用されるもの
であり、このような変成器では鉄心が飽和してしまうと
所定の性能が発揮できないという特徴がある。したがっ
て、鉄心が飽和に至るまでの磁気特性を正確に評価する
ことはその機器の性能を判定するための重要な要素にな
っている。
2. Description of the Related Art Generally, except for some iron cores used in transformers, the iron cores are used in a region where the iron cores are not saturated. There is a feature that performance cannot be exhibited. Therefore, accurate evaluation of the magnetic characteristics until the iron core reaches saturation is an important factor for determining the performance of the equipment.

【0003】このような磁気特性の一つとして残留磁気
の大きさがある。周知のように残留磁気は鉄心のヒステ
リシス現象によるものであり、この大きさを把握するこ
とが特に望まれる場合がある。特に電力系統に発生する
過渡的な電流変化を精度よく測定するための計器用変流
器では、残留磁気が測定精度に大きく影響することか
ら、通常の交流を測定するための計器用変流器に比べて
小さな残留磁気であることが要求され、例えば、「残留
磁束密度は最大磁束密度の30%以下」というよう内容
が仕様によって指定される場合がある。
One of such magnetic characteristics is the magnitude of residual magnetism. As is well known, the residual magnetism is due to the hysteresis phenomenon of the iron core, and it may be particularly desired to grasp its magnitude. In particular, in current transformers for measuring instruments that accurately measure transient current changes that occur in the electric power system, the residual magnetism greatly affects the measurement accuracy. The residual magnetism is required to be smaller than that of the above, and the content may be specified by the specification, for example, "the residual magnetic flux density is 30% or less of the maximum magnetic flux density".

【0004】変成器鉄心の残留磁気の大きさを求める従
来の測定方法は、直流電源を使用して鉄心を磁化させそ
れによって生じる磁束の変化を衝撃検流計又は磁束計に
より測定し、その結果に基づいてヒステリシスループを
描き、これから残留磁気の大きさを読み取る方法が一般
的である。この方法は特殊な測定器が必要であり測定手
順も煩雑であるという問題がある。
A conventional measuring method for determining the magnitude of the residual magnetism of a transformer iron core is to magnetize the iron core using a DC power source and measure the change in magnetic flux caused by the magnetism using an impact galvanometer or a magnetometer. It is common to draw a hysteresis loop based on the above and read the magnitude of residual magnetism from this. This method has a problem that a special measuring device is required and the measuring procedure is complicated.

【0005】このような直流電源を使用したヒステリシ
スループの測定方法の煩雑さを解決して生産現場でも容
易に使用することのできるものとして交流電源を使用し
てオシロスコープにヒステリシスループを描かせる方法
がある。図3は交流電源を用いた従来のヒステリシス特
性測定する測定器の回路図である。この図において、測
定の対象となる供試変流器1の一次側11の端子に交流
電源2が接続され、二次側12の端子に積分器3が接続
されその出力信号がオシロスコープ5の縦軸偏向板52
に印加される。周知のように、電圧を積分器3で積分す
ればその信号は供試変流器1の鉄心の磁束Φに比例した
信号になる。
A method of solving the complexity of the method for measuring a hysteresis loop using a DC power supply and allowing the oscilloscope to draw a hysteresis loop by using an AC power supply is one that can be easily used at a production site. is there. FIG. 3 is a circuit diagram of a conventional measuring instrument using an AC power supply for measuring hysteresis characteristics. In this figure, the AC power supply 2 is connected to the terminal of the primary side 11 of the current transformer under test 1 to be measured, the integrator 3 is connected to the terminal of the secondary side 12, and its output signal is the vertical direction of the oscilloscope 5. Axis deflection plate 52
Applied to. As is well known, if the voltage is integrated by the integrator 3, the signal becomes a signal proportional to the magnetic flux Φ of the iron core of the current transformer under test 1.

