JPH08231717A - Flexible circuit substrate - Google Patents

Flexible circuit substrate

Info

Publication number
JPH08231717A
JPH08231717A JP3713795A JP3713795A JPH08231717A JP H08231717 A JPH08231717 A JP H08231717A JP 3713795 A JP3713795 A JP 3713795A JP 3713795 A JP3713795 A JP 3713795A JP H08231717 A JPH08231717 A JP H08231717A
Authority
JP
Japan
Prior art keywords
film
flexible circuit
circuit board
board material
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3713795A
Other languages
Japanese (ja)
Inventor
Akira Iwamori
暁 岩森
Takehiro Miyashita
武博 宮下
Shin Fukuda
福田  伸
Yoshinori Ashida
芳徳 芦田
Nobuhiro Fukuda
信弘 福田
Masaji Tamai
正司 玉井
Wataru Yamashita
渉 山下
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3713795A priority Critical patent/JPH08231717A/en
Publication of JPH08231717A publication Critical patent/JPH08231717A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a flexible circuit substrate material, comprising a thermal oxidation-resistant polyimide film and a metallic thin film, excellent in high- temperature durability in adhesion of the film to the thin film and further flexibility, etc., and useful as semiconductor IC chips, etc. CONSTITUTION: This flexible printed circuit substrate comprises (A) a thermal oxidation-resistant polyimide film, comprising preferably (i) an aromatic diamine and (ii) an aromatic acid dianhydride and having carbonyl and an ether in the chemical structure and (B) a metallic thin film having preferably 10-3000nm, more preferably 100-500nm thickness. Furthermore, the thin film of the component (B) is preferably a copper film and a copper layer is preferably formed on at least one surface of the film of the component (A) preferably by a sputtering method. The component (A) preferably has a recurring unit of formula I (X and Y are each 0 or CO; X is not equal to Y), preferably e.g. a recurring unit of formula II.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリイミドフィルムと金
属薄膜で構成されるフレキシブル回路基板用材料に関し
特に、金属薄膜とポリイミドフィルムの接着性において
高温耐久性の良好なフレキシブル基板用材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for a flexible circuit board composed of a polyimide film and a metal thin film, and more particularly to a material for a flexible board which has excellent adhesiveness between the metal thin film and the polyimide film at high temperature.

【0002】[0002]

【従来の技術】絶縁性ポリマーフィルム上に金属フィル
ムが形成されたフレキシブル回路基板は膜厚約10μm
以上の金属フィルムとポリマーフィルムとを接着剤で接
合してものがあるが、接着剤の熱的特性がポリマーフィ
ルムの性能に劣ることや金属フィルムの膜厚が10μm
以上と厚いために、数10μmの微細加工が困難である
等の理由から半導体産業における高密度配線に対応でき
ない、寸法安定性が悪い、製品にそりがある等の問題が
あった。これを解決するために接着剤なしで金属フィル
ムを形成する技術が検討されてきた。これは、真空蒸
着、スパッタリング等の薄膜形成方法により金属薄膜を
形成した後、回路パターンの形成を行うものである。こ
の材料においては金属薄膜の膜厚が1μm以下と薄いた
め数10μm幅の微細加工も容易である。
2. Description of the Related Art A flexible circuit board having a metal film formed on an insulating polymer film has a film thickness of about 10 μm.
The above-mentioned metal film and polymer film may be joined with an adhesive, but the thermal properties of the adhesive are inferior to the performance of the polymer film and the thickness of the metal film is 10 μm.
Since it is thick as described above, there are problems that it cannot be applied to high-density wiring in the semiconductor industry, that dimensional stability is poor, and that the product has a warp, because it is difficult to perform fine processing of several tens of μm. In order to solve this, a technique of forming a metal film without an adhesive has been studied. This is a method of forming a circuit pattern after forming a metal thin film by a thin film forming method such as vacuum deposition and sputtering. In this material, since the metal thin film is as thin as 1 μm or less, fine processing with a width of several tens of μm is easy.

【0003】すなわち、上記のごとくして形成された回
路パターンを基にして電解メッキ等によりさらに金属を
堆積、成長させることにより、微細加工された導電体を
形成する技術である。なお、後者の技術は半導体産業に
おける高密配線を可能にする技術であるが、回路形成工
程や電解メッキ工程等の後工程において接着力の低下が
問題となっていた。特開平02−98994号公報には
0.01〜5μmのクロム層をスパッターで形成するこ
と、特開昭62−181488号公報には5〜1000
nmのニッケル層やニッケル−クロム層を蒸着で形成す
ること、特開昭62−62551号公報にはクロム層を
蒸着で形成すること、特公昭57−18357号公報に
はニッケル、コバルト、ジルコニウム、パラジュウム等
の金属層をイオンプレーティング法で形成すること、特
公昭57−18356号公報にはニッケル、ニッケル含
有合金層をインオプレーティング法で形成することを等
の技術がすでに提案されている。
That is, this is a technique for forming a finely processed conductor by further depositing and growing a metal by electrolytic plating or the like based on the circuit pattern formed as described above. Note that the latter technique is a technique that enables high-density wiring in the semiconductor industry, but there has been a problem of a decrease in adhesive force in a post process such as a circuit forming process and an electrolytic plating process. In JP-A-02-98994, a chromium layer having a thickness of 0.01 to 5 μm is formed by sputtering, and in JP-A-62-181488, it is 5-1000.
nm nickel layer or nickel-chromium layer by vapor deposition, JP-A-62-62551 discloses a chromium layer by vapor deposition, and JP-B-57-18357 discloses nickel, cobalt, zirconium, Techniques such as forming a metal layer of palladium or the like by an ion plating method and forming a nickel or nickel-containing alloy layer by an inoplating method have been already proposed in Japanese Patent Publication No. 57-18356.

