JPH08232840A - Extremely high vacuum pump system - Google Patents

Extremely high vacuum pump system

Info

Publication number
JPH08232840A
JPH08232840A JP5799795A JP5799795A JPH08232840A JP H08232840 A JPH08232840 A JP H08232840A JP 5799795 A JP5799795 A JP 5799795A JP 5799795 A JP5799795 A JP 5799795A JP H08232840 A JPH08232840 A JP H08232840A
Authority
JP
Japan
Prior art keywords
vacuum pump
pump
valve
extremely high
high vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5799795A
Other languages
Japanese (ja)
Inventor
Motoaki Iizuka
元昭 飯塚
Takashi Maruyama
隆司 丸山
Masashi Iguchi
昌司 井口
Masatomo Okamoto
正智 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SHINKU KIKI SEISAKUSHO
OSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OSAKA SHINKU KIKI SEISAKUSHO
OSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SHINKU KIKI SEISAKUSHO, OSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OSAKA SHINKU KIKI SEISAKUSHO
Priority to JP5799795A priority Critical patent/JPH08232840A/en
Publication of JPH08232840A publication Critical patent/JPH08232840A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE: To realize an extremely high vacuum pump system which can obtain target pressure lower than conventional one. CONSTITUTION: A bath 1 to be exhausted is set in a vacuum condition by means of a rotational vacuum pump such as a turbo molecule pump 3 and a getter pump 2 composed of a gas adsorption metal and a beater. In such a vacuum pump system, a conductance adjusting means 4 is arranged between the bath 1 and a rotational vacuum pump for adjusting conductance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加速器、半導体の製造等
で超高真空又は極高真空を発生させるための排気用とし
て使用される極高真空ポンプ系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high vacuum pump system used for evacuation to generate an ultra-high vacuum or an ultra-high vacuum in the production of accelerators, semiconductors and the like.

【0002】[0002]

【従来の技術】従来の高真空を発生させる技術として
は、ターボ分子ポンプ等の回転式真空ポンプにより、気
体の粘性を利用して排気を行なうのが一般的であった。
しかし回転式真空ポンプによる方法では、水素ガスに対
して他のガスよりも小さな圧縮比(排気口圧力/吸気口
圧力)しか得られないので、被排気槽には水素ガスが残
留し、必要な極高真空が得られない。
2. Description of the Related Art As a conventional technique for generating a high vacuum, a rotary vacuum pump such as a turbo molecular pump is generally used to exhaust gas by utilizing the viscosity of gas.
However, the method using the rotary vacuum pump can obtain only a smaller compression ratio (exhaust port pressure / intake port pressure) for hydrogen gas than other gases, so hydrogen gas remains in the exhaust tank and is necessary. Extremely high vacuum cannot be obtained.

【0003】このため別にゲッタポンプを被排気槽に設
置し、該ゲッタポンプの気体収着金属部が残留水素ガス
を収着して除去し、必要な極高真空を得るようにしてい
た。
For this reason, a getter pump is separately installed in the tank to be evacuated, and the gas sorption metal portion of the getter pump sorbs and removes residual hydrogen gas to obtain a necessary extremely high vacuum.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の被排気
槽と回転式真空ポンプの設置方法では回転式真空ポンプ
側から被排気槽側に気体が逆拡散し易く、より低い到達
圧力を得るのが困難であるという問題点があった。
However, in the conventional installation method of the exhaust tank and the rotary vacuum pump, the gas is easily back-diffused from the rotary vacuum pump side to the exhaust tank side to obtain a lower ultimate pressure. There was a problem that it was difficult.

【0005】本発明は、これらの問題点を解消し、より
低い到達圧力が得られるような極高真空ポンプ系を提供
することを目的とする。
An object of the present invention is to solve these problems and to provide an extremely high vacuum pump system capable of obtaining a lower ultimate pressure.