【0006】一方、交流電源2から供試変流器1に流入
する電流は励磁電流であるが、これを変流器4で測定し
並列抵抗41を介してオシロスコープ5の横軸偏向板5
1に入力する。測定された励磁電流は並列抵抗41に流
れて電流に比例した電圧を発生するが、この電圧が横軸
偏向板51に印加される。積分器3は入力インピーダン
スが非常に大きいから供試変流器1の負荷としては無い
のと同じなので、変流器4が測定する電流は前述のよう
に供試変流器1の励磁電流としてよい。このようにして
オシロスコープ5の縦軸、横軸の偏向板51,52にそ
れぞれ印加された電圧は前述のように縦軸が供試変流器
1の鉄心の磁束Φに比例する値、横軸が励磁電流iex
比例する値なので、オシロスコープに描かれるヒステリ
シスループは鉄心10の磁界強度Hを横軸に、磁束密度
Bを縦軸にして得られるヒステリシスループに比例した
ものになる。
On the other hand, the current flowing from the AC power supply 2 into the current transformer 1 under test is an exciting current.
Enter 1. The measured exciting current flows through the parallel resistor 41 to generate a voltage proportional to the current, and this voltage is applied to the horizontal axis deflection plate 51. Since the integrator 3 has a very large input impedance and is not used as a load of the current transformer 1, the current measured by the current transformer 4 is the exciting current of the current transformer 1 as described above. Good. As described above, the voltages applied to the deflection plates 51 and 52 on the vertical axis and the horizontal axis of the oscilloscope 5 are values whose vertical axis is proportional to the magnetic flux Φ of the iron core of the current transformer under test 1, Is a value proportional to the exciting current i ex , the hysteresis loop drawn on the oscilloscope is proportional to the hysteresis loop obtained with the magnetic field strength H of the iron core 10 on the horizontal axis and the magnetic flux density B on the vertical axis.

【0007】図4は空隙付鉄心の変流器について図3の
測定装置を用いてそのオシロスコープ5に描かせた交流
ヒステリシスループの例を示すグラフでである。この図
の横軸は励磁電流iexに比例する値、縦軸が磁束Φに比
例する値であると同時に、前述のように磁界強度Hと磁
束密度Bに比例した値でもある。2本の斜めの線の右側
の線は上昇過程を表し左側の線が下降過程を表し、これ
らの線で囲まれたループの中の面積が損失に比例するも
のであり、その中に直流ヒステリシス損と交流渦電流損
とが含まれている。この図から横軸の値である電流が零
のときの縦軸の値を残留磁束Φreと見なして最大磁束Φ
maに対する比率を求めると約20%である。
FIG. 4 is a graph showing an example of an AC hysteresis loop drawn on the oscilloscope 5 of the current transformer with a voided core by using the measuring apparatus of FIG. The horizontal axis of this figure is a value proportional to the exciting current i ex , the vertical axis is a value proportional to the magnetic flux Φ, and at the same time, a value proportional to the magnetic field strength H and the magnetic flux density B as described above. The right-hand line of the two diagonal lines represents the ascending process and the left-hand line represents the descending process, and the area inside the loop surrounded by these lines is proportional to the loss. Loss and AC eddy current loss are included. From this figure, the value on the vertical axis when the current on the horizontal axis is zero is regarded as the residual magnetic flux Φ re, and the maximum magnetic flux Φ
The ratio to ma is about 20%.

【0008】変流器に空隙付鉄心を採用するのは前述の
ように残留磁気の大きさを小さくするためであり、前述
の図の対象とした変流器では、鉄心の磁路長が約60c
m、空隙長が約0.1mmという値のものである。図5は
同じ供試変流器1の衝撃検流計などを使用して直接測定
された直流ヒステリシスループであり、横軸が磁界強度
H、縦軸が磁束密度Bである。この図から最大磁束密度
に対する残留磁束密度の比率を求めると5%以下であ
る。したがって、図3の仮に求められた20%の残留磁
気は渦電流損によって大幅に大きく求められてしまうこ
とになり、実用的には問題があることが分かる。
The reason why the air core with voids is adopted in the current transformer is to reduce the magnitude of the residual magnetism as described above. In the current transformer of the above-mentioned figure, the magnetic path length of the iron core is about 60c
m, and the void length is about 0.1 mm. FIG. 5 is a DC hysteresis loop measured directly using the same impact galvanometer of the current transformer under test 1, with the horizontal axis representing the magnetic field strength H and the vertical axis representing the magnetic flux density B. The ratio of the residual magnetic flux density to the maximum magnetic flux density obtained from this figure is 5% or less. Therefore, the tentatively obtained residual magnetism of 20% in FIG. 3 is significantly required due to the eddy current loss, and it can be seen that there is a practical problem.

