JPH08230416A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH08230416A
JPH08230416A JP7062044A JP6204495A JPH08230416A JP H08230416 A JPH08230416 A JP H08230416A JP 7062044 A JP7062044 A JP 7062044A JP 6204495 A JP6204495 A JP 6204495A JP H08230416 A JPH08230416 A JP H08230416A
Authority
JP
Japan
Prior art keywords
tire
shoulder
tread
tread surface
siping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7062044A
Other languages
Japanese (ja)
Other versions
JP2966752B2 (en
Inventor
Masatoshi Tanaka
正俊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP7062044A priority Critical patent/JP2966752B2/en
Publication of JPH08230416A publication Critical patent/JPH08230416A/en
Application granted granted Critical
Publication of JP2966752B2 publication Critical patent/JP2966752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C11/124Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern inclined with regard to a plane normal to the tread surface

Abstract

PURPOSE: To increase road surface frictional force by providing a siping, which slants in the reverse direction to the tire rotating direction, in a projection bar body on a shoulder when a tread surface is sectioned imaginarily into a center tread surface area within the predetermined distance in the tread surface width direction of a tire equator and a shoulder tread surface area. CONSTITUTION: On the surface of a tread part, 5, a longitudinal main groove G extending in the tire circumference direction and a lateral groove Y extending in the direction crossing the longitudinal groove G are arranged. On a tread surface S, a plurality of projection bar bodies 10 consisting of block rows, in which ribs or blocks extending in the tire circumference direction are arranged in the tire circumference direction, are formed. When the tread surface S is divided imaginarily into a center tread surface area S1 within a distance L, which is a quarter of the tread surface width W, of a tire equator C and a shoulder tread surface area S2 on the outside in the tire axis direction, a siping 11 is arranged in the center projection bar body 10A arranged in the center tread surface area S1, while a siping 12 is arranged in the projection bar body 10B arranged in the shoulder tread surface area S2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、氷雪路でのグリップ性
能を高め、直進安定性能、旋回性能の向上を達成した空
気入りタイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire having improved grip performance on ice and snowy roads and improved straight running stability and turning performance.

【0002】[0002]

【従来の技術】スパイクタイヤによる路面の損傷を防止
するために、スタッドレスタイヤが多用されている。こ
の種のタイヤでは、従来、氷雪路においてグリップ力を
発揮するために、ブロックに形成するサイピング数を増
しサイピングエッジ等による路面掘りおこし摩擦力を増
大させている。
2. Description of the Related Art Studless tires are widely used to prevent damage to the road surface due to spiked tires. In this type of tire, conventionally, in order to exert a gripping force on an icy and snowy road, the number of sipings formed on the block is increased to dig up the road surface by a siping edge or the like to increase the frictional force.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
な従来のタイヤでは、サイピング数が過大となることに
よってブロック剛性が不足するためブロック倒れが生
じ、逆に摩擦力の低下を招くなど、得られる氷雪上性能
に限界がある。しかも、このようにブロック剛性に不足
が生じると、タイヤのコーナリングパワーを減じ、ドラ
イ路面での直進及び旋回時の操縦安定性能をも大巾に損
ねることとなる。
However, in such a conventional tire, the block rigidity is insufficient due to an excessive number of sipings, which causes the block to collapse, which in turn causes a reduction in frictional force. Upper performance is limited. Moreover, if the block rigidity becomes insufficient in this way, the cornering power of the tire is reduced, and the steering stability performance during straight running and turning on a dry road surface is greatly impaired.

【0004】従って、氷雪上性能をさらに向上させるた
めには、サイピングを最も効果的に機能させることが必
要であり、そのために、本発明者は種々研究を積重ね
た。その結果、 従来のサイピングaは、トレッド面と略直角に形成
されているため、図8に示すように、走行時に路面から
受ける外力Fによって、ブロックbは路面から逃げる向
きに傾斜変形し易く、これによって接地圧及び接地面積
の低下を招くこと; これに対して、サイピングaを外力Fに対向する向
きに傾けたときには、図7に示すように、ブロックbは
路面側に食込む向きに圧縮変形し、この時ブロック剛性
が増し、接地圧を高めるとともに接地面積を増大するこ
と;及び トレッド表面は一般に凸円弧状に湾曲し、これによ
ってトレッド円周長が中央側とショルダー側とで異なる
ために、トレッド接地面の路面とのすべり方向、すなわ
ち外力Fの作用方向が中央側とショルダー側とで相違す
ること;が究明できた。
[0004] Therefore, in order to further improve the performance on ice and snow, it is necessary for the siping to function most effectively, and therefore, the present inventor has conducted various studies. As a result, since the conventional siping a is formed substantially at right angles to the tread surface, as shown in FIG. 8, an external force F received from the road surface during traveling causes the block b to be easily inclined and deformed in a direction away from the road surface, As a result, the ground contact pressure and the ground contact area are reduced; on the other hand, when the siping a is tilted in a direction facing the external force F, the block b is compressed in a direction in which the block b bites into the road surface side, as shown in FIG. Deformation, which increases the rigidity of the block, increases the contact pressure and increases the contact area; and the tread surface is generally curved in the shape of a convex arc, which causes the tread circumference to be different between the center side and the shoulder side. In addition, the slip direction of the tread contact surface with the road surface, that is, the acting direction of the external force F is different between the center side and the shoulder side.