【0004】しかしながら、これらの公知の技術は一部
成功をおさめているものの、半導体産業における高密度
配線を可能にするための材料としては、未だ満足される
性能にはなく実用化の足かせになっていた。すなわち、
リソグラフィー技術を用いる回路パターン形成工程や通
電抵抗の低下や機械的強度向上のための形成パターン上
に金属層を積層する電解メッキ工程等において金属層が
ポリイミドフィルムから剥離する問題は一部解決された
ものの、金属層/ポリイミドフィルムからなるフレキシ
ブル回路基板のめざす本来の特徴である耐熱性において
充分な性能が達成できなかった。例えば、空気中で15
0℃程度の温度に24時間保持するだけで、金属層とポ
リイミドフィルムの接着性が著しく低下するという問題
が発生していた。
However, although these known techniques have been partially successful, they are still unsatisfactory in performance as materials for enabling high-density wiring in the semiconductor industry, which is a hindrance to practical use. Was there. That is,
The problem of the metal layer peeling from the polyimide film was partially solved in the circuit pattern formation process using lithography technology and the electrolytic plating process of laminating the metal layer on the formation pattern for lowering the conduction resistance and improving the mechanical strength. However, sufficient performance could not be achieved in the heat resistance, which is the original characteristic of the flexible circuit board composed of the metal layer / polyimide film. For example, 15 in the air
There has been a problem that the adhesiveness between the metal layer and the polyimide film is remarkably lowered only by keeping the temperature at about 0 ° C. for 24 hours.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明者等が
接着性低下の原因を鋭意調査したところ、ポリイミドフ
ィルムを通して透過する反応性の気体が接着性に影響を
与えるていることを見いだし、さらに、通過する気体を
遮断するためのガスバリヤー性の層を設けることで接着
性の低下を防ぎ得ることを見いだした(特開平06−2
9634号)。この結果、金属層/ポリイミドフィルム
からなるフレキシブル回路基板材料を前述のごとき過酷
なプロセスをもつ半導体産業において実用に供すること
が可能なものを得ることができた。具体的な例を示せ
ば、ガスバリヤー層としてポリイミドフィルムの片面
に、テトラメチルジシロキサンと酸素を原料としたプラ
ズマ化学気相蒸着法(P−CVD法)により、実質的に
酸化珪素層を30〜300nm厚みで形成する方法を開
示した。かかる方法は、フィルムのガスバリヤー性を飛
躍的に向上させ、従って、高温強度の劣化をも抑制する
ことを見いだした。しかしながら、かかるフィルムに対
し曲げや切断といった2次加工を施した試料の中には加
熱試験を行うと接着性の低下が見られるものがあるとい
う新たな問題に遭遇した。
Therefore, the inventors of the present invention have made a diligent investigation into the cause of the decrease in adhesiveness and found that the reactive gas passing through the polyimide film affects the adhesiveness. It has been found that a decrease in adhesiveness can be prevented by providing a gas barrier layer for blocking passing gas (Japanese Patent Laid-Open No. 06-2.
9634). As a result, it has been possible to obtain a flexible circuit board material composed of a metal layer / polyimide film that can be put to practical use in the semiconductor industry having the harsh process as described above. As a specific example, as a gas barrier layer, a substantially silicon oxide layer is formed on one surface of a polyimide film by plasma chemical vapor deposition (P-CVD) using tetramethyldisiloxane and oxygen as raw materials. A method of forming a ~ 300 nm thickness has been disclosed. It has been found that such a method dramatically improves the gas barrier property of the film, and thus also suppresses the deterioration of high temperature strength. However, a new problem was encountered in that some samples obtained by subjecting such a film to secondary processing such as bending and cutting show a decrease in adhesiveness when subjected to a heating test.

【0006】[0006]

【課題を解決するための手段】本発明者らは、ポリイミ
ドフィルムを通して透過する反応性の気体がポリイミド
面に接する金属層と反応し、部分的に金属酸化物が生じ
る物と考え、この金属酸化物が剥離の主たる原因である
と推定したが、金属層と接したポリイミド側も金属層が
触媒となって酸化されることを見いだし、ポリイミドが
酸化され難い構造であれば、金属のポリイミドフィルム
からの剥離が完全に抑えられることを見いだした。
The present inventors believe that the reactive gas that permeates through the polyimide film reacts with the metal layer in contact with the polyimide surface to partially generate a metal oxide. It was presumed that the thing is the main cause of peeling, but it was found that the polyimide layer in contact with the metal layer was also oxidized by the metal layer as a catalyst, and if the polyimide is a structure that is difficult to oxidize, from the metal polyimide film It has been found that the peeling off of is completely suppressed.

【0007】すなわち、本発明は、(1)耐熱酸化性ポ
リイミドフィルムと金属薄膜とからなるフレキシブル回
路基板材料であり、また、(2)耐熱酸化性ポリイミド
フィルムが、芳香族ジアミンと芳香族酸二無水物とから
合成されるポリイミドで、その化学構造中にカルボニル
基とエーテル基を有する(1)記載のフレキシブル回路
基板材料であり、また、(3)耐熱酸化性ポリイミドフ
ィルムの少なくとも一方の面上に銅層を形成する(1)
または(2)に記載のフレキシブル回路基板材料であ
り、また、(4)耐熱酸化性ポリイミドフィルムの少な
くとも一方の面上に形成される銅層がスパッタリング法
により形成される(1)〜(3)の何れかに記載のフレ
キシブル回路基板材料であり、また、(5)一般式
(1)〔化8〕
That is, the present invention is (1) a flexible circuit board material comprising a heat-resistant oxidation resistant polyimide film and a metal thin film, and (2) a heat-resistant oxidation resistant polyimide film comprising an aromatic diamine and an aromatic acid diamine. A polyimide synthesized from an anhydride, which is a flexible circuit board material according to (1) having a carbonyl group and an ether group in its chemical structure, and (3) on at least one surface of a heat-resistant oxidation-resistant polyimide film. Copper layer is formed on (1)
Alternatively, the flexible circuit board material according to (2), and (4) the copper layer formed on at least one surface of the heat-resistant oxidation-resistant polyimide film is formed by a sputtering method (1) to (3). The flexible circuit board material according to any one of (1) to (5), and (5) the general formula (1)

【0008】[0008]

【化8】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される(1)〜(4)の何れかに記載のフ
レキシブル回路基板材料であり、また、(6)式(2)
〔化9〕
Embedded image The flexible circuit board material according to any one of (1) to (4), which is formed by using the heat-resistant oxidation-resistant polyimide having the repeating unit shown in (6) and (2).
[Chemical 9]

【0009】[0009]

【化9】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される(5)に記載のフレキシブル回路基
板材料であり、また、(7)式(3)〔化10〕
[Chemical 9] The flexible circuit board material according to (5), which is formed by using a heat-resistant oxidation-resistant polyimide having a repeating unit represented by the formula (7), and also has a formula (7) (3)