【0009】[0009]

【発明が解決しようとする課題】前述のように交流を印
加して描かせたヒステリシスループには鉄心の渦電流成
分が含まれている。この渦電流成分によってヒステリシ
スループが電流軸の方向に大きくなり、残留磁気の大き
さを過大に評価してしまうことになり、そのためこのよ
うな測定方法を実用するのが困難であるという問題があ
る。
As described above, the hysteresis loop drawn by applying the alternating current contains the eddy current component of the iron core. Due to this eddy current component, the hysteresis loop becomes large in the direction of the current axis, and the magnitude of the residual magnetism is overestimated. Therefore, there is a problem that it is difficult to put such a measurement method to practical use. .

【0010】この発明の目的はこのような問題を解決
し、交流電源を使用してヒステリシスループをオシロス
コープに描かせるときに、渦電流損の影響を消去するこ
とによって残留磁気の測定の精度を改善した変成器鉄心
の残留磁気測定装置を提供することにある。
An object of the present invention is to solve such a problem and improve the accuracy of measurement of residual magnetism by eliminating the effect of eddy current loss when an hysteresis is drawn on an oscilloscope using an AC power supply. Another object of the present invention is to provide a residual magnetism measuring device for a transformer core.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、測定対象の変成器に交流電圧を
印加する交流電源、変成器の誘起電圧を積分する積分
器、この積分器の出力信号が縦軸偏向板に印加されるブ
ラウン管オシログラフ、変成器の励磁電流を測定する変
流器、この変流器の出力電流が並列抵抗を介して前記ブ
ラウン管オシロスコープの横軸偏向板に印加されてなる
変成器鉄心の残留磁気測定装置において、渦電流損に比
例する信号を出力する損失補償回路を設け、その出力信
号で横軸偏向板の印加電圧を補正してなるものとし、ま
た、損失補償回路が、交流電源に接続された可変抵抗と
この可変抵抗に流れる電流を測定する変流器とからな
り、この変流器の二次電流を出力信号として変成器の励
磁電流電流を測定する変流器の二次電流から差し引くこ
とによって補正するものとし、また、可変抵抗に流れる
電流を測定する変流器にタップ端子と、このタップ端子
を選択するタップ切換器とが設けられてなるものとし、
又は、損失補償回路が、交流電源の電圧を可変の分圧比
で分圧する分圧器からなり、この分圧器の出力電圧がオ
シロスコープの横軸偏向板に印加される電圧から差し引
かれてなるものとする。
In order to solve the above-mentioned problems, according to the present invention, an AC power source for applying an AC voltage to a transformer to be measured, an integrator for integrating an induced voltage of the transformer, Braun tube oscillograph in which the output signal of the transformer is applied to the vertical deflection plate, a current transformer for measuring the exciting current of the transformer, and the horizontal deflection plate of the cathode ray tube oscilloscope in which the output current of the current transformer is connected through a parallel resistor. In a residual magnetism measuring device for a transformer iron core applied to, a loss compensating circuit that outputs a signal proportional to eddy current loss is provided, and the voltage applied to the horizontal axis deflection plate is corrected by the output signal. In addition, the loss compensation circuit consists of a variable resistor connected to the AC power source and a current transformer that measures the current flowing through this variable resistor.The secondary current of this current transformer is used as the output signal for the exciting current of the transformer. To measure It shall be corrected by subtracting from the secondary current of the current transformer, and the current transformer for measuring the current flowing through the variable resistance shall be provided with a tap terminal and a tap changer for selecting this tap terminal. ,
Alternatively, it is assumed that the loss compensation circuit is composed of a voltage divider that divides the voltage of the AC power supply with a variable voltage division ratio, and the output voltage of this voltage divider is subtracted from the voltage applied to the horizontal axis deflection plate of the oscilloscope. .

【0012】[0012]

【作用】この発明の構成において、測定対象の変成器鉄
心の渦電流損に相当する信号を出力する損失補償回路を
設け、その出力信号によって励磁電流に比例する電圧が
印加される横軸偏向板に印加される電圧を補正すること
によって、オシロスコープには渦電流成分が消去された
直流ヒステリシスループに相当するヒステリシスループ
が描かれる。
In the structure of the present invention, the horizontal axis deflection plate is provided with a loss compensation circuit for outputting a signal corresponding to the eddy current loss of the transformer core to be measured, and a voltage proportional to the exciting current is applied by the output signal. By correcting the voltage applied to the oscilloscope, a hysteresis loop corresponding to the DC hysteresis loop in which the eddy current component is eliminated is drawn on the oscilloscope.