【0006】[0006]

【課題を解決するための手段】本発明は上記の目的を達
成するべく、ターボ分子ポンプ等の回転式真空ポンプ
と、気体収着金属部及び加熱ヒータ部からなるゲッタポ
ンプとにより被排気槽内を真空にする方式の真空ポンプ
系において、該被排気槽と該回転式真空ポンプとの間の
流路にコンダクタンスを調節するコンダクタンス調整手
段を介在したことを特徴とする。
In order to achieve the above object, the present invention provides a rotary vacuum pump such as a turbo molecular pump and a getter pump including a gas sorption metal part and a heating heater part to create an exhaust gas inside the tank to be evacuated. A vacuum pump system of a vacuum type is characterized in that a conductance adjusting means for adjusting conductance is interposed in a passage between the exhaust tank and the rotary vacuum pump.

【0007】[0007]

【作用】請求項1の極高真空ポンプ系において、被排気
槽と回転式真空ポンプとの間の流路にコンダクタンス調
整手段を介在したので、該回転式真空ポンプが被排気槽
の粗引を行なっている間は該コンダクタンスを大として
該回転式真空ポンプの排気能力を充分に発揮させ、該被
排気槽内の圧力が下って前記ゲッタポンプにより残留気
体の排気を行なう時には該コンダクタンスを小として該
回転式真空ポンプからの気体の逆拡散を防止することが
できる。
In the ultra-high vacuum pump system according to claim 1, since the conductance adjusting means is provided in the flow path between the tank to be evacuated and the rotary vacuum pump, the rotary vacuum pump is capable of roughing the tank to be evacuated. During the operation, the conductance is made large so that the exhaust capacity of the rotary vacuum pump is sufficiently exhibited, and when the pressure in the exhaust tank is lowered to exhaust the residual gas by the getter pump, the conductance is made small. It is possible to prevent back diffusion of gas from the rotary vacuum pump.

【0008】請求項2の極高真空ポンプ系において、前
記弁体を任意の進退位置で保持制御することができるの
で、前記回転式真空ポンプの吸入側コンダクタンスを一
定に保つことができると共に、弁軸を囲繞して弁体の背
面と弁筐体の内面との間にベローズを接続したので、外
気が弁筐体における弁軸の嵌挿透孔を通って前記被排気
槽内に漏洩するのを防止することができる。
In the extremely high vacuum pump system according to the present invention, since the valve body can be held and controlled at an arbitrary forward / backward position, the suction side conductance of the rotary vacuum pump can be kept constant, and the valve can be kept constant. Since the bellows is connected between the back surface of the valve body and the inner surface of the valve housing so as to surround the shaft, the outside air leaks into the exhaust tank through the insertion hole of the valve shaft in the valve housing. Can be prevented.

【0009】請求項3の極高真空ポンプ系において、被
排気槽に回転式真空ポンプ、ゲッタポンプ及びスパッタ
イオンポンプを設置したので、回転式真空ポンプは粗引
用として用い、該回転式真空ポンプが圧力比の限界に達
した時点で被排気槽と該回転式真空ポンプとを断絶し
て、スパッタイオンポンプ及びゲッタポンプによって該
被排気槽内を極高真空とすることができる。
In the extremely high vacuum pump system according to claim 3, since the rotary vacuum pump, the getter pump and the sputter ion pump are installed in the tank to be evacuated, the rotary vacuum pump is used as a rough reference, and the rotary vacuum pump uses pressure. When the exhaust gas reaches the limit of the ratio, the tank to be evacuated and the rotary vacuum pump are disconnected, and the inside of the tank to be evacuated can be made extremely high vacuum by the sputter ion pump and the getter pump.

【0010】[0010]

【実施例】本発明の第1実施例を図1乃至図2により説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS.