【0005】そして、トレッドの中央側及びショルダー
側に、互いに傾斜方向を違えたサイピングを形成し、各
サイピングを路面からの外力に対向させることによっ
て、接地圧及び接地面積を大巾に向上でき、タイヤ全体
として路面摩擦係数を最も効果的に高めうることを見出
し得たのである。
By forming sipings having different inclination directions on the center side and the shoulder side of the tread, and making the respective sipes face the external force from the road surface, the ground pressure and the ground area can be greatly improved. It has been found that the road surface friction coefficient can be most effectively increased in the tire as a whole.

【0006】すなわち本発明は、中央接地面域に配され
る突起状体のサイピングをタイヤ回転とは同方向に傾斜
させ、かつショルダ接地面域に配される突起状体のサイ
ピングをタイヤ回転とは逆方向に傾斜させることを基本
として、サイピングによる路面との摩擦力を最も効果的
に発揮させ、氷雪路でのグリップ性能を高め、直進安定
性能、旋回性能を向上しうる空気入りタイヤの提供を目
的としている。
That is, according to the present invention, the siping of the projecting body disposed in the central ground contact area is inclined in the same direction as the tire rotation, and the siping of the projecting body disposed in the shoulder ground contact area is referred to as the tire rotation. Based on tilting in the opposite direction, the pneumatic tire that can maximize the frictional force with the road surface by siping, enhance the grip performance on ice and snow roads, improve straight running stability and turning performance It is an object.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明の空気入りタイヤは、タイヤ周方向にのびる
縦主溝と、この縦主溝を横切る方向にのびる横溝とによ
りトレッド接地面を区画することによって、タイヤ周方
向にのびるリブ、又はブロックがタイヤ周方向に並ぶブ
ロック列からなる複数の突起条体を形成する一方、前記
トレッド接地面を、タイヤ赤道からトレッド接地面巾の
1/4の距離Lを隔たる中央接地面域とそのタイヤ軸方
向外側のショルダ接地面域とに仮想区分したとき、前記
中央接地面域に配される中央の突起条体は、この中央の
突起条体をタイヤ軸方向に横切りかつタイヤ半径方向の
内側から外側に向かってタイヤ回転方向とは同方向に傾
斜するサイピングを具えるとともに、前記ショルダ接地
面域に配されるショルダの突起条体は、このショルダの
突起条体をタイヤ軸方向に横切りかつタイヤ半径方向の
内側から外側に向かってタイヤ回転方向とは逆方向に傾
斜するサイピングを具えている。
In order to achieve the above object, the pneumatic tire of the present invention has a tread contact surface formed by a vertical main groove extending in the tire circumferential direction and a horizontal groove extending in a direction transverse to the vertical main groove. By partitioning the ribs extending in the tire circumferential direction, or a plurality of protrusions formed of a row of blocks in which blocks are arranged in the tire circumferential direction, the tread contact surface is divided from the tire equator to 1 / th of the tread contact surface width. 4 is virtually divided into a central ground contact surface area separated by a distance L of 4 and a shoulder ground contact surface area outside of the tire axial direction, the central projection strip disposed in the central ground contact surface area is the central projection strip. The body is provided with a siping that traverses the body in the axial direction of the tire and inclines in the same direction as the tire rotation direction from the inner side to the outer side in the tire radial direction, and is arranged in the shoulder ground contact area. Projecting strip of holder is equipped with sipes inclined in a direction opposite the protrusion strip of the shoulder across the tire axial direction and the inside of the tire radial direction and the tire rotational direction toward the outside.

【0008】又、前記中央の突起条体のサイピングは、
トレッド面上の法線に対する傾斜角θ1を5〜30度、
かつ前記ショルダの突起条体のサイピングは、トレッド
面上の法線に対する傾斜角θ2を5〜30度とすること
が好ましい。
Also, the siping of the central protrusion is
The inclination angle θ1 with respect to the normal line on the tread surface is 5 to 30 degrees,
Moreover, it is preferable that the sipe of the ridge of the shoulder has an inclination angle θ2 of 5 to 30 degrees with respect to the normal to the tread surface.

【0009】[0009]

【作用】駆動輪側のタイヤが制動する際、及び非駆動輪
側のタイヤが制動・駆動する際、図5に示すように、ト
レッドの中央接地面域には、タイヤ回転方向とは逆向き
となる進行方向に向く外力Fが路面から作用する。従っ
て、前記中央接地面域のサイピングをタイヤ回転方向と
同方向に傾斜させることによって、前記外力Fとサイピ
ングとが対抗し合い、ブロック剛性を高めるとともに、
接地圧及び接地面積を増大させ、路面摩擦力を増加す
る。
When the tire on the driving wheel side is braking and the tire on the non-driving wheel side is braking / driving, as shown in FIG. 5, the central tread area of the tread is opposite to the tire rotating direction. An external force F directed in the traveling direction is applied from the road surface. Therefore, by tilting the siping in the central ground contact area in the same direction as the tire rotation direction, the external force F and the siping oppose each other and the block rigidity is increased,
The ground contact pressure and the ground contact area are increased, and the road surface friction force is increased.