【0013】また、損失補償回路を、交流電源に接続さ
れた可変抵抗とこの可変抵抗に流れる電流を測定する変
流器とで構成し、この変流器の二次電流を出力信号とし
交流電源の電流を測定する変流器の二次電流から差し引
いて補正することによって、並列抵抗には励磁電流から
渦電流損に相当する電流成分が消去された電流が流れ
る。また、可変抵抗に流れる電流を測定する変流器に、
タップ端子とこのタップ端子を選択するタップ切換器を
設けることによって、渦電流損に相当する電流の設定を
可変抵抗の抵抗値の設定と変流器の変流器比の設定との
両方の組み合わせで行えることから、より広い範囲の条
件に対して渦電流損に相当する電流信号を得ることがで
きる。
Further, the loss compensation circuit is composed of a variable resistor connected to an AC power source and a current transformer for measuring a current flowing through the variable resistor, and the secondary current of the current transformer is used as an output signal for the AC power source. By subtracting the current from the secondary current of the current transformer for measuring the current and correcting the current, a current in which the current component corresponding to the eddy current loss is eliminated from the exciting current flows in the parallel resistance. In addition, in the current transformer that measures the current flowing through the variable resistance,
By providing a tap terminal and a tap changer that selects this tap terminal, the setting of the current corresponding to the eddy current loss is a combination of both the setting of the resistance value of the variable resistor and the setting of the current transformer ratio of the current transformer. Therefore, a current signal corresponding to the eddy current loss can be obtained for a wider range of conditions.

【0014】又は、損失補償回路を、交流電源の電圧を
可変の分圧比で分圧する分圧器とし、その出力電圧をオ
シロスコープの横軸偏向板に印加される電圧から差し引
くように構成し、分圧器の分圧比を出力電圧が渦電流損
に相当する値になるように設定することによって、前述
と同じように渦電流成分を消去した横軸偏向以下の印加
電圧を得ることができる。
Alternatively, the loss compensating circuit is a voltage divider that divides the voltage of the AC power source with a variable voltage dividing ratio, and the output voltage is subtracted from the voltage applied to the horizontal axis deflection plate of the oscilloscope. By setting the voltage division ratio of the output voltage to a value corresponding to the eddy current loss, it is possible to obtain an applied voltage below the horizontal axis deflection in which the eddy current component is eliminated in the same manner as described above.

【0015】[0015]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示す残留磁気測定装置の回路
図であり、図3と同じ回路要素に対しては共通の符号を
付けて詳しい説明を省く。この図の図3との相違点は、
交流電源2の電圧が印加される損失補償回路6を設け、
その出力電流を変流器4の出力電流から差し引くように
結線してある点である。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a circuit diagram of a residual magnetism measuring apparatus showing an embodiment of the present invention, and the same circuit elements as those in FIG. The difference between this figure and FIG. 3 is that
A loss compensation circuit 6 to which the voltage of the AC power supply 2 is applied is provided,
The point is that the output current is connected so as to be subtracted from the output current of the current transformer 4.

【0016】損失補償回路6は後述するように供試変流
器1の鉄心10の渦電流損に相当する電流に比例した電
流を出力し、これを変流器4の測定値としての出力電流
から差し引くことによって測定電流に含まれる渦電流成
分を消去する。したがって、オシロスコープ5に描かれ
るヒステリシスループには渦電流の影響のない直流ヒス
テリシスループに近いものとなる。
The loss compensation circuit 6 outputs a current proportional to the current corresponding to the eddy current loss of the iron core 10 of the current transformer 1 as will be described later, and outputs this current as the measured value of the current transformer 4. The eddy current component included in the measured current is eliminated by subtracting from the measured current. Therefore, the hysteresis loop drawn on the oscilloscope 5 is close to a DC hysteresis loop that is not affected by the eddy current.