【0011】図1のシステム系統図において、被排気槽
1にゲッタポンプ2と、コンダクタンス調整手段4を介
してターボ分子ポンプ3とが接続している。実際の構成
では、図2に示すようにゲッタポンプ2は被排気槽1内
に設置される場合と被排気槽に直接接続される場合があ
る。又、ターボ分子ポンプ3は被排気槽1の外部に接続
して設置されている。
In the system diagram of FIG. 1, a getter pump 2 and a turbo molecular pump 3 are connected to an exhaust tank 1 via a conductance adjusting means 4. In an actual configuration, as shown in FIG. 2, the getter pump 2 may be installed inside the exhaust tank 1 or may be directly connected to the exhaust tank. The turbo molecular pump 3 is connected to the outside of the exhaust tank 1 and installed.

【0012】コンダクタンス調整手段4は板状の弁体4
a、弁軸4b、ベローズ4c及び弁筐体4dからなり、
該弁軸4bは弁筐体4dに設けた孔に嵌着したスリーブ
4e内を摺動して進退すると共に、任意の進退位置にて
弁体4aを保持制御することができる。又、該弁軸4b
は弁筐体4dに設けた弁座1aに弁体4aが着座する位
置に迄進退することができ、該弁座1aはターボ分子ポ
ンプ3の吸入口部に連通接続している。尚、3aはター
ボ分子ポンプの翼車を示す。
The conductance adjusting means 4 is a plate-shaped valve body 4
a, a valve shaft 4b, a bellows 4c and a valve housing 4d,
The valve shaft 4b slides in a sleeve 4e fitted in a hole provided in the valve housing 4d to move forward and backward, and can hold and control the valve body 4a at an arbitrary forward and backward position. Also, the valve shaft 4b
Can be moved back and forth to a position where the valve body 4a is seated on the valve seat 1a provided on the valve housing 4d, and the valve seat 1a is connected to the suction port of the turbo-molecular pump 3 so as to communicate therewith. In addition, 3a shows the impeller of a turbo molecular pump.

【0013】次に本発明の第1実施例の作用について説
明する。
Next, the operation of the first embodiment of the present invention will be described.

【0014】被排気槽1を極高真空とする場合、まずタ
ーボ分子ポンプ3によって、被排気槽1の粗引を行な
う。ターボ分子ポンプ3は軸流圧縮機に類似した構造
で、気体分子速度と同程度の周速になる回転速度で回転
する翼車3aと、それに対応する固定翼からなる。
When the exhaust tank 1 is set to an extremely high vacuum, the turbo molecular pump 3 first rough-evacuates the exhaust tank 1. The turbo molecular pump 3 has a structure similar to that of an axial flow compressor, and is composed of an impeller 3a that rotates at a rotational speed that is the same as the peripheral speed of a gas molecular speed, and a fixed blade corresponding thereto.

【0015】しかし、該ターボ分子ポンプ3により達成
できる真空圧力の低さには限界があり、特に水素ガスの
ような低分子量のガスに対する排気性能が劣るので、粗
引が終った時点でゲッタポンプ2を作動させて超高真空
を得るようにする。
However, there is a limit to the low vacuum pressure that can be achieved by the turbo molecular pump 3, and in particular, the exhaust performance for low-molecular-weight gas such as hydrogen gas is poor. To obtain an ultra-high vacuum.

【0016】図3はターボ分子ポンプ3及びゲッタポン
プ2の達成可能な真空圧力と排気性能との関係を水素ガ
ス及びメタンガスについて示した例で、ターボ分子ポン
プ3の水素ガスに対する排気性能をTH、同じくメタン
ガスに対する排気性能をTCとし、又、ゲッタポンプ2
の水素ガスに対する排気性能をGH、同じくメタンガス
に対する排気性能をGCで示してある。
FIG. 3 shows an example of the relationship between the achievable vacuum pressure of the turbo molecular pump 3 and the getter pump 2 and the exhaust performance for hydrogen gas and methane gas. The exhaust performance of the turbo molecular pump 3 for hydrogen gas is TH, and the same. The exhaust performance for methane gas is TC, and the getter pump 2
The exhaust performance for hydrogen gas is shown by GH, and the exhaust performance for methane gas is shown by GC.

【0017】コンダクタンス調整手段4による調整は次
のように行なう。
The adjustment by the conductance adjusting means 4 is performed as follows.

【0018】コンダクタンスはターボ分子ポンプ3に対
する吸入抵抗の逆数で、前記粗引の時はコンダクタンス
調整手段4を調節して弁体4aを弁座1aから充分離
し、コンダクタンスが大となるようにする。
The conductance is the reciprocal of the suction resistance with respect to the turbo molecular pump 3. During the rough evacuation, the conductance adjusting means 4 is adjusted to separate the valve body 4a from the valve seat 1a so that the conductance becomes large.

【0019】被排気槽1の圧力が下ってターボ分子ポン
プ3の圧力比の限界近くに達した後は、該被排気槽1内
には分子量の軽い水素ガスを主成分とする残留ガスが残
っているので、ゲッタポンプ2を作動させてこの残留ガ
スの排気を行なう。
After the pressure in the evacuated tank 1 has dropped to near the limit of the pressure ratio of the turbo molecular pump 3, a residual gas containing hydrogen gas having a light molecular weight as a main component remains in the evacuated tank 1. Therefore, the getter pump 2 is operated to exhaust the residual gas.

【0020】ゲッタポンプ2は水素ガスを金属板に収着
させて排気を行なうポンプであり、該ゲッタポンプ2を
作動させた場合、前記コンダクタンス調整手段4の弁体
4aを前記弁座1aに接近した位置に保持してコンダク
タンスを小さい値に保ち、該ターボ分子3の吸入口部か
ら気体が逆拡散するのを防止すると共にゲッターポンプ
で排気し難いガス例えばメタンや不活性ガスを排気す
る。
The getter pump 2 is a pump for adsorbing hydrogen gas on a metal plate and exhausting it. When the getter pump 2 is operated, the valve body 4a of the conductance adjusting means 4 is located close to the valve seat 1a. Is kept at a low value to prevent the gas from back-diffusing from the inlet of the turbo molecule 3, and at the same time, a gas that is difficult to be exhausted by the getter pump, such as methane or an inert gas, is exhausted.

【0021】又、前記ゲッタポンプ2は、前記金属板に
水素ガスを十分に収着すると水素ガス排気能力が低下す
るので、この低下した排気能力を回復するために該金属
板を加熱してベーキングを行ない、収着した水素ガスを
放出させる操作を行なう。
Further, in the getter pump 2, when the hydrogen gas is sufficiently sorbed on the metal plate, the hydrogen gas exhausting capability is lowered. Therefore, in order to recover the lowered exhausting capability, the metal plate is heated and baked. Perform the operation to release the sorbed hydrogen gas.

【0022】このベーキング及びゲッタポンプ2の活性
化時には、前記ターボ分子3の排気性能を生かせるよ
う、コンダクタンスを大きくした方がよいので、前記コ
ンダクタンス調整手段4により該コンダクタンスを調整
する。このように極高真空領域では、該コンダクタンス
調整手段4により最適なコンダクタンスに調整すること
により、被排気槽1を極高真空状態に保つことができ
る。
When the baking and getter pump 2 is activated, it is better to increase the conductance so that the exhaust performance of the turbo molecule 3 can be utilized. Therefore, the conductance adjusting means 4 adjusts the conductance. In this way, in the extremely high vacuum region, the exhausted tank 1 can be maintained in the extremely high vacuum state by adjusting the conductance by the conductance adjusting means 4 to the optimum conductance.

【0023】本発明の第2実施例を図4のシステム系統
図により説明する。
The second embodiment of the present invention will be described with reference to the system diagram of FIG.

【0024】被排気槽1にはゲッタポンプ2のほか、締
切弁6を介してターボ分子ポンプ3が、又、調整可能な
真空弁7を介してスパッタイオンポンプ5が接続してい
る。
In addition to the getter pump 2, the turbo molecular pump 3 is connected to the evacuated tank 1 via a shutoff valve 6 and the sputter ion pump 5 is connected via an adjustable vacuum valve 7.