【0010】[0010]

【化10】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される(5)に記載のフレキシブル回路基
板材料であり、また、(8)式(4)〔化11〕
[Chemical 10] A flexible circuit board material according to (5), which is formed by using a heat-resistant oxidation-resistant polyimide having a repeating unit represented by the formula (8), formula (4)

【0011】[0011]

【化11】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される(5)に記載のフレキシブル回路基
板材料であり、また、(9)式(5)〔化12〕
[Chemical 11] A flexible circuit board material according to (5), which is formed by using a heat-resistant oxidation-resistant polyimide having a repeating unit represented by the formula (5)

【0012】[0012]

【化12】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される(5)に記載のフレキシブル回路基
板材料であり、また、(10)式(6)〔化13〕
[Chemical 12] The flexible circuit board material according to (5), which is formed by using the heat-resistant oxidation-resistant polyimide having the repeating unit represented by the formula (10), and also has the formula (10) (6)

【0013】[0013]

【化13】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される(5)に記載のフレキシブル回路基
板材料であり、また、(11)式(7)〔化14〕
[Chemical 13] The flexible circuit board material according to (5), which is formed by using the heat-resistant oxidation-resistant polyimide having the repeating unit represented by the formula (11), and also has the formula (11) (7)

【0014】[0014]

【化14】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される(5)に記載のフレキシブル回路基
板材料を提供するものである。
Embedded image The flexible circuit board material according to (5), which is formed by using the heat-resistant oxidation-resistant polyimide having the repeating unit shown in FIG.

【0015】ここで言う耐熱酸化性ポリイミドフィルム
とは、電子のドナーになるエーテル基と電子のアクセプ
ターになるカルボニル基がポリイミド分子の繰り返し単
位中に存在し、電子バランスがとれているものを言う。
このエ−テル基とカルボニル基が Charge Transfer Com
plex(CT-complex)を作ることで、耐熱酸化性を有する
ものと考えられる(特開平05−279477号公報、
S.Tamai et.al.,Int,SAMPE Tech.Conf,Vol.26,365(199
4)、B.V.Kotov,Polym.Sci.U.S.S.R.,19,711(1977).)。
The term "heat-resistant oxidation resistant polyimide film" as used herein refers to a film in which an ether group serving as an electron donor and a carbonyl group serving as an electron acceptor are present in the repeating unit of the polyimide molecule and thus have an electron balance.
This ether group and carbonyl group are Charge Transfer Com
By forming a plex (CT-complex), it is considered that it has heat-resistant oxidation resistance (Japanese Patent Laid-Open No. 05-279477).
S.Tamai et.al., Int, SAMPE Tech.Conf, Vol.26,365 (199
4), BV Kotov, Polym . Sci. USSR, 19, 711 (1977).).

【0016】まず、添付図面について説明すると、図1
〜3は本発明のフレキシブル回路基板用材料の一実施例
を示すものであって、1は耐酸化性ポリイミドフィル
ム、2および2’は金属薄膜、3は回路用銅膜等の回路
用金属膜を示すものである。
First, referring to the attached drawings, FIG.
3 to 3 show one embodiment of the material for a flexible circuit board of the present invention, 1 is an oxidation resistant polyimide film, 2 and 2'are metal thin films, 3 is a circuit metal film such as a circuit copper film. Is shown.

【0017】以下、これら図面を参照しつつ本願発明を
説明する。すなわち、本発明は、基本的に図1に示す耐
熱酸化性ポリイミドフィルム1と、当該ポリイミドフィ
ルムの主面上に金属の薄膜2が形成されてなるフレキシ
ブル回路基板材料、である。
The present invention will be described below with reference to these drawings. That is, the present invention is basically a heat resistant oxidation resistant polyimide film 1 shown in FIG. 1 and a flexible circuit board material in which a metal thin film 2 is formed on the main surface of the polyimide film.

【0018】本発明におけるフレキシブル回路基板材料
は、上述の如く耐熱酸化性ポリイミドフィルム1の一方
の面に金属薄膜2が積層されたもののみならず、図3の
ごとく金属薄膜2’、耐熱酸化性ポリイミドフィルム
1、金属薄膜2、といった両面に積層された多層薄膜も
含まれることは言うまでもない。ここで、2及び2’の
金属薄膜はそれぞれ異なる金属を用いても良いことも改
めて言うまでもないことである。
The flexible circuit board material in the present invention is not limited to the one in which the metal thin film 2 is laminated on one surface of the heat resistant oxidation resistant polyimide film 1 as described above, but the metal thin film 2 ', the heat resistant oxidation resistance as shown in FIG. It goes without saying that a multilayer thin film laminated on both surfaces such as the polyimide film 1 and the metal thin film 2 is also included. It goes without saying that the metal thin films 2 and 2'may be made of different metals.

【0019】2或いは2’に用いる金属としては銅が一
般的に用いられるが、その他にアルミニウム、銀、金等
も用いることができるが、これに限られるものではな
い。また、図2、3に示すように、金属の薄膜2の上に
さらに回路用金属膜3、たとえば回路用銅膜が形成さ
れ、多層金属薄膜として形成されていてもよい。
Copper is generally used as the metal for 2 or 2 ', but aluminum, silver, gold and the like can be used, but the metal is not limited thereto. Further, as shown in FIGS. 2 and 3, a circuit metal film 3, for example, a circuit copper film may be further formed on the metal thin film 2 to form a multilayer metal thin film.

【0020】このような金属層の厚さは、ポリイミド層
との密着性を保てればよく、10〜3000nmが好ま
しく、より好ましくは100〜500nmである。膜厚
が余りに薄すぎると金属の積層されている部分と積層さ
れていない部分が生じる可能性があり、即ち金属薄膜の
均一性で問題があり、あまり厚すぎると金属薄膜層の形
成に時間を要し、生産効率の面で好ましくない。
The thickness of such a metal layer is preferably 10 to 3000 nm, more preferably 100 to 500 nm, as long as it can maintain the adhesion to the polyimide layer. If the film thickness is too thin, there may be a part where the metal is laminated and a part where the metal is not laminated, that is, there is a problem in the uniformity of the metal thin film, and if it is too thick, it takes time to form the metal thin film layer. However, it is not preferable in terms of production efficiency.