【0017】図2は図1の損失補償回路を示す回路図で
ある。この図において、入力端子61は図1の交流電源
2の電圧が印加される端子、出力端子65は渦電流損に
相当する電流成分が出力される端子である。入力端子6
1の一端は可変抵抗62の一端が接続される、この可変
抵抗62の他端はタップ切換器63の可動接点に接続さ
れる。変流器64の一次側の1つの端子は、可変抵抗6
2が接続されない側の入力端子に接続され、もう一方の
端子は7つのタップ端子に別れて引き出されている。そ
して、これらのタップ端子はタップ切換器63で選択さ
れる。 変流器64の二次端子は損失補償器6の出力端
子65に接続されている。
FIG. 2 is a circuit diagram showing the loss compensation circuit of FIG. In this figure, an input terminal 61 is a terminal to which the voltage of the AC power supply 2 of FIG. 1 is applied, and an output terminal 65 is a terminal from which a current component corresponding to an eddy current loss is output. Input terminal 6
One end of 1 is connected to one end of a variable resistor 62, and the other end of the variable resistor 62 is connected to a movable contact of the tap changer 63. One terminal on the primary side of the current transformer 64 has a variable resistor 6
2 is connected to the input terminal on the side not connected, and the other terminal is separated into seven tap terminals and led out. Then, these tap terminals are selected by the tap changer 63. The secondary terminal of the current transformer 64 is connected to the output terminal 65 of the loss compensator 6.

【0018】入力電圧をV、可変抵抗62の抵抗値を
R、変流器64の変流比をa、出力端子の電流値をIと
すると、次式が成立する。
When the input voltage is V, the resistance value of the variable resistor 62 is R, the current ratio of the current transformer 64 is a, and the current value of the output terminal is I, the following equation is established.

【0019】[0019]

【数1】 I=aV/R ‥‥‥‥‥‥‥‥‥‥‥‥‥‥(1) 抵抗値Rと変流比aはともに可変であるから出力電流は
広い範囲の値に対応して設定することができる。供試変
流器1の印加電圧Vに対応する渦電流損はあらかじめ周
知の方法で求めておき、この値に応じた電流が出力され
るよう抵抗値Rや変流比aを変える。渦電流損をWe
これに対応する電流成分をIe とすると、これらの間に
次式のような簡単な関係式が成立しているので渦電流損
e が分かっていれば電流成分I e は容易に求めること
ができる。
[Equation 1] I = aV / R ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ (1) Since the resistance value R and the current change ratio a are both variable, the output current is
It can be set corresponding to a wide range of values. Test case
The eddy current loss corresponding to the applied voltage V of the sink 1 is measured in advance.
Obtained by a known method, and the current according to this value is output.
The resistance value R and the current change ratio a are changed so that Eddy current loss is We,
The current component corresponding to this is IeAnd then between these
Since a simple relational expression such as
WeCurrent component I eIs easy to seek
You can

【0020】[0020]

【数2】 Ie =We /V ‥‥‥‥‥‥‥‥‥‥‥‥‥(2) したがって、(1)式の電流Iが(2)式で求められた
渦電流損We に相当する電流Ie に一致するように抵抗
R及び変流比aを設定する。このような補正が行われて
オシロスコープに描かれたヒステリシスループは図4の
ヒステリシスループに類似となることが確かめられてい
る。ただ、2本の平行な線が重なり合うために残留磁気
の大きさを図から求めるのが困難なほどであるが、この
ことは図4からも容易に推測できることである。
[Equation 2] I e = W e / V ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ (2) Therefore, the current I in equation (1) is eddy current loss W e obtained in equation (2). The resistance R and the current transformation ratio a are set so as to match the current I e corresponding to It is confirmed that the hysteresis loop drawn on the oscilloscope with such correction is similar to the hysteresis loop of FIG. However, it is difficult to obtain the magnitude of the residual magnetism from the figure because the two parallel lines overlap each other, but this can be easily estimated from FIG. 4.

【0021】図2に示す損失補償回路では、可変抵抗6
2とタップ端子付の変流器64を用いた回路構成を示し
たが必ずしも変流器にタップ端子が必要な訳ではなく、
前述の(1)式で抵抗値Rを変えて所望の電流Iが得ら
れるならばタップ端子のない一定変流比を持った変流器
であっても差し支えない。また、図1、図2のように渦
電流損に相当する流を求め、これを並列抵抗41に流す
ことによって補正する方式に対して、横軸偏向板52に
印加される電圧に対応する補正電圧を交流電源2の電圧
を分圧することによって求め、これを並列抵抗41の端
子間電圧から差し引く構成を採用することもできる。い
ずれにしても、この発明の目的に反しない範囲で渦電流
損の補正する方式についてどのような方式を採用するこ
ともできる。
In the loss compensation circuit shown in FIG. 2, the variable resistor 6
2 and the circuit configuration using the current transformer 64 with the tap terminal are shown, but the tap terminal is not necessarily required in the current transformer,
If a desired current I can be obtained by changing the resistance value R in the above equation (1), a current transformer having a constant current ratio without a tap terminal may be used. Further, as shown in FIG. 1 and FIG. 2, the flow corresponding to the eddy current loss is obtained and is corrected by flowing it through the parallel resistor 41, as compared with the correction corresponding to the voltage applied to the horizontal axis deflection plate 52. It is also possible to adopt a configuration in which the voltage is obtained by dividing the voltage of the AC power supply 2 and subtracted from the voltage across the terminals of the parallel resistor 41. In any case, any method can be adopted as the method for correcting the eddy current loss within the range not deviating from the object of the present invention.

