JPH0822976B2 - Metal phthalocyanine having a novel crystal structure and photosemiconductor material - Google Patents

Metal phthalocyanine having a novel crystal structure and photosemiconductor material

Info

Publication number
JPH0822976B2
JPH0822976B2 JP63222500A JP22250088A JPH0822976B2 JP H0822976 B2 JPH0822976 B2 JP H0822976B2 JP 63222500 A JP63222500 A JP 63222500A JP 22250088 A JP22250088 A JP 22250088A JP H0822976 B2 JPH0822976 B2 JP H0822976B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
crystal
oxyvanadium
oxytitanium
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63222500A
Other languages
Japanese (ja)
Other versions
JPH0270763A (en
Inventor
達郎 岩淵
惇 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63222500A priority Critical patent/JPH0822976B2/en
Publication of JPH0270763A publication Critical patent/JPH0270763A/en
Publication of JPH0822976B2 publication Critical patent/JPH0822976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特定の結晶型を持ち、オキシチタニウムフ
タロシアニン、オキシバナジウムフタロシアニンの混晶
を用いた光半導体材料に関する。
TECHNICAL FIELD The present invention relates to an optical semiconductor material having a specific crystal type and using a mixed crystal of oxytitanium phthalocyanine and oxyvanadium phthalocyanine.

(従来の技術) フタロシアニン類は、優れた光半導体材料として盛ん
に研究されるようになってきた。電子写真用感光体、電
子写真方式による製版材料、太陽電池、イメージセンサ
ーなどの光電変換材料、光ディスクやフォトクロミズ
ム、フォトホールバーニング(PHB)用感剤などの光メ
モリ材料、半導体特性を利用したガスセンサーや有機ダ
イオード材料等、研究が活発になっている。特に長波長
域まで高感度を有するフタロシアニンは、半導体レーザ
ー用電子写真感光体や発光ダイオード用電子写真感光体
の電荷発生材料として勢力的に研究開発が行われてい
る。
(Prior Art) Phthalocyanines have been actively studied as excellent optical semiconductor materials. Electrophotographic photoconductors, electrophotographic plate-making materials, solar cells, photoelectric conversion materials such as image sensors, optical memory materials such as optical disks and photochromism, photo hole burning (PHB) sensitizers, gas sensors that utilize semiconductor characteristics, Research on organic diode materials is becoming active. In particular, phthalocyanine, which has high sensitivity up to a long wavelength region, is being actively researched and developed as a charge generating material for electrophotographic photoreceptors for semiconductor lasers and electrophotographic photoreceptors for light emitting diodes.

フタロシアニン類は、中心金属の種類により吸収スペ
クトルや、光導電性などの物性が異なるだけでなく、結
晶型によってもこれらの物性は大きく変化する。例え
ば、銅フタロシアニンでは、α、β、γ、ε型などの結
晶型の違いにより、帯電性、暗減衰、感度等の電子写真
電気特性に大きな差があることが知られている〔澤田
学:「染料と薬品」第24巻、第6号、p122(1979)〕。
この他、電子写真用感光体の場合、特定の結晶型が選択
されている例がいくつか報告されている。無金属フタロ
シアニンを用いた感光体(例えば、特開昭60−8655
1)、アルミニウムを含有するフタロシアニンを用いた
感光体(例えば、特開昭63−133462)、そのほか中心金
属としてチタニウム(例えば、特開昭59−49544)、イ
ンジウム、ガリウムなど、多くの中心金属が知られてお
り、ほとんどが特定の結晶型を選択している。
Phthalocyanines not only have different absorption spectra and physical properties such as photoconductivity depending on the type of central metal, but also have significantly different physical properties depending on the crystal type. For example, copper phthalocyanine is known to have large differences in electrophotographic electrical characteristics such as charging property, dark decay, and sensitivity due to differences in crystal types such as α, β, γ, and ε types [Sawada
Gaku: "Dyes and Drugs", Vol. 24, No. 6, p122 (1979)].
In addition, in the case of the electrophotographic photoreceptor, some examples in which a specific crystal type is selected have been reported. Photoreceptors using metal-free phthalocyanines (see, for example, JP-A-60-8655)
1), a photoreceptor using aluminum-containing phthalocyanine (for example, JP-A-63-133462), and many other center metals such as titanium (for example, JP-A-59-49544), indium and gallium. It is known and most choose a particular crystal form.