【0010】又ショルダ接地面域にあっては、トレッド
円周長が中央接地面域に比して小となるために、図6に
示すように、路面とのすべり方向、すなわち外力Fの向
きが中央接地面域とは逆向きに作用する。従って、前記
ショルダ接地面域のサイピングをタイヤ回転方向と逆方
向に傾斜させることによって、前記外力Fとサイピング
とが対抗し合い、同様に、路面摩擦力を増加する。
Further, in the shoulder contact surface area, the tread circumference is smaller than that in the central contact surface area. Therefore, as shown in FIG. 6, the slip direction with respect to the road surface, that is, the direction of the external force F. Acts in the opposite direction to the central ground plane area. Therefore, by tilting the siping in the shoulder contact surface area in the direction opposite to the tire rotation direction, the external force F and the siping oppose each other, and the road surface friction force is similarly increased.

【0011】このように、本願は、サイピングによる路
面との摩擦力を最も効果的に発揮させ、トレッド接地面
の全面に亘って路面摩擦力を高めているため、氷雪路で
の直進安定性能及び旋回性能を大巾に向上しうる。又こ
のような路面摩擦力の向上効果は、ウエット路面におい
ても同様に発揮される。又前記サイピングは、接地に際
してブロック剛性を高めるものであるため、タイヤのコ
ーナリングパワーが増し、ドライ路面における操縦安定
性の向上にも寄与できる。
As described above, according to the present invention, the frictional force with the road surface due to the siping is most effectively exerted, and the road surface frictional force is increased over the entire tread contact surface. The turning performance can be greatly improved. In addition, such an effect of improving the road surface friction force is also exhibited on a wet road surface. Further, since the above-mentioned siping enhances the block rigidity at the time of contact with the ground, the cornering power of the tire is increased and it is possible to contribute to the improvement of steering stability on a dry road surface.

【0012】なおサイピングの傾斜角度θ1、θ2が、
5度より小では、前記効果が不十分となる。又傾斜角度
θ1、θ2が増すに従い前記効果は向上するが、30度
より大では、タイヤ製造が難しく、タイヤを加硫金型か
ら取出す際に、サイピング部でタイヤに亀裂損傷が発生
しやすくなる。
The inclination angles θ1 and θ2 of the siping are
If it is less than 5 degrees, the above effect is insufficient. Further, the above effect is improved as the tilt angles θ1 and θ2 increase, but if the tilt angle is more than 30 degrees, it is difficult to manufacture the tire, and when the tire is taken out from the vulcanization mold, crack damage is likely to occur in the tire at the siping portion. .

【0013】[0013]

【実施例】以下本発明の一実施例を図面に基づき説明す
る。図1は、空気入りタイヤ1(以下タイヤ1という)
を標準リムにリム組みしかつ標準内圧を充填した標準状
態のタイヤの子午断面を示す。ここで、前記標準リムと
は、JATMA規格(日本)における標準リム、TRA
規格(アメリカ)、ETRTO規格(ヨーロッパ)にお
ける測定リムをいい、標準内圧とは、前記各規格におい
て最大空気圧として規定される空気圧の0.9倍の内圧
をいう。また前記標準状態のタイヤに、各規格において
規定される最大荷重の0.9倍の荷重を負荷したとき
に、トレッド面が接地するタイヤ軸方向の巾領域をトレ
ッド接地面Sと定義する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a pneumatic tire 1 (hereinafter referred to as tire 1)
3 shows a meridional section of a tire in a standard state in which the tire is assembled on a standard rim and filled with a standard internal pressure. Here, the standard rim refers to the standard rim in JATMA standard (Japan), TRA
Standard (US) and ETRTO standard (Europe) measurement rims, and standard internal pressure means an internal pressure 0.9 times the air pressure specified as the maximum air pressure in each of the standards. Further, a width region in the tire axial direction where the tread surface contacts the ground when a load of 0.9 times the maximum load defined in each standard is applied to the tire in the standard state is defined as a tread contact surface S.

【0014】図において、タイヤ1は、ビードコア2が
通る一対のビード部3と、各ビード部3からタイヤ半径
方向外方にのびるサイドウォール部4と、その外方端間
を継ぐトレッド部5とを具える、本例では、乗用車用タ
イヤであって、ビード部3、3間を跨るカーカス6、及
びその外側に巻装される強靱なベルト層7等によって補
強されかつ必要なタイヤ剛性が付与される。
In the figure, a tire 1 includes a pair of bead portions 3 through which a bead core 2 passes, a sidewall portion 4 extending outward from each bead portion 3 in the radial direction of the tire, and a tread portion 5 connecting the outer ends thereof. In this example, the tire is for a passenger car and is reinforced by a carcass 6 straddling between the bead portions 3 and 3, a tough belt layer 7 wound around the carcass 6 and the like, and is provided with necessary tire rigidity. To be done.

【0015】なお、前記カーカス6は、カーカスコード
をタイヤ赤道Cに対して70〜90度の角度で配列した
1枚以上、本例では1枚のカーカスプライから形成さ
れ、前記トレッド部5からサイドウオール部4をへてビ
ードコア2の廻りで両端が折返されて係止される。カー
カスコードとしては、スチールコードの他、ナイロン、
レーヨン、ポリエステル等の有機繊維コードが採用され
る。
The carcass 6 is formed by one or more carcass plies in which carcass cords are arranged at an angle of 70 to 90 degrees with respect to the tire equator C, and in this example, one carcass ply. Both ends are folded back and locked around the bead core 2 through the wall portion 4. Carcass cords include steel cords, nylon,
Organic fiber cords such as rayon and polyester are used.

【0016】前記ベルト層7は、ベルトコードをタイヤ
赤道Cに対して0〜30度の角度で配列した複数枚、本
例では2枚のベルトプライからなり、各コードがプライ
間相互で交差するように向きを違えて配置する。ベルト
コードとしては、カーカスコードと同様に、スチール等
の金属繊維コード、及びナイロン、ポリエステル、レー
ヨン等の有機繊維コードが用いられ、前記トレッド部5
を略全巾に亘りタガ効果を有して補強しかつ剛性を高め
る。
The belt layer 7 is composed of a plurality of belt plies in which belt cords are arranged at an angle of 0 to 30 degrees with respect to the tire equator C, in this example, two plies, and the cords cross each other. And place them in different directions. Similar to the carcass cord, a metal fiber cord such as steel and an organic fiber cord such as nylon, polyester or rayon are used as the belt cord.
Has a hoop effect over almost the entire width to reinforce and increase rigidity.

【0017】又、前記トレッド部5の表面(トレッド
面)には、タイヤ周方向にのびる縦主溝Gと、この縦主
溝Gを横切る方向にのびる横溝Yとが設けられ、前記ト
レッド接地面Sに、タイヤ周方向にのびるリブ、又はブ
ロックがタイヤ周方向に並ぶブロック列からなる複数の
突起条体10を形成する。又前記トレッド接地面Sを、
タイヤ赤道Cからトレッド接地面巾Wの1/4の距離L
を隔たる中央接地面域S1とそのタイヤ軸方向外側のシ
ョルダ接地面域S2とに仮想区分したとき、前記中央接
地面域S1に配される中央の突起条体10Aに、サイピ
ング11を設けるとともに、前記ショルダ接地面域S2
に配されるショルダの突起条体10Bにサイピング12
を設ける。
The surface (tread surface) of the tread portion 5 is provided with a longitudinal main groove G extending in the tire circumferential direction and a lateral groove Y extending in a direction traversing the longitudinal main groove G. In S, a plurality of ribs 10 extending in the tire circumferential direction or a plurality of protruding strips 10 each including a block row in which blocks are arranged in the tire circumferential direction are formed. In addition, the tread contact surface S,
Distance L from the tire equator C to 1/4 of the tread contact surface width W
When the virtual ground is divided into a central ground contact surface area S1 and a shoulder ground contact surface area S2 outside the tire axial direction, the siping 11 is provided on the central protruding strip 10A arranged in the central ground contact surface area S1. , The shoulder contact area S2
On the shoulder protrusion 10B arranged in the
To provide.

【0018】なおタイヤの前記標準状態における、トレ
ッドプロファイルにおいて、少なくとも前記中央接地面
域S1は、タイヤ赤道面上に中心を有する曲率半径Rが
200〜2000mmの単一円弧で形成されるととも
に、その外側の前記ショルダ接地面域S2は、前記曲率
半径R以下の曲率半径の単一又は複合の円弧で形成され
る。本例では、トレッド接地面Sは、中央接地面域S1
及びショルダ接地面域S2の各曲率半径を同一とした単
一円弧で形成される。
In the tread profile of the tire in the standard state, at least the central ground contact surface area S1 is formed as a single arc having a center of curvature on the equatorial plane of the tire and a radius of curvature R of 200 to 2000 mm. The shoulder ground contact surface area S2 on the outer side is formed by a single or compound arc having a radius of curvature equal to or less than the radius of curvature R. In this example, the tread ground plane S is the central ground plane S1.
And the shoulder contact area S2 is formed by a single arc having the same radius of curvature.

【0019】又本例では、図2に示すように、前記縦主
溝Gは、タイヤ赤道C上をのびる内の縦主溝Giと、そ
のタイヤ軸方向外側に配される外の縦主溝Go、Goと
を含み、また前記横溝Yは、各縦主溝Gi、Go間を継
ぐ中の横溝Ym、及び縦主溝Goとトレッド接地縁Eと
を継ぐ外の横溝Yoを含む。従って前記縦主溝Gi、G
o間には、中のブロックBmがタイヤ周方向に並ぶブロ
ック列が形成され、このブロック列が、前記中央接地面
域S1内に完全に位置することによって前記中央の突起
条体10Aを構成する。又前記縦主溝Goとトレッド接
地縁Eとの間には、外のブロックBoがタイヤ周方向に
並ぶブロック列が形成され、このブロック列が、前記シ
ョルダ接地面域S2内に完全に位置することによって前
記ショルダの突起条体10Bを構成する。前記縦主溝G
の溝巾Wgは、トレッド接地面巾Wの3〜8%の範囲、
例えば5〜12mm程度に設定されるとともに、溝深さ
Hgは、トレッド接地面巾Wの5〜10%の範囲、例え
ば8〜15mm程度に設定される。なお横溝Yの溝巾W
y、溝深さHyは縦主溝Gの溝巾Wg、溝深さHgと同
等又は若干小に設定するのが好ましい。
In this embodiment, as shown in FIG. 2, the vertical main groove G includes an internal vertical main groove Gi extending on the tire equator C and an external vertical main groove arranged outside the tire axial direction. The lateral groove Y includes Go and Go, and the lateral groove Y includes a lateral groove Ym that connects the vertical main grooves Gi and Go, and an external lateral groove Yo that connects the vertical main groove Go and the tread ground edge E. Therefore, the vertical main grooves Gi, G
A block row in which the inner blocks Bm are arranged in the tire circumferential direction is formed between o, and the block row configures the central protruding strip 10A by being completely located in the central ground contact surface area S1. . Further, between the vertical main groove Go and the tread ground contact edge E, a block row in which outer blocks Bo are arranged in the tire circumferential direction is formed, and this block row is completely located within the shoulder ground contact surface area S2. Thus, the shoulder protrusion 10B is formed. The vertical main groove G
Groove width Wg of 3 to 8% of the tread ground contact surface width W,
For example, the groove depth Hg is set to about 5 to 12 mm, and the groove depth Hg is set to a range of 5 to 10% of the tread ground contact surface width W, for example, about 8 to 15 mm. The width W of the lateral groove Y
y and the groove depth Hy are preferably set to be equal to or slightly smaller than the groove width Wg and the groove depth Hg of the vertical main groove G.

【0020】又前記中央の突起条体10Aに配されるサ
イピング11は、この突起条体10Aをタイヤ軸方向に
横切りる直線状をなし、タイヤ周方向に隣り合う他のサ
イピングとは等ピッチ若しくは不当ピッチで互いに平行
に配列する。又サイピング11は、図3に示すように、
タイヤ半径方向の内側から外側に向かってタイヤ回転方
向Kとは同方向に傾斜し、トレッド面上の法線nに対す
る傾斜角θ1を5〜30度の範囲としている。
Further, the siping 11 arranged on the central protruding strip 10A has a straight line shape that traverses the protruding strip 10A in the tire axial direction, and has the same pitch as other sipings adjacent to the tire circumferential direction or Arrange in parallel with each other at an incorrect pitch. The siping 11 is, as shown in FIG.
The tire is inclined from the inner side to the outer side in the tire radial direction in the same direction as the tire rotation direction K, and the inclination angle θ1 with respect to the normal line n on the tread surface is in the range of 5 to 30 degrees.

【0021】又前記ショルダの突起条体10Bに配され
るサイピング12も同様に、この突起条体10Bをタイ
ヤ軸方向に横切りる直線状をなし、タイヤ周方向に隣り
合う他のサイピングとは等ピッチ若しくは不当ピッチで
互いに平行に配列する。又サイピング12は、図4に示
すように、タイヤ半径方向の内側から外側に向かってタ
イヤ回転方向Kとは逆方向に傾斜し、トレッド面上の法
線nに対する傾斜角θ2を5〜30度の範囲としてい
る。
Similarly, the siping 12 arranged on the shoulder protruding body 10B has a straight line shape that traverses the protruding protruding body 10B in the tire axial direction, and is the same as other sipings adjacent in the tire circumferential direction. They are arranged in parallel with each other with a pitch or an incorrect pitch. As shown in FIG. 4, the siping 12 inclines in the tire radial direction from the inner side to the outer side in the direction opposite to the tire rotation direction K, and has an inclination angle θ2 of 5 to 30 degrees with respect to the normal line n on the tread surface. And the range.

【0022】前記中央接地面域S1のサイピング11
は、タイヤ回転方向と同方向に傾斜することによって、
駆動輪側のタイヤが制動する際、及び非駆動輪側のタイ
ヤが制動・駆動する際、図5に示すように、路面からの
外力Fと対抗することによって、突起条体10Aを路面
側に食込む向きに圧縮変形せしめ、パターン剛性を高め
るとともに接地圧及び接地面積を増大させ、路面摩擦力
を増加する。
Siping 11 of the central ground contact area S1
By tilting in the same direction as the tire rotation direction,
When the tire on the driving wheel side brakes, and when the tire on the non-driving wheel side brakes / drives, as shown in FIG. 5, by opposing the external force F from the road surface, the projection strip 10A is moved to the road surface side. By compressing and deforming in the direction of biting, the pattern rigidity is increased, the ground contact pressure and the ground contact area are increased, and the road surface friction force is increased.

【0023】又ショルダ接地面域S2にあっては、トレ
ッド円周長が中央接地面域S1に比して小となるため
に、外力Fの作用する向きが中央接地面域S1とは逆向
きとなり、従って、図6に示すように、前記サイピング
12をタイヤ回転方向と逆方向に傾斜させることによっ
て、前記外力Fと対抗し合い、同様に、路面摩擦力を増
加する。
In the shoulder contact area S2, the tread circumference is smaller than that in the central contact area S1, so that the external force F acts in the direction opposite to the central contact area S1. Therefore, as shown in FIG. 6, by inclining the siping 12 in the direction opposite to the tire rotation direction, it opposes the external force F and similarly increases the road surface friction force.

【0024】なおサイピング11、12によるこのよう
な路面摩擦力向上効果は、前記トレッドの曲率半径Rが
前記200〜2000mmの範囲の時、より好ましくは
600mm以下の時、最も効果的に発揮できる。
The effect of improving the road surface friction force by the sipings 11 and 12 can be most effectively exhibited when the radius of curvature R of the tread is in the range of 200 to 2000 mm, more preferably 600 mm or less.

【0025】また路面摩擦力向上効果は、前記傾斜角度
θ1、θ2が夫々増すに従い向上するが、30度より大
ではタイヤ製造が難しく、逆に傾斜角度θ1、θ2が5
度より小では前記効果が不十分となる。
Further, the road surface frictional force improving effect is improved as the inclination angles θ1 and θ2 increase, but if the inclination angles θ1 and θ2 are larger than 30 degrees, it is difficult to manufacture a tire, and conversely, the inclination angles θ1 and θ2 are 5 degrees.
If the degree is smaller than the above, the above effect becomes insufficient.

【0026】又各サイピング11、12は、トレッド面
上でのタイヤ軸方向の巾が0.5〜1.5mmであるこ
とが好ましく、1.5mmより大の時、接地時にサイピ
ングの壁面間が離間するなど剛性の過度の低下を招き、
又0.5mm未満の時、特に雪路面でのグリップ性を減
じるほか、加硫形成金型の耐久性を阻害する。
The width of each of the sipings 11 and 12 in the axial direction of the tire on the tread surface is preferably 0.5 to 1.5 mm. Inducing excessive reduction in rigidity such as separation,
On the other hand, when it is less than 0.5 mm, not only the grip property on a snowy road surface is reduced, but also the durability of the vulcanization mold is impaired.

【0027】又各サイピング11、12の深さHa、H
bは、前記縦主溝Gの溝深さHgの0.5〜1.0倍と
することが好ましく、0.5Hg未満の時、路面摩擦力
向上効果が低下する。なお1.0Hgより大の時、路面
摩擦力向上効果には悪影響がないものの、サイピング下
のゴム厚さを確保するためにトレッド部5全体のゴムゲ
ージを高めることが必要となり、タイヤの重量増加を招
く。従ってサイピング深さHa、Hbは、溝深さHg以
下かつ溝深さHgとの差を1mm以内とすることがさら
に好ましい。
Further, the depths Ha and H of the respective sipings 11 and 12 are
b is preferably 0.5 to 1.0 times the groove depth Hg of the vertical main groove G, and when it is less than 0.5 Hg, the effect of improving the road surface friction force decreases. When it is larger than 1.0 Hg, the road surface frictional force improving effect is not adversely affected, but it is necessary to increase the rubber gauge of the entire tread portion 5 in order to secure the rubber thickness under siping, which increases the weight of the tire. Invite. Therefore, it is more preferable that the siping depths Ha and Hb be less than or equal to the groove depth Hg and less than 1 mm from the groove depth Hg.

【0028】又このような路面摩擦力向上効果は、ウエ
ット路面においても発揮され、又前記サイピング11、
12は、接地に際してブロック剛性を高めるものである
ため、タイヤのコーナリングパワーが増し、ドライ路面
における操縦安定性の向上にも寄与できる。
Further, such an effect of improving the road surface frictional force is exhibited even on a wet road surface, and the siping 11,
Since No. 12 increases the block rigidity at the time of contact with the ground, the cornering power of the tire is increased, which can contribute to the improvement of steering stability on dry road surfaces.

【0029】又前記中央の突起条体10A、及びショル
ダの突起条体10Bは、突起条体10のうち、その表面
全体が中央接地面域S1内及びショルダ接地面域S2内
に位置するものをいい、図9に、突起条体10表面が中
央接地面域S1及びショルダ接地面域S2の双方に跨る
本願の他の実施例を示す。
The central ridge 10A and the shoulder ridge 10B are those of which the entire surface is located within the central ground contact area S1 and the shoulder ground contact area S2. FIG. 9 shows another embodiment of the present application in which the surface of the protrusion 10 extends over both the central ground contact area S1 and the shoulder ground contact area S2.

【0030】図9に示すように、トレッド接地面Sに
は、中央接地面域S1に配される中央の突起条体10
A、ショルダ接地面域S2に配されるショルダの突起条
体10B、及び表面が中央接地面域S1及びショルダ接
地面域S2の双方に跨る中間の突起条体10Cが、夫々
形成される。前記突起条体10A、10B、10Cは、
本例のごとくブロック列で形成するほか、横溝Yを排除
したリブ体として形成してもよく、又これらブロック
列、リブ体を適宜混在させて、トレッドパターンを形成
してもよい。中央の突起条体10Aにはサイピング11
が、又ショルダの突起条体10Bにはサイピング12
が、夫々形成される。
As shown in FIG. 9, the tread contact surface S has a central protruding strip 10 arranged in the central contact surface area S1.
A, a protrusion ridge 10B of the shoulder arranged in the shoulder ground contact area S2, and an intermediate protrusion ridge 10C whose surface extends over both the central ground contact area S1 and the shoulder ground contact area S2, respectively. The protrusions 10A, 10B, 10C are
In addition to the block row as in this example, it may be formed as a rib body excluding the lateral groove Y, or the block row and the rib body may be appropriately mixed to form a tread pattern. Siping 11 is provided on the central protrusion 10A.
However, the shoulder ridge 10B has siping 12
Are formed respectively.

【0031】又前記中間の突起条体10Cに形成するサ
イピング13は、法線nと平行な傾斜角度0度で形成し
てもよいが、中間の突起条体10C表面の図心が中央接
地面域S1に位置するとき、サイピング11と同様にタ
イヤ回転方向Kとは同方向に傾斜させ、又図心がショル
ダ接地面域S2に位置するとき、サイピング12と同様
にタイヤ回転方向Kとは逆方向に傾斜させることが好ま
しい。なお前記図心とは、中間の突起条体10C表面の
タイヤ周方向展開図の図心であって、該展開図上に質量
が均一に分布した時の重心位置と一致する。
The siping 13 formed on the intermediate ridge 10C may be formed at an inclination angle of 0 degree parallel to the normal line n, but the centroid of the surface of the intermediate ridge 10C is the central ground plane. When it is located in the area S1, it is inclined in the same direction as the tire rotation direction K like the siping 11, and when it is located in the shoulder ground contact surface area S2, it is opposite to the tire rotation direction K like the siping 12. It is preferable to incline in the direction. The centroid is a centroid of a circumferential development view of the tire on the surface of the intermediate ridge 10C, and coincides with the center of gravity position when the mass is uniformly distributed on the development view.

【0032】(具体例)図1のタイヤ構造をなしかつ図
2のトレッドパターンをなすタイヤサイズ175/80
R14 88Qのタイヤを、表1の仕様に基づき試作す
るとともに、各試供タイヤをリム(14x5J)、内圧
(前輪:2.0ksc、後輪:1.9ksc)の基でF
F車(1800cc)の四輪に装着して圧雪路(雪温:
−3℃、気温:−8℃)を実車走行させ、その時の直進
安定性能、旋回性能をドライバーによるフィーリングに
よって10点満点法で評価した。指数の大なほど良好で
ある。
(Specific Example) Tire size 175/80 having the tire structure of FIG. 1 and the tread pattern of FIG.
R14 88Q tires were prototyped according to the specifications in Table 1, and each sample tire was tested with rim (14x5J) and internal pressure (front wheel: 2.0ksc, rear wheel: 1.9ksc).
Installed on the four wheels of the F car (1800 cc), the snowy road (snow temperature:
The actual vehicle was run at -3 ° C, temperature: -8 ° C), and the straight running stability and turning performance at that time were evaluated by the driver's feeling using a 10-point scale. The larger the index, the better.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明の空気入りタイヤは叙上の如く構
成しているために、サイピングによる路面との摩擦力を
最も効果的に発揮でき、氷雪路でのグリップ性能を高
め、直進安定性能、旋回性能を向上しうる。
Since the pneumatic tire of the present invention is constructed as described above, the frictional force with the road surface due to siping can be most effectively exhibited, the grip performance on the ice and snowy road is enhanced, and the straight running stability performance is improved. The turning performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すタイヤの断面図であ
る。
FIG. 1 is a cross-sectional view of a tire showing an embodiment of the present invention.

【図2】そのトレッドパターンの一例を示す平面図であ
る。
FIG. 2 is a plan view showing an example of the tread pattern.

【図3】中央の突起条体のサイピングを示すタイヤ周方
向の断面図である。
FIG. 3 is a cross-sectional view in the tire circumferential direction showing siping of a central protruding strip.

【図4】ショルダの突起条体のサイピングを示すタイヤ
周方向の断面図である。
FIG. 4 is a cross-sectional view in the tire circumferential direction showing siping of a ridge of a shoulder.

【図5】中央の突起条体の接地状態を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing a grounding state of a central protruding strip.

【図6】ショルダの突起条体の接地状態を示す断面図で
ある。
FIG. 6 is a cross-sectional view showing a grounded state of a ridge of a shoulder.

【図7】本発明のサイピングによる作用を説明する作用
図である。
FIG. 7 is an operation diagram illustrating an operation by siping of the present invention.

【図8】従来のサイピングによる作用を説明する作用図
である。
FIG. 8 is an operation diagram illustrating an operation by conventional siping.

【図9】本発明の他の実施例を示すトレッドパターンの
平面図である。
FIG. 9 is a plan view of a tread pattern showing another embodiment of the present invention.

【図10】具体例で用いる比較例品のトレッドパターン
を示す平面図である。
FIG. 10 is a plan view showing a tread pattern of a comparative product used in a specific example.

【符号の説明】[Explanation of symbols]