【0022】[0022]

【発明の効果】この発明は前述のように、渦電流損に相
当する電流成分を出力する損失補償回路を設け、その出
力信号によって横軸偏向板に印加される電圧を補正する
ことによって、オシロスコープには渦電流成分が消去さ
れた直流ヒステリシスループに相当する高精度のヒステ
リシスループが得られることから、このヒステリシスル
ープから残留磁気の大きさを渦電流損に関係しない正確
な値を求めることができるという効果が得られる。
As described above, the present invention provides the loss compensating circuit for outputting the current component corresponding to the eddy current loss, and corrects the voltage applied to the horizontal axis deflection plate by the output signal of the loss compensating circuit. Since a highly accurate hysteresis loop equivalent to a DC hysteresis loop in which the eddy current component has been eliminated is obtained, an accurate value that does not relate to the eddy current loss can be obtained from this hysteresis loop. The effect is obtained.

【0023】また、損失補償回路を、交流電源に接続さ
れた可変抵抗とこの可変抵抗に流れる電流を測定する変
流器とで構成し、この変流器の二次電流を出力信号とし
交流電源の電流を測定する変流器の二次電流から差し引
いて補正することによって、並列抵抗には渦電流損に相
当する電流成分が消去された電流が流れる。また、可変
抵抗に流れる電流を測定する変流器に、タップ端子とこ
のタップ端子を選択するタップ切換器を設けることによ
ってより広い範囲の条件に対して適用できるという効果
が得られる。
Further, the loss compensation circuit is composed of a variable resistor connected to an AC power source and a current transformer for measuring a current flowing through the variable resistor, and the secondary current of the current transformer is used as an output signal for the AC power source. The current in which the current component corresponding to the eddy current loss is erased flows through the parallel resistance by subtracting it from the secondary current of the current transformer that measures the current and correcting the current. Further, by providing the current transformer for measuring the current flowing through the variable resistance with the tap terminal and the tap changer for selecting the tap terminal, the effect that it can be applied to a wider range of conditions can be obtained.

【0024】又は、損失補償回路を、交流電源の電圧を
可変の分圧比で分圧する分圧器とし、その出力電圧をオ
シロスコープの横軸偏向板に印加される電圧から差し引
くように構成し、分圧器の分圧比を出力電圧が渦電流損
に相当すに値になるように設定することによって、前述
と同じ効果を得ることができる。
Alternatively, the loss compensating circuit is a voltage divider that divides the voltage of the AC power source with a variable voltage dividing ratio, and the output voltage is configured to be subtracted from the voltage applied to the horizontal axis deflection plate of the oscilloscope. The same effect as described above can be obtained by setting the voltage division ratio of 1 such that the output voltage has a value corresponding to the eddy current loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す変成器鉄心の残留磁気
測定装置の回路図
FIG. 1 is a circuit diagram of a residual magnetism measuring device for a transformer core showing an embodiment of the present invention.

【図2】図1の損失補償回路を示す回路図FIG. 2 is a circuit diagram showing the loss compensation circuit of FIG.

【図3】交流電源を用いた従来のヒステリシス特性測定
器を示す回路図
FIG. 3 is a circuit diagram showing a conventional hysteresis characteristic measuring instrument using an AC power supply.

【図4】空隙付鉄心の変流器の交流ヒステリシスループ
のグラフ
[Fig. 4] Graph of AC hysteresis loop of current transformer with air gap

【図5】図4と同じ変流器の直接測定された直流ヒステ
リシスループのグラフ
FIG. 5 is a graph of a directly measured DC hysteresis loop of the same current transformer as in FIG.

【符号の説明】[Explanation of symbols]

1 供試変流器(変成器) 10 鉄心 2 交流電源 3 積分器 4 変流器 41 並列抵抗 5 オシロスコープ 51 横軸偏向板 52 縦軸偏向板 6 損失補償回路 61 入力端子 62 可変抵抗 63 タップ切換器 64 変流器 65 出力端子 1 Test current transformer (transformer) 10 Iron core 2 AC power supply 3 Integrator 4 Current transformer 41 Parallel resistance 5 Oscilloscope 51 Horizontal axis deflection plate 52 Vertical axis deflection plate 6 Loss compensation circuit 61 Input terminal 62 Variable resistance 63 Tap switching Device 64 Current transformer 65 Output terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】測定対象の変成器に交流電圧を印加する交
流電源、変成器の誘起電圧を積分する積分器、この積分
器の出力信号が縦軸偏向板に印加されるブラウン管オシ
ログラフ、変成器の励磁電流を測定する変流器、この変
流器の出力電流が並列抵抗を介して前記ブラウン管オシ
ロスコープの横軸偏向板に印加されてなる変成器鉄心の
残留磁気測定装置において、渦電流損に比例する信号を
出力する損失補償回路を設け、その出力信号で横軸偏向
板の印加電圧を補正してなることを特徴とする変成器鉄
心の残留磁気測定装置。
1. An AC power supply for applying an AC voltage to a transformer to be measured, an integrator for integrating an induced voltage of the transformer, a cathode ray tube oscillograph in which an output signal of the integrator is applied to a vertical axis deflection plate, and a transformer. Current transformer for measuring the exciting current of the transformer, the eddy current loss in the residual magnetism measuring device of the transformer core in which the output current of the current transformer is applied to the horizontal axis deflection plate of the cathode ray tube oscilloscope through the parallel resistance. A residual magnetism measuring device for a transformer core, wherein a loss compensating circuit for outputting a signal proportional to is provided and the applied voltage of the horizontal axis deflection plate is corrected by the output signal.
【請求項2】損失補償回路が、交流電源に接続された可
変抵抗とこの可変抵抗に流れる電流を測定する変流器と
からなり、この変流器の二次電流を出力信号として変成
器の励磁電流を測定する変流器の二次電流から差し引く
ことによって補正することを特徴とする請求項1記載の
変成器鉄心の残留磁気測定装置。
2. A loss compensating circuit comprises a variable resistor connected to an AC power source and a current transformer for measuring a current flowing through the variable resistor. The secondary current of the current transformer is used as an output signal of the transformer. The residual magnetism measuring device for a transformer core according to claim 1, wherein the exciting current is corrected by subtracting it from the secondary current of the current transformer for measuring the exciting current.
【請求項3】可変抵抗に流れる電流を測定する変流器に
タップ端子と、このタップ端子を選択するタップ切換器
とが設けられてなることを特徴とする請求項2記載の変
成器鉄心の残留磁気測定装置。
3. The transformer core according to claim 2, wherein the current transformer for measuring the current flowing through the variable resistor is provided with a tap terminal and a tap changer for selecting the tap terminal. Residual magnetism measuring device.
【請求項4】損失補償回路が、交流電源の電圧を可変の
分圧比で分圧する分圧器からなり、この分圧器の出力電
圧がオシロスコープの横軸偏向板に印加される電圧から
差し引かれてなることを特徴とする請求項1記載の変成
器鉄心の残留磁気測定装置。
4. The loss compensation circuit comprises a voltage divider that divides the voltage of the AC power supply with a variable voltage division ratio, and the output voltage of this voltage divider is subtracted from the voltage applied to the horizontal deflection plate of the oscilloscope. The residual magnetism measuring device for a transformer core according to claim 1.
JP03379493A 1993-02-24 1993-02-24 Remaining magnetometer for transformer core Expired - Fee Related JP3170933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03379493A JP3170933B2 (en) 1993-02-24 1993-02-24 Remaining magnetometer for transformer core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03379493A JP3170933B2 (en) 1993-02-24 1993-02-24 Remaining magnetometer for transformer core

Publications (2)

Publication Number Publication Date
JPH06249932A true JPH06249932A (en) 1994-09-09
JP3170933B2 JP3170933B2 (en) 2001-05-28

Family

ID=12396382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03379493A Expired - Fee Related JP3170933B2 (en) 1993-02-24 1993-02-24 Remaining magnetometer for transformer core

Country Status (1)

Country Link
JP (1) JP3170933B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721939A (en) * 2012-06-26 2012-10-10 南京航空航天大学 Measuring device for hysteresis loop made of ferromagnetic material and application method of measuring device
JP2013007648A (en) * 2011-06-24 2013-01-10 Tokyo Metropolitan Univ Calculation method of magnetization curve
JP2013007649A (en) * 2011-06-24 2013-01-10 Tokyo Metropolitan Univ Calculation method of magnetization curve
CN112014779A (en) * 2020-07-08 2020-12-01 中车株洲电力机车研究所有限公司 Method for diagnosing excitation abnormality of locomotive transformer, electronic device, and storage medium
CN112068050A (en) * 2020-09-10 2020-12-11 云南电网有限责任公司电力科学研究院 Transformer residual magnetism quantitative evaluation and elimination method
CN113325345A (en) * 2021-06-02 2021-08-31 云南电网有限责任公司电力科学研究院 Device and method for testing residual magnetism of transformer core
CN115754850A (en) * 2022-11-18 2023-03-07 国网青海省电力公司营销服务中心 10kV-110kV current transformer residual magnetism performance evaluation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007648A (en) * 2011-06-24 2013-01-10 Tokyo Metropolitan Univ Calculation method of magnetization curve
JP2013007649A (en) * 2011-06-24 2013-01-10 Tokyo Metropolitan Univ Calculation method of magnetization curve
CN102721939A (en) * 2012-06-26 2012-10-10 南京航空航天大学 Measuring device for hysteresis loop made of ferromagnetic material and application method of measuring device
CN112014779A (en) * 2020-07-08 2020-12-01 中车株洲电力机车研究所有限公司 Method for diagnosing excitation abnormality of locomotive transformer, electronic device, and storage medium
CN112068050A (en) * 2020-09-10 2020-12-11 云南电网有限责任公司电力科学研究院 Transformer residual magnetism quantitative evaluation and elimination method
CN113325345A (en) * 2021-06-02 2021-08-31 云南电网有限责任公司电力科学研究院 Device and method for testing residual magnetism of transformer core
CN113325345B (en) * 2021-06-02 2024-04-09 云南电网有限责任公司电力科学研究院 Device and method for testing residual magnetism of transformer core
CN115754850A (en) * 2022-11-18 2023-03-07 国网青海省电力公司营销服务中心 10kV-110kV current transformer residual magnetism performance evaluation method

Also Published As

Publication number Publication date
JP3170933B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
Neves et al. On modelling iron core nonlinearities
US20130229171A1 (en) Compact, two stage, zero flux electronically compensated current or voltage transducer employing dual magnetic cores having substantially dissimilar magnetic characteristics
US1952072A (en) Electrical instrument
Yang et al. A new compact fluxgate current sensor for AC and DC application
Kusters The precise measurement of current ratios
GB424810A (en) Method of testing current transformers
JPH06249932A (en) Measuring instrument for residual magnet of transformer core
Arnold Current-transformer testing
US9053852B2 (en) Error compensation for current transformer sensors
US1550906A (en) Instrument transformer
KR102039268B1 (en) An Alternating and Direct Current Detection Circuit
KR20050063872A (en) An electronically compensated current transformer for instrumentation
Fletcher et al. A cryogenic current comparator resistance ratio bridge for the range 10 k/spl Omega/to 1 G/spl Omega
Horak et al. Current transformer errors and transformer inrush as measured by magnetic, optical and other unconventional CTs
KR102039271B1 (en) A Earth Leakage Current Detection Circuit
KR102039272B1 (en) A DC Power Current Detection Circuit
KR102039269B1 (en) A Residual Current Detection Circuit
JPS6040971A (en) B-h characteristics measuring circuit of transformer iron core
Kaiser et al. Excitation-Dependent Temperature Behavior of the Quasi-static Hysteresis Loss Energy Density of N87 Ferrite Material
KR960010311Y1 (en) Current tester
JPH01105188A (en) Method and device for measuring alternating current magnetic characteristic
HU190346B (en) Electric current measuring circuit arrangement
Slomovitz Electronic compensation of inductive voltage dividers and standard voltage transformers
Rosa et al. The Determination of the Ratio of Transformation and of the Phase Relations in Transformers
Kusters et al. A phantom burden for current transformer calibration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees