JPH08233605A - Capacitance type encoder - Google Patents

Capacitance type encoder

Info

Publication number
JPH08233605A
JPH08233605A JP5971495A JP5971495A JPH08233605A JP H08233605 A JPH08233605 A JP H08233605A JP 5971495 A JP5971495 A JP 5971495A JP 5971495 A JP5971495 A JP 5971495A JP H08233605 A JPH08233605 A JP H08233605A
Authority
JP
Japan
Prior art keywords
electrode
radius
electrodes
signal
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5971495A
Other languages
Japanese (ja)
Inventor
Iwao Sasaki
巌 佐々木
Akihiro Furuya
彰浩 古谷
Hideo Nagata
英夫 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP5971495A priority Critical patent/JPH08233605A/en
Publication of JPH08233605A publication Critical patent/JPH08233605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE: To constitute an encoder compact and high in angle resolution and accuracy by forming the electrode of a stator by combining three kinds of electrodes of specific shape so as to generate a correct sine wave signal in relation to a turning angle. CONSTITUTION: The electrode 22 of a rotor is formed into such shape that sector parts with a radius (r) and sector parts with a radius R are alternately arranged every angle of 45 deg.. The electrode of a stator is formed of three kinds of shape, that is, a power supply electrode (E-electrode) 121 formed as a circle with a radius rE at the center part around a rotary shaft, and signal output F (F0 -F5 ) electrodes 122 and signal output G (G0 -G5 ) electrode 123 formed being spaced on the outside. A signal detected in this electrode constitution becomes such a signal that sine wave of four cycles per one rotation is shifted in phase by π/6, and as to the accuracy, the sine wave rate becomes a high level (about 0.5% or less) to a turning angle. When this signal is resolved into pulses by an R/D converter to measure, a signal of one pulse to the rotation angle 10 minutes can be obtained with about 1% accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は対向する電極の静電容量
変化を利用した、モータの回転位置を検出する静電容量
式エンコーダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type encoder for detecting a rotational position of a motor, which utilizes a capacitance change of electrodes facing each other.

【0002】[0002]

【従来の技術】従来、例えばモータの回転位置を検出す
るエンコーダとして、磁気的方式、光学的方式を生かし
たものが実用化されている。しかしながら、これらの方
式では消費電力が大きい、小型化と角度分解能の向上を
同時に実現するのが非常に困難であるという問題があっ
た。これらの問題点を解決する方式として静電容量式が
注目されている。このうち、低消費電力化に対しては、
例えば特開昭59−183329号に見られるようにマ
イクロメータなどに対して実用化されている。
2. Description of the Related Art Conventionally, as an encoder for detecting a rotational position of a motor, for example, an encoder utilizing a magnetic system or an optical system has been put into practical use. However, these methods have problems that the power consumption is large and it is very difficult to realize the miniaturization and the improvement of the angular resolution at the same time. As a method for solving these problems, the electrostatic capacitance method has been attracting attention. Of these, for low power consumption,
For example, it has been put to practical use for a micrometer and the like as seen in JP-A-59-183329.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
方法はパルスを発生させる方法であるため、電極の分割
精度などの問題から角度分解能が悪く、小型化できない
という問題があった。そこで、本発明は固定体の電極を
二つの特定形状にした構成にし、回転角度に対して高分
解能でかつ、小型の静電容量式エンコーダを提供するこ
とを目的とする。
However, since the method described above is a method of generating a pulse, there is a problem that the angular resolution is poor and the size cannot be reduced because of problems such as the division accuracy of the electrodes. Therefore, it is an object of the present invention to provide a small-capacity capacitive encoder having a structure in which the electrodes of the fixed body have two specific shapes and having a high resolution with respect to the rotation angle.

【0004】[0004]

【課題を解決するための手段】上記の問題を解決するた
め、本発明は絶縁体の表面に円形状に一定間隔で設けら
れた電極を有する固定体と、円板状の絶縁体の表面に設
けられた電極を有する回転体とからなり、前記固定体の
電極と前記回転体の電極とを空隙をもって対向させ、双
方の電極間の静電容量の変化を検出することによって回
転位置を検出する静電容量式エンコーダにおいて、前記
回転体の電極は半径rの扇部と、前記半径rより大きい
半径Rの扇部とを一定間隔で交互に配置した形状からな
り、前記固定体の電極は前記回転体の扇部半径rより小
さい半径rE の円形部(E部電極)と、円の中心を原点
にした極座標表示により回転角度をθとしたとき半径r
の円弧を一定間隔で有し個々の円弧がその円弧の一端か
ら外側に伸びた後、他方端に戻る曲線f(θ)で囲まれ
た部分(F部電極)と、前記F部電極の間に位置し前記
半径Rの円弧を一定間隔で有し個々の円弧がその円弧の
一端から内側に伸びた後、他方端に戻る曲線g(θ)で
囲まれた部分(G部電極)とからなる構成にしている。
In order to solve the above-mentioned problems, the present invention provides a fixed body having electrodes, which are circularly provided at regular intervals on the surface of an insulator, and a disc-shaped insulator. A rotating body having an electrode provided, the electrode of the fixed body and the electrode of the rotating body are opposed to each other with a gap, and the rotational position is detected by detecting a change in capacitance between both electrodes. In the capacitance type encoder, the electrode of the rotating body has a shape in which fan portions having a radius r and fan portions having a radius R larger than the radius r are alternately arranged at regular intervals, and the electrode of the fixed body is the electrode. Radius r when the rotation angle is θ based on a circular part (E part electrode) with radius r E smaller than the fan part radius r of the rotor and polar coordinates with the center of the circle as the origin
Between the F portion electrode and a portion surrounded by a curve f (θ), which has the respective arcs at regular intervals and extends outward from one end of the arc and then returns to the other end. And a portion surrounded by a curve g (θ) (G portion electrode) which has circular arcs of the radius R at regular intervals and which extends inward from one end of the circular arc and then returns to the other end. It is configured to be.

【0005】[0005]

【作用】上記の手段により、固定体の信号発生用の電極
として二種類の曲線を組み合わせた構成にしたので、回
転角度に対して正確な正弦波の信号が得られる。したが
って、この正確な正弦波のアナログ信号をそのまま位置
信号として使用できるので、高精度な位置分解能の検出
ができ、小形のエンコーダが得られる。
With the above-mentioned means, since the two kinds of curves are combined as the electrode for signal generation of the fixed body, an accurate sine wave signal with respect to the rotation angle can be obtained. Therefore, the accurate analog signal of the sine wave can be used as it is as the position signal, so that the position resolution can be detected with high accuracy, and the compact encoder can be obtained.

【0006】[0006]

【実施例】以下、本発明の具体的な実施例を図を用いて
説明する。図1は本発明のエンコーダを示す部分断面図
である。図において、1は固定体、2は回転体、3は回
転軸である。固定体1は絶縁板11の一方の表面に電極
12を設けており、他方の面に信号処理部4を設けてい
る。回転体2は円形状の絶縁板21の一方の表面に電極
22を設けてあり、他方の面の円中心に回転軸3を固定
している。固定体1と回転体2は双方の電極12、22
を対向させ一定のギャップを保って配置されている。こ
れらの電極は、通常のプリント基板の電極作製工程に加
え、精度をより高精度なものにするため半導体作製に使
用される高精度なフォトリソ技術も用いて作製した。回
転体2の電極形状を図3に示す。電極22は角度45°
毎に半径rの扇部と半径Rの扇部とを交互に配置した形
状からなる。扇部は円の中心を原点にした極座標表示に
より角度をθ、nを0,1,2,3とした時、角度θで
nπ+π/4から(n+1)π/2の範囲になるように
している。固定体1の電極12の形状を図2に示す。電
極12は回転軸3を中心として、中心部に径rE (ただ
しrE はrよりも小さい)からなる円形の電力供給用の
電極121(以下E部電極と呼ぶ)、その外側に間隔を
もって形成された信号出力用のF部電極122および信
号出力用のG部電極123の三種類の形状から構成され
ている。F部電極122は半径rの円と極座標表示にて
円の回転角をθとしたとき曲線f(θ)とに囲まれた部
分の電極であり、F0 、F1 、F2 、F3 、F4 、F5
の6個がある。曲線f(θ)はmを0、1、2、3、
4、5とし、θをmπ/3≦θ≦mπ/3+π/4の範
囲としてつぎの(1)式で表される。 f(θ)={(R2 −r2 )sin4(θ−mπ/3)+r2 1/2 ・・・・ (1) G部電極123はF部電極122の間に位置するもの
で、半径Rの円と曲線g(θ)とに囲まれた部分の電極
であり、G0 、G1 、G2 、G3 、G4 、G5 の6個が
ある。曲線g(θ)はmを0、1、2、3、4、5と
し、θを(m−1)π/3+π/2≦θ≦(m−1)π
/3+3π/4の範囲としてつぎの式で表される。 g
(θ)={r2 −( r2 −R2 )sin4(θ−(m−
1)π/3−π/2 )}1/2
・・・・ (2) 図4は固定体1の信号出力用の電極の接続を示したもの
である。F部電極122とG部電極123はのようにF
0 とG1 とF3 とG4 、G0 とF2 とG3 とF5 、F1
とG2 とF4 とG5 のように一つおきに接続され、さら
に対角のペアと接続されており、全部で3組の出力が得
られるようにしている。図5は固定体1の電極12と信
号処理部4との接続回路を示す。電源を供給するE部電
極121は交流電源41に接続され、上述の3組の出力
は、それぞれ、全波整流回路421〜423から平滑回
路431〜433に直列に接続され、出力端子44に接
続されている。いま、E部電極121に交流電圧を印加
すると、出力端子441〜443にはそれぞれ3個の正
弦波が得られ、図6にその合成した結果を示す。これら
の信号は1回転に4周期の正弦波が位相をπ/6ずつず
らした信号となっている。それらの精度は、回転角度に
対して正弦波率が0.5%以内と高いレベルであること
が分かる。そこで、この信号をR/Dコンバータ(図示
せず)を用いてパルスに分解して測定すると1%の精度
で回転角10分にたいして1パルスの信号を得ることが
できた。さらに、本発明をACサーボモータの制御に適
用して効果を調べた。図7はそのブロック図である。図
8は従来の回転角度をパルスを発生させる方式のエンコ
ーダを用いた場合のブロック図である。この方式のモー
タ制御シーケンス回路7は角度信号指令71とエンコー
ダ5からのパルス信号との差を差動回路72でとり、制
御部73で演算する。つぎに、制御部73からの信号と
エンコーダ5からのパルス信号をパルス−正弦波変換回
路76により正弦波に変換した信号とを乗算回路74に
より掛け算し、電力変換回路75を経てACサーボモー
タ5を制御する。ところが、本発明の4極3相のエンコ
ーダを用いることにより制御部73が不要となり、パル
ス−正弦波変換回路76の代わりにR/D変換回路77
を用いるので、簡単な構成となった。そして、その性能
は回転角度において5/60度以内の変動となり、高精
度の制御ができる効果がみられた。なお、本実施例は1
回転に4周期の正弦波を3相得ることができるものであ
ったが、固定体の電極の数や接続方法を変えれば、周期
および相をよりも少ないものにすることもできる。
EXAMPLES Specific examples of the present invention will be described below with reference to the drawings. FIG. 1 is a partial sectional view showing an encoder of the present invention. In the figure, 1 is a fixed body, 2 is a rotating body, and 3 is a rotating shaft. The fixed body 1 has an electrode 12 provided on one surface of an insulating plate 11 and a signal processing unit 4 provided on the other surface. The rotating body 2 is provided with an electrode 22 on one surface of a circular insulating plate 21, and the rotating shaft 3 is fixed to the center of the circle on the other surface. The fixed body 1 and the rotating body 2 have both electrodes 12, 22.
Are opposed to each other with a certain gap maintained. These electrodes were manufactured by using a high-precision photolithography technique used in semiconductor manufacturing in order to make the accuracy higher, in addition to the usual electrode manufacturing process of a printed circuit board. The electrode shape of the rotating body 2 is shown in FIG. The electrode 22 has an angle of 45 °
Each of them has a shape in which fan portions having a radius r and fan portions having a radius R are alternately arranged. When the angle is θ and n is 0, 1, 2, 3 by polar display with the center of the circle as the origin, the fan part should be in the range of nπ + π / 4 to (n + 1) π / 2 at the angle θ. There is. The shape of the electrode 12 of the fixed body 1 is shown in FIG. The electrode 12 has a circular electrode 121 (hereinafter referred to as an E electrode) having a diameter r E (where r E is smaller than r) in the center with the rotation axis 3 as the center, and has a space on the outside thereof. The formed F part electrode 122 for signal output and the G part electrode 123 for signal output are formed in three kinds of shapes. The F portion electrode 122 is an electrode of a portion surrounded by a circle having a radius r and a curve f (θ) when the rotation angle of the circle is θ in polar coordinates, and is F 0 , F 1 , F 2 , F 3 , F 4 , F 5
There are 6 of them. The curve f (θ) has m of 0, 1, 2, 3,
4 and 5, and θ is represented by the following formula (1) with mπ / 3 ≦ θ ≦ mπ / 3 + π / 4. f (θ) = {(R 2 −r 2 ) sin 4 (θ−mπ / 3) + r 2 } 1/2 ... (1) The G part electrode 123 is located between the F part electrodes 122. , G is an electrode in a portion surrounded by a circle having a radius R and a curve g (θ), and there are six electrodes G 0 , G 1 , G 2 , G 3 , G 4 , and G 5 . In the curve g (θ), m is 0, 1, 2, 3, 4, 5, and θ is (m−1) π / 3 + π / 2 ≦ θ ≦ (m−1) π.
It is expressed by the following equation as a range of / 3 + 3π / 4. g
(Θ) = {r 2 − (r 2 −R 2 ) sin 4 (θ− (m−
1) π / 3-π / 2)} 1/2
(2) FIG. 4 shows connection of electrodes for signal output of the fixed body 1. The F part electrode 122 and the G part electrode 123 are
0 and G 1 and F 3 and G 4 , G 0 and F 2 , G 3 and F 5 , F 1
, G 2 , F 4, and G 5 are connected every other line, and are connected to diagonal pairs, so that a total of 3 sets of outputs can be obtained. FIG. 5 shows a connection circuit between the electrode 12 of the fixed body 1 and the signal processing unit 4. The E section electrode 121 that supplies power is connected to the AC power supply 41, and the above-mentioned three sets of outputs are connected in series from the full-wave rectifier circuits 421 to 423 to the smoothing circuits 431 to 433, respectively, and are connected to the output terminal 44. Has been done. Now, when an AC voltage is applied to the E section electrode 121, three sine waves are obtained at the output terminals 441 to 443, respectively, and FIG. 6 shows the combined result. These signals are signals in which four cycles of sine waves are shifted by π / 6 per revolution. It can be seen that those accuracies have a high level of the sine wave ratio within 0.5% with respect to the rotation angle. Therefore, when this signal was decomposed into pulses using an R / D converter (not shown) and measured, a 1-pulse signal could be obtained with an accuracy of 1% for a rotation angle of 10 minutes. Furthermore, the present invention was applied to the control of an AC servomotor and the effect was investigated. FIG. 7 is a block diagram thereof. FIG. 8 is a block diagram in the case of using a conventional encoder that generates a pulse with a rotation angle. In the motor control sequence circuit 7 of this system, the difference between the angle signal command 71 and the pulse signal from the encoder 5 is taken by the differential circuit 72, and is calculated by the controller 73. Next, the signal from the control unit 73 and the signal obtained by converting the pulse signal from the encoder 5 into a sine wave by the pulse-sine wave conversion circuit 76 are multiplied by the multiplication circuit 74, and the AC servo motor 5 is passed through the power conversion circuit 75. To control. However, by using the 4-pole 3-phase encoder of the present invention, the control unit 73 becomes unnecessary and the R / D conversion circuit 77 is used instead of the pulse-sine wave conversion circuit 76.
Since it uses, it has a simple structure. Then, the performance was changed within 5/60 degrees in the rotation angle, and the effect of enabling highly accurate control was observed. In this example, 1
Although it was possible to obtain three phases of sinusoidal waves with four cycles for rotation, the cycle and phases can be made smaller by changing the number of electrodes of the fixed body and the connection method.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば固定
体の電極形状を二つの特定形状にして組み合わせた構成
にし、回転角度に対して正確な正弦波信号を発生させる
ことができたので、小形で高精度の静電容量式エンコー
ダを得る効果がある。
As described above, according to the present invention, it is possible to generate an accurate sine wave signal with respect to the rotation angle by using a combination of two fixed electrode shapes of the fixed body. Therefore, there is an effect of obtaining a small-sized and highly accurate capacitance type encoder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の静電容量式エンコーダを示す側面図で
ある。
FIG. 1 is a side view showing a capacitance type encoder of the present invention.

【図2】本発明の固定体の電極形状を示す平面図であ
る。
FIG. 2 is a plan view showing an electrode shape of a fixed body of the present invention.

【図3】本発明の回転体の電極形状を示す平面図であ
る。
FIG. 3 is a plan view showing an electrode shape of a rotating body of the present invention.

【図4】本発明の固定体電極の接続関係を示す接続回路
図である。
FIG. 4 is a connection circuit diagram showing the connection relationship of the fixed body electrodes of the present invention.

【図5】本発明の静電容量式エンコーダに用いる信号処
理回路ブロック図である。
FIG. 5 is a block diagram of a signal processing circuit used in the capacitance type encoder of the present invention.

【図6】本発明における出力値を示す特性図である。FIG. 6 is a characteristic diagram showing output values in the present invention.

【図7】本発明の静電容量式エンコーダをサーボモータ
に適用したシーケンス回路図である。
FIG. 7 is a sequence circuit diagram in which the capacitance type encoder of the present invention is applied to a servo motor.

【図8】従来のエンコーダをサーボモータに適用したシ
ーケンス回路図である。
FIG. 8 is a sequence circuit diagram in which a conventional encoder is applied to a servo motor.

【符号の説明】[Explanation of symbols]

1:固定体 5 :エンコー
ダ 11:絶縁板 6 :ACサー
ボモータ 12:電極 7 :モータ制
御シーケンス回路 121:E部電極 71:角度信号
指令 122:F部電極 72:差動回路 123:G部電極 73:制御部 2:回転体 74:乗算回路 21:絶縁板 75:電力変換
回路 22:電極 76:パルス−
正弦波変換回路 221:円状部 77:R/D変
換回路 222:扇部 3:回転軸 4:信号処理部 41:交流電源 42:全波整流回路 43:平滑回路 44:出力端子
1: Fixed body 5: Encoder 11: Insulation plate 6: AC servomotor 12: Electrode 7: Motor control sequence circuit 121: E part electrode 71: Angle signal command 122: F part electrode 72: Differential circuit 123: G part electrode 73: control part 2: rotating body 74: multiplication circuit 21: insulating plate 75: power conversion circuit 22: electrode 76: pulse-
Sine wave conversion circuit 221: Circular part 77: R / D conversion circuit 222: Fan part 3: Rotating shaft 4: Signal processing part 41: AC power supply 42: Full wave rectification circuit 43: Smoothing circuit 44: Output terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体の表面に円形状に一定間隔で設け
られた電極を有する固定体と、円板状の絶縁体の表面に
設けられた電極を有する回転体とからなり、前記固定体
の電極と前記回転体の電極とを空隙をもって対向させ、
双方の電極間の静電容量の変化を検出することによって
回転位置を検出する静電容量式エンコーダにおいて、 前記回転体の電極は半径rの扇部と、前記半径rより大
きい半径Rの扇部とを一定間隔で交互に配置した形状か
らなり、前記固定体の電極は前記回転体の扇部半径rよ
り小さい半径rE の円形部(E部電極)と、円の中心を
原点にした極座標表示により回転角度をθとしたとき半
径rの円弧を一定間隔で有し個々の円弧がその円弧の一
端から外側に伸びた後、他方端に戻る曲線f(θ)で囲
まれた部分(F部電極)と、前記F部電極の間に位置し
前記半径Rの円弧を一定間隔で有し個々の円弧がその円
弧の一端から内側に伸びた後、他方端に戻る曲線g
(θ)で囲まれた部分(G部電極)とからなることを特
徴とする静電容量式エンコーダ。
1. A fixed body comprising a fixed body having electrodes provided on the surface of an insulator in a circular shape at regular intervals, and a rotating body having electrodes provided on the surface of a disc-shaped insulator. The electrode of and the electrode of the rotating body face each other with a gap,
In a capacitance encoder that detects a rotational position by detecting a change in capacitance between both electrodes, the electrodes of the rotating body include a fan portion having a radius r and a fan portion having a radius R larger than the radius r. The electrodes of the fixed body are circular portions (E portion electrodes) having a radius r E smaller than the fan radius r of the rotating body, and polar coordinates with the center of the circle as the origin. A portion surrounded by a curve f (θ), which has arcs with a radius r at a constant interval when the rotation angle is represented by θ, extends outward from one end of the arc and then returns to the other end (F) Part electrode) and the F part electrode, and a curve g which has arcs of the radius R at regular intervals and each arc extends inward from one end of the arc and then returns to the other end.
A capacitance type encoder comprising a portion (G portion electrode) surrounded by (θ).
【請求項2】 前記回転体の電極の前記扇部は円の中心
を原点にした極座標表示により角度をθ、nを0,1,
2,3とした時、角度θでnπ+π/4から(n+1)
π/2の範囲にあることとし、前記固定体の前記曲線f
(θ)はmを0、1、2、3、4、5とし、θをmπ/
3からmπ/3+π/4までの範囲とした時、〔(R2
−r2 )sin4(θ−m/3)+r2 1/2 の式で表
され、前記曲線g(θ)はθを(m−1)π/3+π/
2から(m−1)π/3+3π/4までとした時に、
〔r2 −(r2 −R2 )sin4{θ−(m−1)π/
3−π/2}〕1/2 の式で表されることを特徴とする請
求項1記載の静電容量式エンコーダ。
2. The angle of the fan portion of the electrode of the rotating body is represented by polar coordinates with the center of the circle as the origin and n is 0, 1,
2 and 3, the angle θ is nπ + π / 4 to (n + 1)
It should be in the range of π / 2, and the curve f of the fixed body should be
In (θ), m is 0, 1, 2, 3, 4, 5, and θ is mπ /
When the range is from 3 to mπ / 3 + π / 4, [(R 2
−r 2 ) sin4 (θ−m / 3) + r 2 ] 1/2 , and the curve g (θ) represents θ by (m−1) π / 3 + π /
From 2 to (m-1) π / 3 + 3π / 4,
[R 2 - (r 2 -R 2 ) sin4 {θ- (m-1) π /
3- [pi] / 2}] 1/2 . The capacitance type encoder according to claim 1, wherein
【請求項3】 前記固定体の前記F部電極をF0 からF
5 までの6個とし、前記G部電極をG0 からG5 までの
6個とし、F0 を起点にF0 、G0 、F1 、G1 、・・
・、F5 、G5 の順列とした時、3個毎に結合して6組
のペアを構成し、さらにこのペアを3個毎に並列に結合
したことを特徴とする請求項2記載の静電容量式エンコ
ーダ。
3. The electrodes of the F portion of the fixed body are arranged from F 0 to F
A six to 5, the G unit electrode and six from G 0 to G 5, F 0, G 0 and F 0 as a starting point, F 1, G 1, · ·
., F 5 and G 5 permutations are combined every 3 pieces to form 6 pairs, and the pairs are connected in parallel every 3 pieces. Capacitive encoder.
JP5971495A 1995-02-22 1995-02-22 Capacitance type encoder Pending JPH08233605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5971495A JPH08233605A (en) 1995-02-22 1995-02-22 Capacitance type encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5971495A JPH08233605A (en) 1995-02-22 1995-02-22 Capacitance type encoder

Publications (1)

Publication Number Publication Date
JPH08233605A true JPH08233605A (en) 1996-09-13

Family

ID=13121158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5971495A Pending JPH08233605A (en) 1995-02-22 1995-02-22 Capacitance type encoder

Country Status (1)

Country Link
JP (1) JPH08233605A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048592A (en) * 2008-08-20 2010-03-04 Seidensha Co Ltd Rotary electrostatic encoder
JP2011047679A (en) * 2009-08-25 2011-03-10 Seidensha Co Ltd Electrostatic encoder
CN102997837A (en) * 2012-10-10 2013-03-27 中国电子科技集团公司第四十九研究所 Capacitor type superhigh strain sensor
CN109682401A (en) * 2019-01-28 2019-04-26 上海奥感电子科技有限公司 A kind of condenser type absolute value encoder
CN109827599A (en) * 2019-02-22 2019-05-31 珠海格力电器股份有限公司 Fixed grating for photoelectric encoder and photoelectric encoder
WO2019116716A1 (en) * 2017-12-13 2019-06-20 株式会社村田製作所 Rotary encoder
CN111920395A (en) * 2020-07-22 2020-11-13 上海掌门科技有限公司 Pulse acquisition device
CN118548917A (en) * 2024-07-23 2024-08-27 基合半导体(宁波)有限公司 Angle detection device and angle detection method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048592A (en) * 2008-08-20 2010-03-04 Seidensha Co Ltd Rotary electrostatic encoder
US7864075B2 (en) 2008-08-20 2011-01-04 Seidensha Corporation Rotary electrostatic encoder
JP2011047679A (en) * 2009-08-25 2011-03-10 Seidensha Co Ltd Electrostatic encoder
CN102997837A (en) * 2012-10-10 2013-03-27 中国电子科技集团公司第四十九研究所 Capacitor type superhigh strain sensor
WO2019116716A1 (en) * 2017-12-13 2019-06-20 株式会社村田製作所 Rotary encoder
CN109682401A (en) * 2019-01-28 2019-04-26 上海奥感电子科技有限公司 A kind of condenser type absolute value encoder
CN109827599A (en) * 2019-02-22 2019-05-31 珠海格力电器股份有限公司 Fixed grating for photoelectric encoder and photoelectric encoder
CN109827599B (en) * 2019-02-22 2024-04-05 珠海格力电器股份有限公司 Fixed grating for photoelectric encoder and photoelectric encoder
CN111920395A (en) * 2020-07-22 2020-11-13 上海掌门科技有限公司 Pulse acquisition device
CN118548917A (en) * 2024-07-23 2024-08-27 基合半导体(宁波)有限公司 Angle detection device and angle detection method

Similar Documents

Publication Publication Date Title
JP3252918B2 (en) Inductive rotary motion encoder
WO2015168992A1 (en) Electric field type time-grating angular displacement sensor
JP6821288B2 (en) Absolute type time grating angular displacement sensor based on alternating electric field
US20100148802A1 (en) Capacitance-type encoder
JPS5919285B2 (en) transducer
CN106767386B (en) Gating angular displacement sensor when a kind of absolute type
CN109163747B (en) Single code channel absolute time grating angular displacement sensor
JPS6327701A (en) Angular position determining device
US20100148801A1 (en) Capacitance-type encoder
CN109211095B (en) Gating angular displacement sensor when a kind of absolute type based on alternating electric field
US3146394A (en) Apparatus for proportionally converting a rotational angle into a phase angle of an alternating voltage
JPH08233605A (en) Capacitance type encoder
CN208206026U (en) Gating angular displacement sensor when a kind of poor polar form absolute type based on alternating electric field
JPH04169816A (en) Resolver device
JP2624747B2 (en) Resolver
CN109163746B (en) Single code channel absolute time grating angular displacement sensor
GB946772A (en) Improvements in or relating to electrostatic capacitance resolvers
JPH04282417A (en) Magnetic sensor
WO2001042743A1 (en) Variable reluctance type angle detector
JP2007114074A (en) Variable reluctance type resolver
CN113008128A (en) Capacitive angular displacement sensor and rotor thereof
JP4760611B2 (en) Capacitance detection type rotation sensor
JPH0769333B2 (en) Pulse generator for motor
JP7527603B2 (en) Angle detector
JP6609015B2 (en) Electrostatic induction generator and charging circuit using the same