【0021】金属薄膜の形成は、真空蒸着法、イオンプ
レティーング法、スパッタリング法、CVD法等乾式の
形成方法はもちろん、浸漬法、印刷法等の湿式の薄膜形
成方法も利用することができる。薄膜の接着性や薄膜の
制御性に優れたスパッタリング法が特に用いるに好まし
い方法である。スパッタリングの方法において、特に限
定される条件はない。形成すべき薄膜に対応させて適宜
ターゲットを選択して用いることは当業者の理解すると
ころである。スパッタリングの方法にも限定される条件
はなく、DCマグネトロンスパッタリング、高周波マグ
ネトロンスパッタリング、イオンビームスパッタリング
等の方法が有効に用いられる。
For forming the metal thin film, not only a dry forming method such as a vacuum deposition method, an ion plating method, a sputtering method and a CVD method but also a wet thin film forming method such as an immersion method and a printing method can be used. . The sputtering method, which is excellent in the adhesiveness of the thin film and the controllability of the thin film, is a particularly preferable method. There is no particular limitation on the sputtering method. It is understood by those skilled in the art that a target is appropriately selected and used according to the thin film to be formed. The sputtering method is also not limited, and methods such as DC magnetron sputtering, high frequency magnetron sputtering, and ion beam sputtering are effectively used.

【0022】金属薄膜層に銅を用いた場合について更に
詳しく述べると、アルゴンガスによるDCマグネトロン
スパッタ法により、耐熱酸化性ポリイミドの主面上に銅
薄膜を形成させる。
The case of using copper for the metal thin film layer will be described in more detail. A copper thin film is formed on the main surface of the heat resistant oxidation resistant polyimide by the DC magnetron sputtering method using argon gas.

【0023】銅薄膜については、当業者が容易に理解す
るところの回路形成用の材料である。銅薄膜について更
に詳しく述べると、好ましくは純度99.99%以上の
銅が用いられる。銅薄膜はより好ましくは100nm以
上の膜厚に形成されるが、本発明はフレキシブル回路基
板であり、そのままで用いられるよりも通常、メッキ工
程、半田工程を経て回路が形成される。これらの後工程
のことを考慮すると回路加工を容易にするためには膜厚
は200nm以上であることが望ましい。
The copper thin film is a material for forming a circuit, which can be easily understood by those skilled in the art. More specifically, the copper thin film is preferably made of copper having a purity of 99.99% or more. The copper thin film is more preferably formed to a film thickness of 100 nm or more, but the present invention is a flexible circuit board, and a circuit is usually formed through a plating step and a soldering step rather than being used as it is. In consideration of these subsequent steps, the film thickness is preferably 200 nm or more in order to facilitate circuit processing.

【0024】耐熱酸化性ポリイミドフィルムの膜厚は特
に限定される条件はないが、通常25μm〜125μm
の膜厚のポリイミドフィルムが用途に応じて適宜選択さ
れて用いられる。耐熱酸化性ポリイミドフィルムとして
は、芳香族ジアミンと芳香族酸二無水物から合成される
ポリイミドで、カルボニル基とエーテル基がポリイミド
繰り返し構造中に存在して、電子授受のバランスがとれ
ているものが用いられる。
The thickness of the heat-resistant oxidation-resistant polyimide film is not particularly limited, but is usually 25 μm to 125 μm.
A polyimide film having a film thickness of is appropriately selected and used according to the application. The heat-resistant oxidation-resistant polyimide film is a polyimide synthesized from an aromatic diamine and an aromatic dianhydride, in which a carbonyl group and an ether group are present in the polyimide repeating structure, and the electron transfer is well balanced. Used.

【0025】具体的な例を示すとすれば、例えば、3,
3’−ジアミノベンゾフェノン(3,3'-diaminobenzophe
none)と3,3’,4,4’−ジフェニルエーテルテト
ラカルボン酸二無水物(3,3',4,4'-diphenylether tetr
acarboxylic dianhydride)から合成される式(1)に
示されるくり返し単位のポリイミド、或いは3,3’−
ジアミノジフェニルエーテル(3,3'-diaminodiphenylet
her)と3,3’,4,4’−ベンゾフェノンテトラカ
ルボン酸二無水物(3,3',4,4'-benzophenone tetracarb
oxylic dianhydride)から合成される式(2)に示され
るくり返し単位のポリイミド、さらに式(3)〜式
(7)に示すものなどが挙げられるがこれに限られるも
のではない。これらポリイミドは例えば、キャスト法で
フィルム化され、用いられる。
As a concrete example, for example, 3,
3'-diaminobenzophenone (3,3'-diaminobenzophe
none) and 3,3 ', 4,4'-diphenylether tetracarboxylic dianhydride (3,3', 4,4'-diphenylether tetr
Polyimide of repeating unit shown in Formula (1) synthesized from acarboxylic dianhydride, or 3,3'-
Diaminodiphenyl ether (3,3'-diaminodiphenylet
her) and 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride (3,3', 4,4'-benzophenone tetracarb
The polyimide of the repeating unit represented by the formula (2) synthesized from oxy dianhydride, and the ones represented by the formulas (3) to (7) can be mentioned, but the invention is not limited thereto. These polyimides are used after being formed into a film by a casting method, for example.

【0026】[0026]

【実施例】以下、実施例により本発明をさらに具体的に
説明するが、本発明は以下の実施例になんら制限される
ものではない。 (実施例1)膜厚が50.0μmの式(2)に示される
くり返し単位のポリイミドフィルムを用い、この片面上
に、酸素のグロー放電でポリイミドフィルムの表面を処
理した後、銅をターゲットとして、アルゴンガスによる
DCマグネトロンスパッタリング法により厚さ250n
mの銅薄膜層を形成させた。次に、当該銅薄膜の上に銅
の電解メッキを施すことにより回路用の銅膜の厚みを2
0μmとした。かかる方法で得た回路用銅膜のポリイミ
ドフィルムに対する接着力を測定したところ、常態強度
で平均0.8kg/cmであった。これを、150℃の
オーブンに入れ、10日間保持した後、同様に接着力を
測定したところ、平均1.2kg/cmであり、接着力
は50.0%増加し、1.0kg/cmを越える高い接
着力を保持することを確認した。一方、150℃のオー
ブンに入れる前に、当該フィルムを直径10mmのステ
ンレス製の丸棒に裏表5回ずつ計10回巻き付けたの
ち、150℃のオーブンに入れ、10日間保持した後、
同様に接着力を測定したところ、平均1.2kg/cm
であり、この場合においても、接着力は50.0%増加
し、1.0kg/cmを越える高い接着力を保持するこ
とを確認した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples. Example 1 A polyimide film of a repeating unit represented by the formula (2) having a film thickness of 50.0 μm was used, and the surface of the polyimide film was treated with oxygen glow discharge on one surface of the polyimide film, and then copper was used as a target. , Thickness 250n by DC magnetron sputtering method with argon gas
m copper thin film layer was formed. Next, the thickness of the copper film for the circuit is reduced to 2 by subjecting the copper thin film to electrolytic plating of copper.
It was set to 0 μm. When the adhesive strength of the circuit copper film obtained by such a method to the polyimide film was measured, the average strength in normal state was 0.8 kg / cm on average. This was put in an oven at 150 ° C. and kept for 10 days, and then the adhesive strength was measured in the same manner. As a result, the average adhesive strength was 1.2 kg / cm, and the adhesive strength increased by 50.0% to 1.0 kg / cm. It was confirmed that the high adhesive strength was exceeded. On the other hand, before being placed in an oven at 150 ° C., the film was wrapped around a stainless steel rod having a diameter of 10 mm, 5 times each on the front and back sides, a total of 10 times, and then placed in an oven at 150 ° C. and held for 10 days.
Similarly, when the adhesive strength was measured, the average was 1.2 kg / cm.
Even in this case, it was confirmed that the adhesive strength increased by 50.0% and the high adhesive strength exceeding 1.0 kg / cm was maintained.

【0027】(実施例2)膜厚が50.0μmの式
(3)に示されるくり返し単位のポリイミドフィルムを
用い、この片面上に、酸素のグロー放電でポリイミドフ
ィルムの表面を処理した後、銅をターゲットとして、ア
ルゴンガスによるDCマグネトロンスパッタリング法に
より厚さ250nmの銅薄膜層を形成させた。次に、当
該銅薄膜の上に銅の電解メッキを施すことにより回路用
の銅膜の厚みを20μmとした。かかる方法で得た回路
用銅膜のポリイミドフィルムに対する接着力を測定した
ところ、常態強度で平均0.9kg/cmであった。こ
れを、150℃のオーブンに入れ、10日間保持した
後、同様に接着力を測定したところ、平均1.1kg/
cmであり、接着力は22.2%増加し、1.0kg/
cmを越える高い接着力を保持することを確認した。一
方、150℃のオーブンに入れる前に、当該フィルムを
直径10mmのステンレス製の丸棒に裏表5回ずつ計1
0回巻き付けたのち、150℃のオーブンに入れ、10
日間保持した後、同様に接着力を測定したところ、平均
1.1kg/cmであり、この場合においても、接着力
は22.2%増加し、1.0kg/cmを越える高い接
着力を保持することを確認した。
Example 2 A polyimide film of repeating unit represented by the formula (3) having a film thickness of 50.0 μm was used, and the surface of the polyimide film was treated by glow discharge of oxygen on one surface of the polyimide film. As a target, a 250 nm-thick copper thin film layer was formed by a DC magnetron sputtering method using argon gas. Next, the thickness of the circuit copper film was set to 20 μm by electrolytically plating copper on the copper thin film. When the adhesive strength of the circuit copper film obtained by such a method to the polyimide film was measured, the average strength was 0.9 kg / cm on average. This was placed in an oven at 150 ° C. and kept for 10 days, and then the adhesive strength was measured in the same manner, averaging 1.1 kg /
cm, the adhesive force increased by 22.2%, 1.0 kg /
It was confirmed that a high adhesive force exceeding cm was maintained. On the other hand, before putting the film in an oven at 150 ° C., put the film on a stainless steel rod having a diameter of 10 mm, 5 times each on the front and back.
After wrapping it 0 times, put it in an oven at 150 ° C for 10
After holding for a day, the adhesive strength was similarly measured and found to be 1.1 kg / cm on average, and in this case as well, the adhesive strength increased by 22.2%, and the high adhesive strength exceeding 1.0 kg / cm was maintained. Confirmed to do.

【0028】(実施例3)膜厚が50.0μmの式
(4)に示されるくり返し単位のポリイミドフィルムを
用い、この片面上に、酸素のグロー放電でポリイミドフ
ィルムの表面を処理した後、銅をターゲットとして、ア
ルゴンガスによるDCマグネトロンスパッタリング法に
より厚さ250nmの銅薄膜層を形成させた。次に、当
該銅薄膜の上に銅の電解メッキを施すことにより回路用
の銅膜の厚みを20μmとした。かかる方法で得た回路
用銅膜のポリイミドフィルムに対する接着力を測定した
ところ、常態強度で平均0.9kg/cmであった。こ
れを、150℃のオーブンに入れ、10日間保持した
後、同様に接着力を測定したところ、平均1.2kg/
cmであり、接着力は25.0%増加し、1.0kg/
cmを越える高い接着力を保持することを確認した。一
方、150℃のオーブンに入れる前に、当該フィルムを
直径10mmのステンレス製の丸棒に裏表5回ずつ計1
0回巻き付けたのち、150℃のオーブンに入れ、10
日間保持した後、同様に接着力を測定したところ、平均
1.2kg/cmであり、この場合においても、接着力
は25.0%増加し、1.0kg/cmを越える高い接
着力を保持することを確認した。
(Example 3) A polyimide film having a film thickness of 50.0 µm, which is a repeating unit represented by the formula (4), was used. On one surface of the polyimide film, the surface of the polyimide film was treated by glow discharge of oxygen, and then copper was used. As a target, a 250 nm-thick copper thin film layer was formed by a DC magnetron sputtering method using argon gas. Next, the thickness of the circuit copper film was set to 20 μm by electrolytically plating copper on the copper thin film. When the adhesive strength of the circuit copper film obtained by such a method to the polyimide film was measured, the average strength was 0.9 kg / cm on average. This was placed in an oven at 150 ° C. and kept for 10 days, and then the adhesive strength was measured in the same manner, averaging 1.2 kg /
cm, the adhesive force increased by 25.0%, 1.0 kg /
It was confirmed that a high adhesive force exceeding cm was maintained. On the other hand, before putting the film in an oven at 150 ° C., put the film on a stainless steel rod having a diameter of 10 mm, 5 times each on the front and back.
After wrapping it 0 times, put it in an oven at 150 ° C for 10
After keeping for a day, the adhesive strength was measured in the same manner, averaging 1.2 kg / cm, and even in this case, the adhesive strength increased by 25.0%, and the high adhesive strength exceeding 1.0 kg / cm was maintained. Confirmed to do.

【0029】(実施例4)膜厚が50.0μmの式
(5)に示されるくり返し単位のポリイミドフィルムを
用い、この片面上に、酸素のグロー放電でポリイミドフ
ィルムの表面を処理した後、銅をターゲットとして、ア
ルゴンガスによるDCマグネトロンスパッタリング法に
より厚さ250nmの銅薄膜層を形成させた。次に、当
該銅薄膜の上に銅の電解メッキを施すことにより回路用
の銅膜の厚みを20μmとした。かかる方法で得た回路
用銅膜のポリイミドフィルムに対する接着力を測定した
ところ、常態強度で平均1.0kg/cmであった。こ
れを、150℃のオーブンに入れ、10日間保持した
後、同様に接着力を測定したところ、平均1.3kg/
cmであり、接着力は23.1%増加し、1.0kg/
cmを越える高い接着力を保持することを確認した。一
方、150℃のオーブンに入れる前に、当該フィルムを
直径10mmのステンレス製の丸棒に裏表5回ずつ計1
0回巻き付けたのち、150℃のオーブンに入れ、10
日間保持した後、同様に接着力を測定したところ、平均
1.3kg/cmであり、この場合においても、接着力
は23.1%増加し、1.0kg/cmを越える高い接
着力を保持することを確認した。
Example 4 A polyimide film of a repeating unit represented by the formula (5) having a film thickness of 50.0 μm was used, and the surface of the polyimide film was treated with glow discharge of oxygen on one surface of the polyimide film, followed by copper. As a target, a 250 nm-thick copper thin film layer was formed by a DC magnetron sputtering method using argon gas. Next, the thickness of the circuit copper film was set to 20 μm by electrolytically plating copper on the copper thin film. When the adhesive strength of the copper film for a circuit obtained by such a method to the polyimide film was measured, the average strength in normal state was 1.0 kg / cm on average. This was placed in an oven at 150 ° C. and kept for 10 days, and the adhesive strength was measured in the same manner.
cm, the adhesive force increased by 23.1%, 1.0 kg /
It was confirmed that a high adhesive force exceeding cm was maintained. On the other hand, before putting the film in an oven at 150 ° C., put the film on a stainless steel rod having a diameter of 10 mm, 5 times each on the front and back.
After wrapping it 0 times, put it in an oven at 150 ° C for 10
When the adhesive strength was measured in the same manner after being kept for a day, the average was 1.3 kg / cm, and in this case also, the adhesive strength increased by 23.1%, and the high adhesive strength exceeding 1.0 kg / cm was maintained. Confirmed to do.

【0030】(実施例5)膜厚が50.0μmの式
(6)に示されるくり返し単位のポリイミドフィルムを
用い、この片面上に、酸素のグロー放電でポリイミドフ
ィルムの表面を処理した後、銅をターゲットとして、ア
ルゴンガスによるDCマグネトロンスパッタリング法に
より厚さ250nmの銅薄膜層を形成させた。次に、当
該銅薄膜の上に銅の電解メッキを施すことにより回路用
の銅膜の厚みを20μmとした。かかる方法で得た回路
用銅膜のポリイミドフィルムに対する接着力を測定した
ところ、常態強度で平均0.7kg/cmであった。こ
れを、150℃のオーブンに入れ、10日間保持した
後、同様に接着力を測定したところ、平均1.1kg/
cmであり、接着力は36.4%増加し、1.0kg/
cmを越える高い接着力を保持することを確認した。一
方、150℃のオーブンに入れる前に、当該フィルムを
直径10mmのステンレス製の丸棒に裏表5回ずつ計1
0回巻き付けたのち、150℃のオーブンに入れ、10
日間保持した後、同様に接着力を測定したところ、平均
1.1kg/cmであり、この場合においても、接着力
は36.4%増加し、1.0kg/cmを越える高い接
着力を保持することを確認した。
(Example 5) A polyimide film having a film thickness of 50.0 µm, which is a repeating unit represented by the formula (6), was used. On one surface of the polyimide film, the surface of the polyimide film was treated by glow discharge of oxygen. As a target, a 250 nm-thick copper thin film layer was formed by a DC magnetron sputtering method using argon gas. Next, the thickness of the circuit copper film was set to 20 μm by electrolytically plating copper on the copper thin film. When the adhesive strength of the copper film for a circuit obtained by such a method to the polyimide film was measured, the average strength in normal state was 0.7 kg / cm on average. This was placed in an oven at 150 ° C. and kept for 10 days, and then the adhesive strength was measured in the same manner, averaging 1.1 kg /
cm, the adhesive force increased by 36.4%, 1.0 kg /
It was confirmed that a high adhesive force exceeding cm was maintained. On the other hand, before putting the film in an oven at 150 ° C., put the film on a stainless steel rod having a diameter of 10 mm, 5 times each on the front and back.
After wrapping it 0 times, put it in an oven at 150 ° C for 10
After holding for a day, the adhesive strength was measured in the same manner and found to be 1.1 kg / cm on average, and in this case also, the adhesive strength increased by 36.4%, and the high adhesive strength exceeding 1.0 kg / cm was maintained. Confirmed to do.

【0031】(実施例6)膜厚が50.0μmの式
(7)に示されるくり返し単位のポリイミドフィルムを
用い、この片面上に、酸素のグロー放電でポリイミドフ
ィルムの表面を処理した後、銅をターゲットとして、ア
ルゴンガスによるDCマグネトロンスパッタリング法に
より厚さ250nmの銅薄膜層を形成させた。次に、当
該銅薄膜の上に銅の電解メッキを施すことにより回路用
の銅膜の厚みを20μmとした。かかる方法で得た回路
用銅膜のポリイミドフィルムに対する接着力を測定した
ところ、常態強度で平均0.7kg/cmであった。こ
れを、150℃のオーブンに入れ、10日間保持した
後、同様に接着力を測定したところ、平均1.2kg/
cmであり、接着力は41.7%増加し、1.0kg/
cmを越える高い接着力を保持することを確認した。一
方、150℃のオーブンに入れる前に、当該フィルムを
直径10mmのステンレス製の丸棒に裏表5回ずつ計1
0回巻き付けたのち、150℃のオーブンに入れ、10
日間保持した後、同様に接着力を測定したところ、平均
1.2kg/cmであり、この場合においても、接着力
は41.7%増加し、1.0kg/cmを越える高い接
着力を保持することを確認した。
Example 6 A polyimide film having a repeating unit represented by the formula (7) having a film thickness of 50.0 μm was used, and the surface of the polyimide film was treated by glow discharge of oxygen on one surface of the polyimide film, followed by copper. As a target, a 250 nm-thick copper thin film layer was formed by a DC magnetron sputtering method using argon gas. Next, the thickness of the circuit copper film was set to 20 μm by electrolytically plating copper on the copper thin film. When the adhesive strength of the copper film for a circuit obtained by such a method to the polyimide film was measured, the average strength in normal state was 0.7 kg / cm on average. This was placed in an oven at 150 ° C. and kept for 10 days, and then the adhesive strength was measured in the same manner, averaging 1.2 kg /
cm, the adhesive force increased by 41.7%, 1.0 kg /
It was confirmed that a high adhesive force exceeding cm was maintained. On the other hand, before putting the film in an oven at 150 ° C., put the film on a stainless steel rod having a diameter of 10 mm, 5 times each on the front and back.
After wrapping it 0 times, put it in an oven at 150 ° C for 10
After holding for a day, the adhesive strength was measured in the same manner and found to be 1.2 kg / cm on average, and even in this case, the adhesive strength increased by 41.7%, and the high adhesive strength exceeding 1.0 kg / cm was maintained. Confirmed to do.

【0032】(比較例1)膜厚が50.8μmのカプト
ンフィルム(デュポン社製)を用い、この片面上に、酸
素のグロー放電でポリイミドフィルムの表面を処理した
後、銅をターゲットとして、アルゴンガスによるDCマ
グネトロンスパッタリング法により厚さ250nmの銅
薄膜層を形成させた。次に、当該銅薄膜の上に銅の電解
メッキを施すことにより回路用の銅膜の厚みを20μm
とした。かかる方法で得た回路用銅膜のポリイミドフィ
ルムに対する接着力を測定したところ、常態強度で平均
1.2kg/cmであった。これを、150℃のオーブ
ンに入れ、10日間保持した後、同様に接着力を測定し
たところ、低下が著しく、0.01kg/cm以下にな
ってしまった。
(Comparative Example 1) A Kapton film (manufactured by DuPont) having a film thickness of 50.8 μm was used. On one side of this, the surface of the polyimide film was treated by glow discharge of oxygen, and then copper was used as a target for argon. A 250 nm-thick copper thin film layer was formed by a gas DC magnetron sputtering method. Next, the thickness of the circuit copper film is reduced to 20 μm by electrolytically plating copper on the copper thin film.
And When the adhesive strength of the circuit copper film obtained by such a method to the polyimide film was measured, the average strength in normal state was 1.2 kg / cm. This was put in an oven at 150 ° C. and kept for 10 days, and then the adhesive strength was measured in the same manner. As a result, the decrease was remarkable, and it was 0.01 kg / cm or less.

【0033】[0033]

【発明の効果】以上の実施例および比較例の示すところ
から明らかなように、本発明は半導体ICチップの高集
積化を実現するための耐熱酸化性を充分満足しているば
かりでなく、フィルムの特性を生かす可撓性においても
優れた特性を示すフレキシブル回路基板用材料の技術を
提供するものであり、半導体産業にとって、極めて有用
な発明である。
As is apparent from the above Examples and Comparative Examples, the present invention not only sufficiently satisfies the thermal oxidation resistance for realizing the high integration of the semiconductor IC chip, but also the film. The present invention provides a technique for a material for a flexible circuit board, which exhibits excellent characteristics in terms of flexibility, which makes the most of the characteristics described above, and is an extremely useful invention for the semiconductor industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフレキシブル回路基板用材料の一実施
例の層構成
FIG. 1 is a layer structure of an embodiment of a material for a flexible circuit board of the present invention.

【図2】本発明のフレキシブル回路基板用材料の一実施
例の層構成
FIG. 2 is a layer structure of an embodiment of the material for a flexible circuit board of the present invention.

【図3】本発明のフレキシブル回路基板用材料の一実施
例の層構成
FIG. 3 is a layer structure of one embodiment of the material for a flexible circuit board of the present invention.

【符号の説明】[Explanation of symbols]

1 耐酸化性ポリイミドフィルム 2 金属薄膜 2’金属薄膜 3 回路用銅膜等の回路用金属膜 1 Oxidation-resistant polyimide film 2 Metal thin film 2'Metal thin film 3 Metal film for circuits such as copper film for circuits