10、10A、10B、10C 突起条体 11、12、13 サイピング S トレッド接地面 S1 中央接地面域 S2 ショルダ接地面域 C タイヤ赤道 G、Gi、Go 縦主溝 Y、Yi、Yo 横溝 10, 10A, 10B, 10C Protruding strips 11, 12, 13 Siping S Tread contact surface S1 Central contact surface area S2 Shoulder contact surface area C Tire equator G, Gi, Go Vertical main groove Y, Yi, Yo Horizontal groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】タイヤ周方向にのびる縦主溝と、この縦主
溝を横切る方向にのびる横溝とによりトレッド接地面を
区画することによって、タイヤ周方向にのびるリブ、又
はブロックがタイヤ周方向に並ぶブロック列からなる複
数の突起条体を形成する一方、 前記トレッド接地面を、タイヤ赤道からトレッド接地面
巾の1/4の距離Lを隔たる中央接地面域とそのタイヤ
軸方向外側のショルダ接地面域とに仮想区分したとき、 前記中央接地面域に配される中央の突起条体は、この中
央の突起条体をタイヤ軸方向に横切りかつタイヤ半径方
向の内側から外側に向かってタイヤ回転方向とは同方向
に傾斜するサイピングを具えるとともに、 前記ショルダ接地面域に配されるショルダの突起条体
は、このショルダの突起条体をタイヤ軸方向に横切りか
つタイヤ半径方向の内側から外側に向かってタイヤ回転
方向とは逆方向に傾斜するサイピングを具えることを特
徴とする空気入りタイヤ。
1. A rib or block extending in the tire circumferential direction is defined in the tire circumferential direction by partitioning a tread contact surface with a vertical main groove extending in the tire circumferential direction and a lateral groove extending in a direction crossing the vertical main groove. While forming a plurality of ridges composed of lined block rows, the tread contact surface is separated from the tire equator by a central contact area separated from the tire equator by a distance L of 1/4 of the tread contact width and a shoulder contact on the outer side in the tire axial direction. When it is virtually divided into the ground area, the central protruding strip disposed in the central ground contact surface area crosses the central protruding strip in the tire axial direction and rotates the tire from the inner side to the outer side in the tire radial direction. The shoulder ridges arranged in the shoulder ground contact surface area have a sipe inclined in the same direction as the direction, and the shoulder ridges cross the shoulder ridges in the tire axial direction. A pneumatic tire is a tire rotational direction from the inside to the outside in the tire radial direction, characterized in that it comprises the sipes inclined in opposite directions.
【請求項2】前記中央の突起条体のサイピングは、トレ
ッド面上の法線に対する傾斜角θ1を5〜30度、かつ
前記ショルダの突起条体のサイピングは、トレッド面上
の法線に対する傾斜角θ2を5〜30度としたことを特
徴とする請求項1記載の空気入りタイヤ。
2. The sipe of the central ridge has an inclination angle θ1 of 5 to 30 degrees with respect to the normal to the tread surface, and the sipe of the shoulder ridge has an inclination to the normal to the tread surface. The pneumatic tire according to claim 1, wherein the angle θ2 is 5 to 30 degrees.
JP7062044A 1995-02-24 1995-02-24 Pneumatic tire Expired - Fee Related JP2966752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7062044A JP2966752B2 (en) 1995-02-24 1995-02-24 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7062044A JP2966752B2 (en) 1995-02-24 1995-02-24 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH08230416A true JPH08230416A (en) 1996-09-10
JP2966752B2 JP2966752B2 (en) 1999-10-25

Family

ID=13188778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7062044A Expired - Fee Related JP2966752B2 (en) 1995-02-24 1995-02-24 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2966752B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121757A (en) * 2011-12-09 2013-06-20 Bridgestone Corp Pneumatic tire
US20130186534A1 (en) * 2010-02-12 2013-07-25 Luc Bestgen Tire for a Two-Wheeled Vehicle, Comprising a Tread Having Sipes
JP2017132316A (en) * 2016-01-26 2017-08-03 住友ゴム工業株式会社 tire
JP2019137328A (en) * 2018-02-14 2019-08-22 横浜ゴム株式会社 Pneumatic tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130186534A1 (en) * 2010-02-12 2013-07-25 Luc Bestgen Tire for a Two-Wheeled Vehicle, Comprising a Tread Having Sipes
US9403409B2 (en) * 2010-02-12 2016-08-02 Compagnie Generale Des Etablissements Michelin Tire for a two-wheeled vehicle, comprising a tread having sipes
JP2013121757A (en) * 2011-12-09 2013-06-20 Bridgestone Corp Pneumatic tire
JP2017132316A (en) * 2016-01-26 2017-08-03 住友ゴム工業株式会社 tire
JP2019137328A (en) * 2018-02-14 2019-08-22 横浜ゴム株式会社 Pneumatic tire
WO2019159892A1 (en) * 2018-02-14 2019-08-22 横浜ゴム株式会社 Pneumatic tire
CN111542440A (en) * 2018-02-14 2020-08-14 横滨橡胶株式会社 Pneumatic tire
RU2742063C1 (en) * 2018-02-14 2021-02-02 Дзе Йокогама Раббер Ко., Лтд. Pneumatic tire

Also Published As

Publication number Publication date
JP2966752B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
JP4295092B2 (en) Tires that are particularly suitable for snowy road surfaces
EP1992504B1 (en) Motorcycle tire for off-road traveling
US6000450A (en) Studless tire
JP3391692B2 (en) Pneumatic tire
EP0428472B1 (en) Asymmetric tire
US7832439B2 (en) Pneumatic tire having recess in buttress face
JPS58194606A (en) Tread of tire and tire for heavy load
JPH07215017A (en) Studless tire
JPH04232106A (en) Tire tread
JP3203057B2 (en) Pneumatic tire
JPH03143707A (en) Heavy load pneumatic tire suited for use in winter season
JP4979864B2 (en) High performance tire for automobile
JP3429861B2 (en) Pneumatic tire
JP3035172B2 (en) Radial tire
JPH07186626A (en) Pneumatic radial tire
JP3569387B2 (en) Flat radial tire with asymmetric tread pattern on asymmetric profile
JP3206837B2 (en) Pneumatic tire
JP2002029226A (en) Pneumatic tire
JPH061119A (en) Pneumatic tire for iced and snowy road
JP2966752B2 (en) Pneumatic tire
CN110290940B (en) Anti-skid nail and nail-embedded tire
JP3273736B2 (en) Motorcycle tires
JP3377262B2 (en) Pneumatic tires for motorcycles
JP2807649B2 (en) Pneumatic tire
JP4148601B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees