JPH08236326A - Metal powder for magnetic recording and production thereof - Google Patents

Metal powder for magnetic recording and production thereof

Info

Publication number
JPH08236326A
JPH08236326A JP6339839A JP33983994A JPH08236326A JP H08236326 A JPH08236326 A JP H08236326A JP 6339839 A JP6339839 A JP 6339839A JP 33983994 A JP33983994 A JP 33983994A JP H08236326 A JPH08236326 A JP H08236326A
Authority
JP
Japan
Prior art keywords
metal powder
magnetic recording
cobalt
weight
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6339839A
Other languages
Japanese (ja)
Inventor
Koichiro Magara
光一郎 真柄
Takamasa Tsuchiya
高正 土谷
Shinji Nakahara
慎治 中原
Narifumi Kamisaka
成文 神坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP6339839A priority Critical patent/JPH08236326A/en
Publication of JPH08236326A publication Critical patent/JPH08236326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE: To provide a metal powder having superior magnetic characteristics for magnetic recording and producing method thereof. CONSTITUTION: A metal powder for magnetic recording contains Co, rare earth element, Al and Fe. The Co content is 10-50wt.%, rare earth element content is 5-20wt.%, Al content is 0-0.1wt.%, and Fe content is 29.9-80wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気テープ、磁気ディ
スク等の塗布型磁気記録媒体の高出力化に好適である磁
気記録用金属粉及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal powder for magnetic recording suitable for increasing the output of a coating type magnetic recording medium such as a magnetic tape and a magnetic disk, and a method for producing the same.

【0002】[0002]

【従来の技術】磁気記録媒体としては、従来から、γ−
酸化第二鉄、二酸化クロム、コバルトドープγ−酸化第
二鉄、コバルト被着γ−酸化第二鉄、メタル鉄粉、フェ
ライト粉等が、その目的用途に応じて適宜選択使用され
ている。特にメタル鉄粉は、高密度記録を要求される場
合に好適であり、汎用されている。
2. Description of the Related Art As a magnetic recording medium, γ-
Ferric oxide, chromium dioxide, cobalt-doped γ-ferric oxide, cobalt-coated γ-ferric oxide, metal iron powder, ferrite powder and the like are appropriately selected and used according to the intended use. In particular, metal iron powder is suitable when high density recording is required and is widely used.

【0003】近年、磁気記録の高密度化に伴い、記録媒
体の材料である磁気記録粉には微粒子化が求められてい
る。しかし、磁気記録粉は、微粒化するにつれて磁気エ
ネルギーが低下する傾向にある。このため、粒子形状の
改良、粒径分布の改良、製造時の焼成、還元の温度、雰
囲気等を精密に制御することにより要求に応えてきた
が、これも限界に達している。
In recent years, with the increasing density of magnetic recording, it has been required to make the magnetic recording powder, which is a material of the recording medium, into fine particles. However, the magnetic energy of the magnetic recording powder tends to decrease as it becomes finer. For this reason, the demand has been met by improving the particle shape, improving the particle size distribution, firing at the time of production, controlling the temperature of reduction, the atmosphere, etc., but this has also reached the limit.

【0004】そこで、微粒子化を進めるために、金属粉
内部の磁気エネルギーを増加させる技術が検討されてい
る。合金の磁気特性は、スレーターポーリング曲線とし
て知られており、従来、金属換算でコバルトを30原子
%(29重量%)、鉄を70原子%(71重量%)含有
する場合に、遷移金属中最大の磁気モーメントを有する
ことが知られている。
Therefore, a technique for increasing the magnetic energy inside the metal powder has been studied in order to promote the formation of fine particles. The magnetic properties of alloys are known as the Slater-Pauling curve. Conventionally, when the content of cobalt is 30 atomic% (29% by weight) and iron is 70 atomic% (71% by weight), the maximum transition metal It is known to have a magnetic moment of

【0005】このコバルト−鉄合金系を、微細粒子から
なる磁気記録用金属粉に応用する技術が検討されている
が、大量のコバルトが充分に粒子内部に取り込まれず粉
の合金化が不充分となったり、高温加熱、還元時に形状
の劣化が大きくなり、針状性、粒子の独立性が保たれな
い等の欠点があり、所望の抗磁力、飽和磁化等が得られ
ない等の問題があった。
A technique for applying this cobalt-iron alloy system to a metal powder for magnetic recording composed of fine particles has been studied, but a large amount of cobalt is not sufficiently incorporated into the particles, resulting in insufficient alloying of the powder. However, there are drawbacks such as deterioration of shape when heated at high temperature and reduction, acicularity, independence of particles cannot be maintained, and desired coercive force and saturation magnetization cannot be obtained. It was

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記に鑑
み、優れた磁気特性を有する磁気記録用金属粉及びその
製造方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a magnetic recording metal powder having excellent magnetic properties and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、磁気記
録用金属粉を、金属として、コバルト、希土類元素、ア
ルミニウム、及び、鉄から構成し、上記コバルトの含有
量を、10〜50重量%とし、上記希土類元素の含有量
を、5〜20重量%とし、上記アルミニウムの含有量
を、0〜0.1重量%とし、上記鉄の含有量を、29.
9〜80重量%とするところにある。以下に本発明を詳
述する。
SUMMARY OF THE INVENTION The gist of the present invention is that a magnetic recording metal powder is composed of cobalt, a rare earth element, aluminum and iron as a metal, and the content of the cobalt is 10 to 50% by weight. %, The content of the rare earth element is 5 to 20% by weight, the content of the aluminum is 0 to 0.1% by weight, and the content of the iron is 29.
It is about 9 to 80% by weight. The present invention is described in detail below.

【0008】本発明の磁気記録用金属粉においては、コ
バルトの含有量は、10〜50重量%である。10重量
%未満であると、上記磁気記録用金属粉内部の磁気エネ
ルギーを高める効果が小さく、50重量%を超えると、
上記鉄と上記コバルトとが均一に存在できず、抗磁力、
飽和磁化等が低下するので、上記範囲に限定される。
In the magnetic recording metal powder of the present invention, the content of cobalt is 10 to 50% by weight. When it is less than 10% by weight, the effect of increasing the magnetic energy inside the magnetic powder for magnetic recording is small, and when it exceeds 50% by weight,
The iron and the cobalt cannot be present uniformly, and the coercive force,
Since the saturation magnetization and the like decrease, the range is limited.

【0009】上記希土類元素の含有量は、5〜20重量
%である。5重量%未満であると、形状保持効果が小さ
く、20重量%を超えると、上記鉄と上記希土類元素と
が均一に存在できず、また、不純物として飽和磁化を低
下させるので、上記範囲に限定される。上記希土類元素
としては特に限定されず、例えば、ランタン、ネオジ
ム、セリウム、プラセオジム等が挙げられる。
The content of the rare earth element is 5 to 20% by weight. If it is less than 5% by weight, the shape-retaining effect is small, and if it exceeds 20% by weight, the iron and the rare earth element cannot exist uniformly, and the saturation magnetization is lowered as an impurity. To be done. The rare earth element is not particularly limited, and examples thereof include lanthanum, neodymium, cerium, praseodymium, and the like.

【0010】上記アルミニウムの含有量は、0〜0.1
重量%である。0.1重量%を超えると、難燃性のコバ
ルト−アルミニウム−鉄スピネルが生成して上記コバル
トと上記鉄とが合金化されるのを阻害し、製造時の還元
過程の後も粒子内に残存して上記磁気エネルギーの向上
を妨げるので、上記範囲に限定される。
The aluminum content is 0 to 0.1.
% By weight. When it exceeds 0.1% by weight, flame-retardant cobalt-aluminum-iron spinel is generated to prevent alloying of the above cobalt and iron, and it remains in the particles even after the reduction process during production. Since it remains and hinders the improvement of the magnetic energy, it is limited to the above range.

【0011】本発明の磁気記録用金属粉は、粒子サイズ
が、長径0.03〜0.13μm、短径0.003〜
0.05μmであることが好ましい。上記範囲を逸脱す
ると、塗膜の薄膜化が難しくなる。上記磁気記録用金属
粉は、抗磁力が、1900Oe以上であることが好まし
い。抗磁力が1900Oe未満であると、自己減磁が大
きく、出力の低い媒体しか得ることができず、本発明の
目的を達成できない。上記磁気記録用金属粉は、温度6
0℃、相対湿度90%で7日間静置した後の飽和磁化の
変化率が、15%以内であることが好ましい。15%を
超えると、媒体自体も経時安定性の悪いものとなり、保
存により残留磁化が減少し記録信号の出力が低下及び劣
化を引き起こすこととなる。上記磁気記録用金属粉に
は、必要に応じて、他の金属を0〜1重量%含有させて
もよい。上記他の金属としては、特に限定されず、例え
ば、けい素、チタン、カルシウム等が挙げられる。
The metal powder for magnetic recording of the present invention has a particle size of 0.03 to 0.13 μm in major axis and 0.003 to minor axis.
It is preferably 0.05 μm. If it deviates from the above range, it becomes difficult to reduce the thickness of the coating film. The magnetic powder for magnetic recording preferably has a coercive force of 1900 Oe or more. When the coercive force is less than 1900 Oe, self-demagnetization is large and only a medium with low output can be obtained, and the object of the present invention cannot be achieved. The magnetic recording metal powder has a temperature of 6
The rate of change in saturation magnetization after standing for 7 days at 0 ° C. and 90% relative humidity is preferably within 15%. If it exceeds 15%, the medium itself also has poor stability over time, and the residual magnetization is reduced by storage, and the output of the recording signal is lowered and deteriorated. If necessary, the metal powder for magnetic recording may contain another metal in an amount of 0 to 1% by weight. The other metal is not particularly limited, and examples thereof include silicon, titanium, calcium and the like.

【0012】本発明の磁気記録用金属粉は、ゲーサイト
を、250〜600℃で加熱脱水してα−酸化第二鉄と
し、次いで、上記α−酸化第二鉄を、200〜500℃
で還元することよりなる磁気記録用金属粉の製造方法に
おいて、上記ゲーサイトが、コバルト及び希土類元素を
共沈させて得られたものであり、粒子サイズが、長径
0.03〜0.15μmであり、金属換算で0〜0.1
重量%のアルミニウムを含有するものである磁気記録用
金属粉の製造方法により得られる。
In the magnetic recording metal powder of the present invention, goethite is heated and dehydrated at 250 to 600 ° C. to obtain α-ferric oxide, and then the α-ferric oxide is heated at 200 to 500 ° C.
In the method for producing a metal powder for magnetic recording, the goethite is obtained by coprecipitating cobalt and a rare earth element, and the particle size is 0.03 to 0.15 μm in the major axis. Yes, 0 to 0.1 in terms of metal
It is obtained by the method for producing a metal powder for magnetic recording containing aluminum by weight.

【0013】上記ゲーサイトは、コバルト及び希土類元
素を共沈させて得られる。上記ゲーサイトを得る方法と
しては特に限定されず、例えば、第一鉄塩を含有する溶
液と、コバルト及び希土類元素を含有する溶液とからな
る溶液に過剰のアルカリを加えて中和し、その後、空気
を用いて酸化する方法等が挙げられる。
The above-mentioned goethite is obtained by coprecipitating cobalt and rare earth elements. The method for obtaining the above-mentioned goethite is not particularly limited, for example, a solution containing a ferrous salt and a solution containing a solution containing cobalt and a rare earth element are neutralized by adding an excess alkali, and then, Examples thereof include a method of oxidizing using air.

【0014】上記第一鉄塩としては、例えば、塩化第一
鉄、硫酸第一鉄、硝酸第一鉄等を挙げることができる。
上記アルカリとしては、アルカリ金属の水酸化物、アル
カリ金属炭酸塩、アンモニア等を使用することができる
が、より好ましくは、炭酸ナトリウムである。炭酸ナト
リウムを用いると、微細で均一な粒子が得られやすい。
Examples of the ferrous salt include ferrous chloride, ferrous sulfate, ferrous nitrate and the like.
As the alkali, hydroxide of alkali metal, carbonate of alkali metal, ammonia or the like can be used, but sodium carbonate is more preferable. When sodium carbonate is used, fine and uniform particles are easily obtained.

【0015】上記コバルト及び希土類元素を含有する溶
液は、上記第一鉄塩を含有する溶液に過剰のアルカリを
加えて中和し、その後、空気酸化をする過程において加
えてもよい。上記ゲーサイト調製の初期に、多量の上記
コバルト及び希土類元素を含有する溶液を加えると、ゲ
ーサイトの核制御に支障をきたし、粒子分布、針状性等
が損なわれる。上記ゲーサイト調製の後期に、上記コバ
ルト及び希土類元素を含有する溶液を加えると、粒子内
部へのコバルトの拡散が不充分となり、所望するコバル
ト−鉄合金が得られず、必要な磁気特性が発現しない。
The solution containing cobalt and the rare earth element may be added in the process of neutralizing by adding an excess alkali to the solution containing the ferrous salt and then performing air oxidation. If a solution containing a large amount of the above cobalt and rare earth element is added to the initial stage of the preparation of goethite, the nuclear control of goethite will be hindered and the particle distribution, acicularity and the like will be impaired. When the solution containing the cobalt and the rare earth element is added in the latter stage of the above-mentioned goethite preparation, the diffusion of cobalt into the particles becomes insufficient, and the desired cobalt-iron alloy cannot be obtained, and the necessary magnetic properties are expressed. do not do.

【0016】上記ゲーサイトは、粒子サイズが、長径
0.03〜0.15μmである。0.03μm未満であ
ると、粒子の針状性の保持が難しく、また得られる磁気
記録用金属粉の体積に対する表面の寄与が大きくなるの
で、表面の超常磁性により磁気特性が低下し、0.15
μmを超えると、所望の微細な粒子が得られず、高密度
磁気記録用の金属粉としての用途には不適となるので、
上記範囲に限定される。
The goethite has a particle size of 0.03 to 0.15 μm in major axis. If it is less than 0.03 μm, it is difficult to maintain the acicularity of the particles, and the contribution of the surface to the volume of the obtained metal powder for magnetic recording becomes large. 15
If it exceeds μm, desired fine particles cannot be obtained, which is unsuitable for use as a metal powder for high-density magnetic recording.
It is limited to the above range.

【0017】上記ゲーサイトは、金属換算で0〜0.1
重量%のアルミニウムを含有する。上記アルミニウム
は、高温での加熱脱水、還元時の形状保持、粒子間融着
防止に大きな効果を示すが、コバルトが多く含まれる
と、上記アルミニウムは、難還元性のコバルト−アルミ
ニウム−鉄スピネルを生成させるので、上記範囲に限定
される。
The above-mentioned goethite is 0 to 0.1 in terms of metal.
It contains aluminum by weight. The aluminum has a great effect on heat dehydration at high temperature, shape retention during reduction, and prevention of interparticle fusion, but when a large amount of cobalt is contained, the aluminum contains a non-reducible cobalt-aluminum-iron spinel. Since it is generated, it is limited to the above range.

【0018】上記ゲーサイトは、250〜600℃で加
熱脱水される。250℃未満であると、上記ゲーサイト
を脱水するために長時間が必要となるので、工業的でな
く、脱水物の粒子内部に多数の空孔が残存するので、次
の還元過程において著しく粒子がメルトし、形状が崩れ
る。また、上記ゲーサイトは、コバルト含有量が大きい
ので、高温での加熱脱水時にX線回折により確認される
コバルト−フェライトと思われるスピネルの生成によ
り、従来のコバルト含有量が少ないゲーサイトに比べて
高温でのメルトが著しく、600℃以上での加熱脱水に
は耐えられないので、上記範囲に限定される。
The goethite is heated and dehydrated at 250 to 600 ° C. If the temperature is lower than 250 ° C., it takes a long time to dehydrate the above-mentioned goethite, which is not industrial and many pores remain inside the particles of the dehydrated product. Melts and the shape collapses. Further, since the above-mentioned goethite has a high cobalt content, spinel formation which seems to be cobalt-ferrite confirmed by X-ray diffraction at the time of heat dehydration at a high temperature causes spinel formation compared to conventional goethite having a low cobalt content. Since the melt at high temperature is remarkable and it cannot withstand the heat dehydration at 600 ° C. or higher, it is limited to the above range.

【0019】上記ゲーサイトは、200〜500℃で還
元される。200℃未満であると、還元に長時間が必要
となるので、工業的でなく、500℃を超えると、粒子
間融着による分散性の劣化等が起こるので、上記範囲に
限定される。上記ゲーサイトは、コバルト含有量が10
〜50重量%と大きく、比較的低温でも充分に還元が進
行するので、還元温度は、400℃未満がより好まし
い。
The above goethite is reduced at 200 to 500 ° C. If the temperature is lower than 200 ° C., it takes a long time for reduction, which is not industrial, and if the temperature exceeds 500 ° C., deterioration of dispersibility due to fusion between particles and the like occur. The above-mentioned goethite has a cobalt content of 10
The reduction temperature is more preferably less than 400 ° C., since the reduction is sufficiently large at about 50% by weight and the reduction proceeds sufficiently even at a relatively low temperature.

【0020】上記ゲーサイトから本発明の磁気記録用金
属粉を得る方法としては、例えば、従来から用いられて
いる方法等が挙げられ、例えば、上記ゲーサイトを、3
00〜600℃で0.5〜10時間加熱脱水し、200
〜500℃、水素気流中で還元した後、200℃未満で
徐々に空気に接触させて本発明の磁気記録用金属粉が得
られる。
As a method for obtaining the metal powder for magnetic recording of the present invention from the above-mentioned goethite, there can be mentioned, for example, a conventionally used method.
Heat dehydration at 00-600 ° C for 0.5-10 hours, 200
After reduction in a hydrogen stream at ˜500 ° C., the metal powder for magnetic recording of the present invention is obtained by gradually contacting with air at less than 200 ° C.

【0021】本発明の製造方法では、上記還元が終わり
コバルト−鉄合金化が終了した後に、これを溶媒中に分
散し、アルミニウムを表面にコートしてもよい。この製
造方法では、コバルト−アルミニウム−鉄スピネルが生
成せず、磁気特性の低下は起こらない。また、この場合
には、本発明の磁気記録用金属粉と樹脂との馴染みがよ
くなる等の効果が期待できる。
In the production method of the present invention, after the reduction is completed and the cobalt-iron alloying is completed, this may be dispersed in a solvent to coat the surface with aluminum. In this manufacturing method, cobalt-aluminum-iron spinel is not generated and the magnetic properties are not deteriorated. Further, in this case, the effect of improving familiarity between the magnetic recording metal powder of the present invention and the resin can be expected.

【0022】[0022]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0023】実施例1 炭酸ソーダ190gに純水約1.2Lを加え溶解し、窒
素ガスを吹き込んで系内の酸素を追い出した後、Fe2+
濃度80g/Lの硫酸第一鉄溶液500mlを加え、攪
拌混合した。この懸濁液を攪拌下にて300ml/mi
nの空気を吹き込んで酸化しつつ、30分後10%ミッ
シュメタル(セリウム約50%、ランタン約30%、ネ
オジム約15%、プラセオジム約4%、他の合金)塩酸
溶液44g、塩化コバルト溶液(塩化第一コバルト六水
塩として50%)80gを添加し、計4時間酸化反応
後、ろ過し、残渣を水洗、箱型乾燥器で120℃、1晩
乾燥し、含水酸化鉄の乾燥ケーキを得た。
Example 1 About 1.2 L of pure water was added to 190 g of sodium carbonate to dissolve it, and nitrogen gas was blown thereinto to expel oxygen in the system, and then Fe 2+
500 ml of a ferrous sulfate solution having a concentration of 80 g / L was added and mixed with stirring. This suspension is stirred at 300 ml / mi
After 30 minutes, 10% misch metal (cerium about 50%, lanthanum about 30%, neodymium about 15%, praseodymium about 4%, other alloys) hydrochloric acid solution 44 g, cobalt chloride solution ( 80 g of 50% cobalt hexachloride as a hexahydrate was added, and the mixture was subjected to an oxidation reaction for a total of 4 hours and then filtered. Obtained.

【0024】さらに、このケーキを、空気中550℃に
て2時間熱処理し、次いで水素気流中で、400℃にて
還元後、常温まで冷却した後、窒素ガス中で空気を徐々
に導入し安定化処理して金属磁性粉を得た。該金属粉を
乳鉢にて軽く粉砕後、VSM磁力計を用いて、掃引磁場
10kOeにて磁気特性を、またX線回折を、銅−K
α、40kV、30mAにて測定した。表1に磁気特性
を示した。表1中、「飽和磁化変化率」は、温度60
℃、相対湿度90%で7日間静置した後の変化率を表
す。
Further, this cake was heat-treated in air at 550 ° C. for 2 hours, then reduced in a hydrogen stream at 400 ° C., cooled to room temperature, and then gradually introduced air in nitrogen gas to stabilize. Chemical treatment to obtain a metal magnetic powder. After lightly pulverizing the metal powder in a mortar, the VSM magnetometer was used to measure the magnetic characteristics under a sweeping magnetic field of 10 kOe and X-ray diffraction for copper-K.
It was measured at α, 40 kV and 30 mA. Table 1 shows the magnetic characteristics. In Table 1, "saturation magnetization change rate" is the temperature 60
The change rate after standing still for 7 days at 90 ° C. and 90% relative humidity is shown.

【0025】粒子形状、分布は、透過型電子顕微鏡にて
80kVで撮影した。図1に加熱脱水品のX線回折チャ
ートを示した。図2に金属粉のX線回折チャートを示し
た。図3に金属粉の電子顕微鏡写真を示した。
The particle shape and distribution were photographed with a transmission electron microscope at 80 kV. FIG. 1 shows an X-ray diffraction chart of the heat dehydrated product. FIG. 2 shows an X-ray diffraction chart of the metal powder. An electron micrograph of the metal powder is shown in FIG.

【0026】実施例2 空気中の熱処理条件を、600℃としたこと以外は、実
施例1と同様にして行った。 実施例3 ミッシュメタル溶液を加える代わりに、塩化ランタン七
水塩(試薬)9.6gを純水約100mlに溶解した液
全量を加えたこと以外は、実施例1と同様にして行っ
た。 実施例4 ミッシュメタル溶液を加える代わりに、塩化ネオジム六
水塩(試薬)8.9gを純水約100mlに溶解した液
全量を加えたこと以外は、実施例1と同様にして行っ
た。
Example 2 The procedure of Example 1 was repeated, except that the heat treatment condition in air was 600 ° C. Example 3 The procedure of Example 1 was repeated except that the total amount of a solution prepared by dissolving 9.6 g of lanthanum chloride heptahydrate (reagent) in about 100 ml of pure water was added instead of adding the misch metal solution. Example 4 Example 1 was repeated except that the total amount of a solution prepared by dissolving 8.9 g of neodymium chloride hexahydrate (reagent) in about 100 ml of pure water was added instead of adding the misch metal solution.

【0027】比較例1 ミッシュメタル溶液を加えなかったこと以外は、実施例
1と同様にして行った。図4に得られた金属粉の電子顕
微鏡写真を示した。写真で判るようにメルトが激しく、
ほぼ球状の粒子となった。
Comparative Example 1 Example 1 was repeated except that the misch metal solution was not added. An electron micrograph of the obtained metal powder is shown in FIG. As you can see in the picture, the melt is intense,
The particles became almost spherical.

【0028】比較例2 ミッシュメタル溶液を加えずに、代わりに、硫酸アルミ
ニウム(硫酸アルミニウム14〜18水塩、試薬、アル
ミニウム含有量9.2重量%)47.8gを約100m
lの水に溶解したものを加えたこと以外は、実施例2と
同様にして行った。図5に加熱脱水品のX線回折チャー
トを示した。図6に金属粉のX線回折チャートを示し
た。加熱脱水品のチャートにおいて、α−酸化第二鉄の
ピーク以外にスピネルのピークが認められ、このピーク
は、金属粉のチャートでも認められ、金属粉中にもスピ
ネルが残存していることがわかる。ピークの位置と考え
合わせると、加熱脱水(熱処理)時に難還元性のコバル
ト−アルミニウム−鉄スピネルが生成しており、これ
が、コバルト−鉄合金化を阻害していると考えらた。そ
の結果、抗磁力、飽和磁化の低いサンプルとなった。
COMPARATIVE EXAMPLE 2 Without adding the misch metal solution, 47.8 g of aluminum sulfate (aluminum sulfate 14-18 hydrate, reagent, aluminum content 9.2% by weight) was replaced by about 100 m.
It was carried out in the same manner as in Example 2 except that one dissolved in 1 l of water was added. The X-ray diffraction chart of the heat dehydration product is shown in FIG. FIG. 6 shows the X-ray diffraction chart of the metal powder. In the chart of the heat dehydration product, a spinel peak was observed in addition to the α-ferric oxide peak, and this peak was also observed in the chart of the metal powder, indicating that spinel remained in the metal powder. . Considering the position of the peak, it was considered that cobalt-aluminum-iron spinel, which is difficult to reduce, was generated during heat dehydration (heat treatment), and this inhibited cobalt-iron alloying. As a result, a sample with low coercive force and saturation magnetization was obtained.

【0029】比較例3 塩化コバルトの溶液の添加量及びミッシュメタル溶液の
量を減らし、各々12g、28gとし、さらに硫酸アル
ミニウム(硫酸アルミニウム14〜18水塩、試薬、ア
ルミニウム含有量9.2重量%)17.4gを約100
mlの水に溶解したものを加えたことと、加熱脱水を6
50℃で行ったこと以外は、実施例2と同様にして行っ
た。比較例3の磁性粉は、従来のタイプ(コバルト量4
%)のもので、実施例と比較することで、本発明の効果
が理解される。即ち実施例の磁性粉は、高磁気エネルギ
ー(高い抗磁力、高い飽和磁化)を持ち、かつ、酸化安
定性に優れていた。
Comparative Example 3 The amount of cobalt chloride solution added and the amount of misch metal solution were reduced to 12 g and 28 g, respectively, and aluminum sulfate (aluminum sulfate 14-18 hydrate, reagent, aluminum content 9.2% by weight) was added. ) 17.4g about 100
Add the one dissolved in ml of water and heat dehydration to 6
The same procedure as in Example 2 was carried out except that the procedure was performed at 50 ° C. The magnetic powder of Comparative Example 3 is of the conventional type (cobalt content 4
%), And the effect of the present invention can be understood by comparing with the examples. That is, the magnetic powders of Examples had high magnetic energy (high coercive force, high saturation magnetization) and were excellent in oxidative stability.

【0030】比較例4 塩化コバルト溶液の量を増し、実施例と同じ80gとし
たことと、加熱脱水を600℃で行ったこと以外は、比
較例3と同様にして行った。本磁性粉は、従来の方法
で、単にコバルトの量だけを増した時のサンプル例であ
る。コバルトを増したことにより、磁気エネルギーの増
加がほとんど見られず、形状がくずれたために、むしろ
抗磁力は低下した。
Comparative Example 4 The procedure of Comparative Example 3 was repeated, except that the amount of cobalt chloride solution was increased to 80 g, which was the same as in Example, and that heat dehydration was performed at 600 ° C. This magnetic powder is a sample example when only the amount of cobalt is simply increased by the conventional method. With the increase of cobalt, almost no increase in magnetic energy was observed, and the shape collapsed, so that the coercive force decreased.

【0031】比較例5 塩化コバルト溶液を加えず、加熱脱水(熱処理)を55
0℃で行ったこと以外は、比較例2と同様にして行っ
た。図7に加熱脱水品のX線回折チャートを示した。図
8に金属粉のX線回折チャートを示した。コバルトの多
い系とは異なり(比較、図1、図2参照)加熱脱水品中
には、スピネルのピークは認められず、還元した後の金
属粉でスピネルピークが認められる。これは、コバルト
がなければ、加熱脱水によってアルミニウムはα−酸化
第二鉄の同結晶型のアルミナとなって固溶しており、還
元時に生じた2価の鉄イオンによって初めてFeAl2
4 のアルミスピネルを生じたものであって、明らかに
コバルトのある系とは異なる。
Comparative Example 5 Heat dehydration (heat treatment) was performed at 55 without adding a cobalt chloride solution.
The same procedure as in Comparative Example 2 was performed except that the procedure was performed at 0 ° C. FIG. 7 shows an X-ray diffraction chart of the heat dehydrated product. FIG. 8 shows an X-ray diffraction chart of the metal powder. Unlike the system containing a large amount of cobalt (comparison, see FIGS. 1 and 2), spinel peaks are not observed in the heat dehydrated product, but spinel peaks are observed in the metal powder after reduction. This is because there is no cobalt, aluminum by heat dehydration is a solid solution is the same crystal form of alumina α- ferric oxide, the first time the bivalent iron ions produced during reduction FeAl 2
It gave rise to an aluminum spinel of O 4 , which is clearly different from the system with cobalt.

【0032】比較例6 塩化コバルト溶液を加えなかったこと以外は、実施例1
と同様にして行った。図9に金属粉の透過型電動写真を
示した。比較例1ほどではないが、粒子のメルトが激し
く、著しく針状比が低下しているのがわかる。実施例と
合わせて考えると、コバルトの存在するときに希土類の
添加効果はより発揮され、コバルトのリッチな系で特に
有用といえる。
Comparative Example 6 Example 1 except that no cobalt chloride solution was added.
I went in the same way. FIG. 9 shows a transmission type electric photograph of metal powder. Although not as high as in Comparative Example 1, it can be seen that the melt of the particles is severe and the acicular ratio is remarkably lowered. Considering together with the examples, the effect of adding the rare earth is more exerted when cobalt is present, and it can be said that it is particularly useful in a system rich in cobalt.

【0033】以上のように、粒子内にコバルトを多く導
入するにあたっては、アルミニウムを除くことにより、
加熱脱水時の難還元性コバルト−アルミニウム−鉄スピ
ネルの生成を防止し、引き続いての還元におけるコバル
ト−鉄合金化を充分に進行させることが可能になった。
As described above, when a large amount of cobalt is introduced into the particles, by removing aluminum,
It has become possible to prevent the formation of a difficult-to-reduce cobalt-aluminum-iron spinel at the time of heat dehydration and to sufficiently advance the cobalt-iron alloying in the subsequent reduction.

【0034】また、粒子内にコバルトと共に希土類をド
ープさせることで、加熱脱水還元時の粒子形状の劣化を
抑制できた。かかる手法により、従来にない高磁気エネ
ルギーを持つ金属粉を得ることができた。
Further, by doping the rare earth element together with cobalt into the particles, it was possible to suppress the deterioration of the particle shape during the heat dehydration reduction. By such a method, it was possible to obtain metal powder having a high magnetic energy which has never been obtained.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明の磁気記録用金属粉及びその製造
方法は上述の構成よりなるので、従来の磁気記録用金属
粉で見られた粒子の微粒子化に伴う磁気特性の低下は認
められず、磁気テープ、磁気ディスク等の塗布型磁気記
録媒体の高出力化に好適に利用できる。
Since the metal powder for magnetic recording and the method for producing the same according to the present invention have the above-mentioned structure, no deterioration in magnetic properties due to the finer particles found in the conventional metal powder for magnetic recording is observed. It can be suitably used for increasing the output of coating type magnetic recording media such as magnetic tapes and magnetic disks.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の加熱脱水品のX線回折チャート。FIG. 1 is an X-ray diffraction chart of the heat dehydrated product of Example 1.

【図2】実施例1の金属粉のX線回折チャート。FIG. 2 is an X-ray diffraction chart of the metal powder of Example 1.

【図3】実施例1の金属粉の粒子形状、粒子分布を示す
電子顕微鏡写真。
FIG. 3 is an electron micrograph showing the particle shape and particle distribution of the metal powder of Example 1.

【図4】比較例1の金属粉の粒子形状、粒子分布を示す
電子顕微鏡写真。
FIG. 4 is an electron micrograph showing the particle shape and particle distribution of the metal powder of Comparative Example 1.

【図5】比較例2の加熱脱水品のX線回折チャート。FIG. 5 is an X-ray diffraction chart of the heat dehydrated product of Comparative Example 2.

【図6】比較例2の金属粉のX線回折チャート。FIG. 6 is an X-ray diffraction chart of the metal powder of Comparative Example 2.

【図7】比較例5の加熱脱水品のX線回折チャート。FIG. 7 is an X-ray diffraction chart of the heat dehydrated product of Comparative Example 5.

【図8】比較例5の金属粉のX線回折チャート。FIG. 8 is an X-ray diffraction chart of the metal powder of Comparative Example 5.

【図9】比較例6の金属粉の粒子形状、粒子分布を示す
電子顕微鏡写真。
FIG. 9 is an electron micrograph showing the particle shape and particle distribution of the metal powder of Comparative Example 6.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/06 H01F 1/06 N Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area H01F 1/06 H01F 1/06 N

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属として、コバルト、希土類元素、ア
ルミニウム、及び、鉄を含有してなる磁気記録用金属粉
であって、前記コバルトの含有量が、10〜50重量%
であり、前記希土類元素の含有量が、5〜20重量%で
あり、前記アルミニウムの含有量が、0〜0.1重量%
であり、前記鉄の含有量が、29.9〜80重量%であ
ることを特徴とする磁気記録用金属粉。
1. A metal powder for magnetic recording comprising cobalt, a rare earth element, aluminum and iron as a metal, wherein the content of cobalt is 10 to 50% by weight.
And the content of the rare earth element is 5 to 20% by weight, and the content of the aluminum is 0 to 0.1% by weight.
And the iron content is 29.9 to 80% by weight, the magnetic recording metal powder.
【請求項2】 粒子サイズが、長径0.03〜0.13
μm、短径0.003〜0.05μmであり、抗磁力
が、1900Oe以上である請求項1記載の磁気記録用
金属粉。
2. The particle size has a major axis of 0.03 to 0.13.
The metal powder for magnetic recording according to claim 1, which has a short diameter of 0.003 to 0.05 μm and a coercive force of 1900 Oe or more.
【請求項3】 温度60℃、相対湿度90%で7日間静
置した後の飽和磁化の変化率が、15%以内である請求
項2記載の磁気記録用金属粉。
3. The metal powder for magnetic recording according to claim 2, wherein the rate of change in saturation magnetization after standing for 7 days at a temperature of 60 ° C. and a relative humidity of 90% is within 15%.
【請求項4】 請求項1、2又は3記載の磁気記録用金
属粉を製造するにあたって、ゲーサイトを、250〜6
00℃で加熱脱水してα−酸化第二鉄とし、次いで、前
記α−酸化第二鉄を、200〜500℃で還元すること
よりなる磁気記録用金属粉の製造方法であって、前記ゲ
ーサイトが、コバルト及び希土類元素を共沈させて得ら
れたものであり、粒子サイズが、長径0.03〜0.1
5μmであり、金属換算で0〜0.1重量%のアルミニ
ウムを含有するものであることを特徴とする磁気記録用
金属粉の製造方法。
4. When manufacturing the metal powder for magnetic recording according to claim 1, 2 or 3, the goethite is 250 to 6 pieces.
A method for producing a metal powder for magnetic recording, comprising heating and dehydrating at 00 ° C to give α-ferric oxide, and then reducing the α-ferric oxide at 200 to 500 ° C. The site is obtained by coprecipitating cobalt and a rare earth element, and the particle size is 0.03 to 0.1 in the major axis.
A method for producing a metal powder for magnetic recording, which has a thickness of 5 μm and contains 0 to 0.1% by weight of aluminum in terms of metal.
JP6339839A 1994-12-27 1994-12-28 Metal powder for magnetic recording and production thereof Pending JPH08236326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6339839A JPH08236326A (en) 1994-12-27 1994-12-28 Metal powder for magnetic recording and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33856394 1994-12-27
JP6-338563 1994-12-27
JP6339839A JPH08236326A (en) 1994-12-27 1994-12-28 Metal powder for magnetic recording and production thereof

Publications (1)

Publication Number Publication Date
JPH08236326A true JPH08236326A (en) 1996-09-13

Family

ID=26576129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6339839A Pending JPH08236326A (en) 1994-12-27 1994-12-28 Metal powder for magnetic recording and production thereof

Country Status (1)

Country Link
JP (1) JPH08236326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200018A (en) * 2014-03-31 2015-11-12 Dowaエレクトロニクス株式会社 Fe-Co ALLOY POWDER AND PRODUCTION METHOD THEREOF, AND ANTENNA, INDUCTOR AND EMI FILTER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200018A (en) * 2014-03-31 2015-11-12 Dowaエレクトロニクス株式会社 Fe-Co ALLOY POWDER AND PRODUCTION METHOD THEREOF, AND ANTENNA, INDUCTOR AND EMI FILTER

Similar Documents

Publication Publication Date Title
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
JP3268830B2 (en) Metal magnetic powder and method for producing the same
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JPH08236326A (en) Metal powder for magnetic recording and production thereof
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JP4182310B2 (en) Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH04168703A (en) Manufacture of needle-shaped magnetic iron oxide particle and powder for magnetic recording
US20010051129A1 (en) Spindle-shaped goethite particles and process for producing the same
JP3446961B2 (en) Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide
JP3142324B2 (en) Manufacturing method of metal magnetic powder
US5989516A (en) Spindle-shaped geothite particles
US4497654A (en) Ferromagnetic metallic powders useful for magnetic recording and processes for producing said metallic powders
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JPS62158801A (en) Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JP2965606B2 (en) Method for producing metal magnetic powder
JPS6244842B2 (en)
JP3405748B2 (en) Method for producing metal magnetic powder
JP2743007B2 (en) Spindle-shaped magnetic iron oxide particles and method for producing the same
JP3003777B2 (en) Method for producing spindle-shaped magnetic iron oxide particles
JPS58159311A (en) Manufacture of metallic magnetic powder
JPH11130439A (en) Fusiform goethite particle powder and its production, fusiform hematite particle powder and its production and fusiform metallic magnetic particle powder consisting essentially of iron and its production
JPS60159102A (en) Manufacture of ferromagnetic iron powder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203