【0025】ここでターボ分子ポンプ2は粗引用として
用い、極高真空領域では締切弁6を閉じて、ゲッタポン
プ2及びスパッタイオンポンプ5によって排気を行な
う。
Here, the turbo molecular pump 2 is used as a rough reference, and in the extremely high vacuum region, the shutoff valve 6 is closed and the getter pump 2 and the sputter ion pump 5 evacuate.

【0026】尚、スパッタイオンポンプ5は陰極にチタ
ン等を用い、放電によりスパッタされた陰極材の付着面
に水素等の残留気体分子が捕らえられたり、又は残留気
体分子がイオンとして陰極に打ち込まれたりすることに
より排気を行なうものであり、前記被排気槽1との間に
介在する調整可能な真空弁7を調整して該被排気槽1内
の残留ガスの排気が行なわれるようにする。
The sputtering ion pump 5 uses titanium or the like for the cathode, and residual gas molecules such as hydrogen are trapped on the adhering surface of the cathode material sputtered by the discharge, or the residual gas molecules are implanted as ions into the cathode. The exhaust gas is exhausted by adjusting the temperature of the exhausted tank 1. The adjustable vacuum valve 7 interposed between the exhausted tank 1 and the exhausted tank 1 is adjusted so that the residual gas in the exhausted tank 1 is exhausted.

【0027】[0027]

【発明の効果】このように本発明によれば、極高真空領
域においてターボ分子ポンプ吸入口側から被排気槽側に
気体の逆拡散がなく、より低い到達圧力が得られる効果
を有する。
As described above, according to the present invention, there is an effect that a lower ultimate pressure can be obtained without back diffusion of gas from the turbo molecular pump suction port side to the exhaust tank side in the extremely high vacuum region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例のシステム系統図である。FIG. 1 is a system diagram of a first embodiment of the present invention.

【図2】同上の説明図である。FIG. 2 is an explanatory diagram of the above.

【図3】ターボ分子ポンプ及びゲッタポンプの排気性能
の1例を示すグラフである。
FIG. 3 is a graph showing an example of exhaust performances of a turbo molecular pump and a getter pump.

【図4】本発明の第2実施例のシステム系統図である。FIG. 4 is a system diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 被排気槽 2 ゲッタポンプ 3 ターボ分子ポンプ 4 コンダクタンス調整手段 4a 弁体 4b 弁軸 4c ベローズ 4d 弁筐体 5 スパッタイオンポンプ 6 締切弁 7 真空弁 1 Exhaust tank 2 Getter pump 3 Turbo molecular pump 4 Conductance adjusting means 4a Valve body 4b Valve shaft 4c Bellows 4d Valve housing 5 Sputter ion pump 6 Shut-off valve 7 Vacuum valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 正智 大阪府大阪市中央区北浜3−2−25 株式 会社大阪真空機器製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatomo Okamoto 3-2-25 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Osaka Vacuum Equipment Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ターボ分子ポンプ等の回転式真空ポンプ
と、気体収着金属部及び加熱ヒータ部からなるゲッタポ
ンプとにより被排気槽内を真空にする方式の真空ポンプ
系において、該被排気槽と該回転式真空ポンプとの間の
流路にコンダクタンスを調節するコンダクタンス調整手
段を介在したことを特徴とする極高真空ポンプ系。
1. A vacuum pump system of a type in which a rotary vacuum pump such as a turbo molecular pump and a getter pump composed of a gas sorption metal part and a heater part are used to evacuate the inside of the tank to be evacuated. An extremely high vacuum pump system characterized in that a conductance adjusting means for adjusting conductance is interposed in a flow path between the rotary vacuum pump and the rotary vacuum pump.
【請求項2】 前記コンダクタンス調整手段は、弁筐体
とその弁座に向って進退する弁体と、該弁体を進退制御
する弁軸と、該弁軸を囲繞し該弁体の背面と前記弁筐体
の内面との間を密封するように接続したベローズとから
なることを特徴とする請求項1に記載の極高真空ポンプ
系。
2. The conductance adjusting means comprises: a valve housing that moves forward and backward toward a valve housing and a valve seat thereof; a valve shaft that controls the valve body to move forward and backward; and a back surface of the valve body that surrounds the valve shaft. The extremely high vacuum pump system according to claim 1, comprising a bellows connected to seal the interior of the valve casing.
【請求項3】 前記被排気槽に更にスパッタイオンポン
プを調整可能な真空弁を介して接続したことを特徴とす
る請求項1に記載の極高真空ポンプ系。
3. The extremely high vacuum pump system according to claim 1, further comprising a sputter ion pump connected to the exhaust tank via an adjustable vacuum valve.
JP5799795A 1995-02-22 1995-02-22 Extremely high vacuum pump system Withdrawn JPH08232840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5799795A JPH08232840A (en) 1995-02-22 1995-02-22 Extremely high vacuum pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5799795A JPH08232840A (en) 1995-02-22 1995-02-22 Extremely high vacuum pump system

Publications (1)

Publication Number Publication Date
JPH08232840A true JPH08232840A (en) 1996-09-10

Family

ID=13071653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5799795A Withdrawn JPH08232840A (en) 1995-02-22 1995-02-22 Extremely high vacuum pump system

Country Status (1)

Country Link
JP (1) JPH08232840A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506936A (en) * 2004-07-16 2008-03-06 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Operation method of gas sensor and getter pump
KR101106685B1 (en) * 2009-07-23 2012-01-18 한국표준과학연구원 Vacuume pump and the operating method of the same, and gas moving device
WO2013178040A1 (en) * 2012-05-29 2013-12-05 Chu Qi Deflation system and technology thereof
CN103758733A (en) * 2014-01-29 2014-04-30 储继国 Large medium/high vacuum gas-bleeding unit and pumping process thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506936A (en) * 2004-07-16 2008-03-06 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Operation method of gas sensor and getter pump
KR101106685B1 (en) * 2009-07-23 2012-01-18 한국표준과학연구원 Vacuume pump and the operating method of the same, and gas moving device
WO2013178040A1 (en) * 2012-05-29 2013-12-05 Chu Qi Deflation system and technology thereof
CN103758733A (en) * 2014-01-29 2014-04-30 储继国 Large medium/high vacuum gas-bleeding unit and pumping process thereof

Similar Documents

Publication Publication Date Title
EP0789788B1 (en) In situ getter pump system and method
JP2001060578A (en) Vacuum treatment apparatus
JPH08232840A (en) Extremely high vacuum pump system
EP1012478A2 (en) In situ getter pump system and method
GB2584428A (en) A turbomolecular pump, a vacuum pumping system and a method of evacuating a vacuum chamber
JP2001332204A (en) Pumping unit for electron microscope
JP2000117093A (en) Ultrahigh vacuum environmental device and ultrahigh vacuum environment forming method
JP3419414B2 (en) Exhaust mechanism of sputtering equipment
CN113924417A (en) Turbo-molecular pump, vacuum pumping system and method for evacuating vacuum chamber
JPH10265839A (en) Treatment method of stainless steel surface, treatment device and vacuum device
JP7011384B2 (en) Vacuum processing equipment and rare gas recovery equipment
JP3156409B2 (en) Evacuation system
JPH06224097A (en) Vacuum evaculator
Nakada et al. Electron beam evaporator constructed from aluminum alloy and the gettering effect of chromium films
JPH08210252A (en) Cryopump and manufacturing device of semiconductor
JPH10103234A (en) Evaporation type getter pump
JP2656199B2 (en) Opening method of vacuum chamber and PVD apparatus
JPH088152A (en) Evacuation device
JPH0771394A (en) Turbo pump with trap panel
JPS5845780B2 (en) electron gun
JPH0528943A (en) Vacuum device
JPS6385268A (en) Vacuum exhausting device
JPH11222678A (en) Film forming device
JPH01244194A (en) Evacuator
JPH048878A (en) Extra-high evacuation system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507