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芦田 芳徳 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 (72)発明者 福田 信弘 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 (72)発明者 玉井 正司 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 (72)発明者 山下 渉 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 (72)発明者 山口 彰宏 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 ─────────────────────────────────────────────────── (72) Inventor Yoshinori Ashida 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd. (72) Nobuhiro Fukuda 1190 Kasama-cho, Sakae-ku, Yokohama, Kanagawa Mitsui Toatsu Kagaku (72) Inventor Shoji Tamai, 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd. (72) Wataru Yamashita 1190, Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chem., Ltd. ( 72) Inventor Akihiro Yamaguchi 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 耐熱酸化性ポリイミドフィルムと金属薄
膜とからなるフレキシブル回路基板材料。
1. A flexible circuit board material comprising a heat resistant oxidation resistant polyimide film and a metal thin film.
【請求項2】 耐熱酸化性ポリイミドフィルムが、芳香
族ジアミンと芳香族酸二無水物とから合成されるポリイ
ミドで、その化学構造中にカルボニル基とエーテル基を
有する請求項1記載のフレキシブル回路基板材料。
2. The flexible circuit board according to claim 1, wherein the heat-resistant oxidation-resistant polyimide film is a polyimide synthesized from aromatic diamine and aromatic dianhydride, and has a carbonyl group and an ether group in its chemical structure. material.
【請求項3】 耐熱酸化性ポリイミドフィルムの少なく
とも一方の面上に銅層を形成する請求項1または2に記
載のフレキシブル回路基板材料。
3. The flexible circuit board material according to claim 1, wherein a copper layer is formed on at least one surface of the heat resistant oxidation resistant polyimide film.
【請求項4】 耐熱酸化性ポリイミドフィルムの少なく
とも一方の面上に形成される銅層がスパッタリング法に
より形成される請求項1〜3何れかに記載のフレキシブ
ル回路基板材料。
4. The flexible circuit board material according to claim 1, wherein the copper layer formed on at least one surface of the heat resistant oxidation resistant polyimide film is formed by a sputtering method.
【請求項5】 一般式(1)〔化1〕 【化1】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される請求項1〜4の何れかに記載のフレ
キシブル回路基板材料。
5. The general formula (1) [Chemical formula 1] The flexible circuit board material according to any one of claims 1 to 4, wherein the flexible circuit board material is formed by using a heat-resistant oxidation-resistant polyimide having a repeating unit shown in.
【請求項6】 式(2)〔化2〕 【化2】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される請求項5記載のフレキシブル回路基
板材料。
6. Formula (2) [Chemical Formula 2] [Chemical Formula 2] The flexible circuit board material according to claim 5, wherein the flexible circuit board material is formed by using a heat-resistant oxidation resistant polyimide having a repeating unit represented by.
【請求項7】 式(3)〔化3〕 【化3】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される請求項5記載のフレキシブル回路基
板材料。
7. Formula (3) [Chemical Formula 3] [Chemical Formula 3] The flexible circuit board material according to claim 5, wherein the flexible circuit board material is formed by using a heat-resistant oxidation resistant polyimide having a repeating unit represented by.
【請求項8】 式(4)〔化4〕 【化4】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される請求項5記載のフレキシブル回路基
板材料。
8. Formula (4) [Chemical Formula 4] [Chemical Formula 4] The flexible circuit board material according to claim 5, wherein the flexible circuit board material is formed by using a heat-resistant oxidation resistant polyimide having a repeating unit represented by.
【請求項9】 式(5)〔化5〕 【化5】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される請求項5記載のフレキシブル回路基
板材料。
9. Formula (5) [Chemical Formula 5] [Chemical Formula 5] The flexible circuit board material according to claim 5, wherein the flexible circuit board material is formed by using a heat-resistant oxidation resistant polyimide having a repeating unit represented by.
【請求項10】 式(6)〔化6〕 【化6】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される請求項5記載のフレキシブル回路基
板材料。
10. Formula (6) [Chemical Formula 6] [Chemical Formula 6] The flexible circuit board material according to claim 5, wherein the flexible circuit board material is formed by using a heat-resistant oxidation resistant polyimide having a repeating unit represented by.
【請求項11】 式(7)〔化7〕 【化7】 で示されたくり返し単位を有する耐熱酸化性ポリイミド
を用いて形成される請求項5記載のフレキシブル回路基
板材料。
11. Formula (7) [Chemical Formula 7] [Chemical Formula 7] The flexible circuit board material according to claim 5, wherein the flexible circuit board material is formed by using a heat-resistant oxidation resistant polyimide having a repeating unit represented by.
JP3713795A 1995-02-24 1995-02-24 Flexible circuit substrate Pending JPH08231717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3713795A JPH08231717A (en) 1995-02-24 1995-02-24 Flexible circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3713795A JPH08231717A (en) 1995-02-24 1995-02-24 Flexible circuit substrate

Publications (1)

Publication Number Publication Date
JPH08231717A true JPH08231717A (en) 1996-09-10

Family

ID=12489238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3713795A Pending JPH08231717A (en) 1995-02-24 1995-02-24 Flexible circuit substrate

Country Status (1)

Country Link
JP (1) JPH08231717A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106338A (en) * 2002-09-18 2004-04-08 Toyo Kohan Co Ltd Manufacturing method for conductive-layer joined material, and manufacturing method for component using conductive-layer joined material
WO2004035307A1 (en) * 2002-09-11 2004-04-29 Amt Laboratory Co., Ltd. Film multilayer body and flexible circuit board
JP2008001108A (en) * 2007-07-17 2008-01-10 Toyo Kohan Co Ltd Manufacturing process for electroconductive layer-bonded material and manufacturing process for part using this electroconductive layer-bonded material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035307A1 (en) * 2002-09-11 2004-04-29 Amt Laboratory Co., Ltd. Film multilayer body and flexible circuit board
JP2004106338A (en) * 2002-09-18 2004-04-08 Toyo Kohan Co Ltd Manufacturing method for conductive-layer joined material, and manufacturing method for component using conductive-layer joined material
JP2008001108A (en) * 2007-07-17 2008-01-10 Toyo Kohan Co Ltd Manufacturing process for electroconductive layer-bonded material and manufacturing process for part using this electroconductive layer-bonded material

Similar Documents

Publication Publication Date Title
JP5713560B2 (en) Laminated body having peelable properties and method for producing the same
JP2006124685A (en) Polyimide film for cof (chip-on-film), and laminate
TW200838390A (en) Two-layer flexible substrate, method for manufacturing the two-layer flexible substrate, and flexible printed wiring board manufactured thereof
JPH11268183A (en) Polyimide-metal laminate and its manufacture
JP3447070B2 (en) Flexible circuit board materials
JP4257583B2 (en) Metallized polyimide film and method for producing the same
JPH07197239A (en) Production of metal-laminated polyimide film
JP4548828B2 (en) Method for manufacturing metal-coated substrate
JPH0955575A (en) Laminate
JP3447075B2 (en) Flexible circuit board
JPH08231717A (en) Flexible circuit substrate
JP2009031612A (en) Resin substrate
JPH08332697A (en) Metal polymer film
JPH0629634A (en) Flexible circuit board
JP2006261270A (en) Laminate for flexible print wiring board and its manufacturing method
JP3447122B2 (en) Flexible circuit board having metal oxide layer
JPH0247257A (en) Method for coating a substrate with a metal layer
JP2003011273A (en) Metallized polyimide film
JP3447147B2 (en) Metal compound polymer film
JP2007208251A (en) Substrate for flexible board, flexible board using it, and manufacturing method thereof
JP4304459B2 (en) Polyimide film with metal thin film
JPWO2005051652A1 (en) Metal-coated substrate and method for manufacturing the same
TWI282759B (en) Electro-conductive metal plated polyimide substrate
JPH08330695A (en) High adhesive flexible circuit board
JPH08231716A (en) Flexible circuit substrate