(発明が解決しようとする課題) しかしながら、中心金属と結晶型を決定しただけで
は、実際の応用に際しては十分とはいえない。例えば、
上述のフタロシアニンを電荷発生剤として電子写真用感
光体に用いる場合には、感度はもちろんのこと、多くの
要求性能を満たさなくてはならない。電気特性として
は、初期特性として、半導体レーザーに対する感度が高
いだけでなく、高速応答性、帯電特性が良好であり、暗
減衰が小さいこと、残留電位が小さいことが必要であ
り、さらに、これらの特性が繰り返し使用によって大き
く変化しないこと、すなわち、優れた耐久性が要求され
る。
(Problems to be Solved by the Invention) However, determining the central metal and the crystal type is not sufficient for practical application. For example,
When the above-mentioned phthalocyanine is used as a charge generating agent in a photoreceptor for electrophotography, it is necessary to satisfy not only the sensitivity but also many required performances. Regarding the electrical characteristics, as initial characteristics, not only high sensitivity to a semiconductor laser but also fast response, good charging characteristics, low dark decay, and low residual potential are required. It is required that the characteristics do not change significantly with repeated use, that is, excellent durability.

これら種々の特性を改善する目的で従来とられてきた
手法としては、フタロシアニン分子に対する化学的な修
飾、また、酸処理、有機溶媒処理、ボールミルなどによ
る機械的歪力や熱処理等による結晶化度や粒径、粒形の
制御、あるいは電子供与性物質もしくは電子吸引性物質
の添加、樹脂結着剤中に分散させる場合には、使用する
樹脂の極性を選択するなど、様々、検討されてきた。し
かしながら、これらの手法では、要求される諸特性をバ
ランス良く満たすものは少ない上、樹脂分散型の電荷発
生層においては、多くの場合、フタロシアニン顔料の分
散性を著しく損ない、実用上、期待した効果が得られな
いことが多い。
Methods conventionally used for the purpose of improving these various properties include chemical modification of phthalocyanine molecules, acid treatment, organic solvent treatment, mechanical strain by a ball mill, crystallinity by heat treatment, and the like. Various studies have been conducted, such as controlling the particle size and particle shape, adding an electron-donating substance or an electron-withdrawing substance, and selecting the polarity of the resin used when dispersing in a resin binder. However, in these methods, there are few that satisfy the required various properties in a well-balanced manner, and in many cases, in the resin-dispersed charge generation layer, the dispersibility of the phthalocyanine pigment is significantly impaired, and in practice, the expected effect is obtained. Is often not obtained.

フタロシアニン類における光電変換の機構は、結晶内
の単一分子内での現象ではなく、分子間力で弱く結合さ
れた隣接分子間の相互作用に影響されることがわかって
きた(例えば、N.MinamiらJapanese Jounal of Applied
Physics Vol.26,No.10,1987,p.1754)。したがって、
異種金属を有するフタロシアニン分子において混晶が可
能となれば、上述の分子間力をいわば人工的に制御でき
ることになり、新しいタイプのフタロシアニンの結晶を
創出することになる。
It has been found that the mechanism of photoelectric conversion in phthalocyanines is influenced not by a phenomenon within a single molecule in a crystal but by an interaction between adjacent molecules weakly bound by intermolecular force (for example, N. Minami et al. Japanese Jounal of Applied
Physics Vol.26, No.10, 1987, p.1754). Therefore,
If a mixed crystal is possible in a phthalocyanine molecule having a different metal, the above-mentioned intermolecular force can be artificially controlled, so that a new type of phthalocyanine crystal is created.

オキシチタニウムフタロシアニンおよびオキシバナジ
ウムフタロシアニンのそれぞれの結晶構造については、
例えば、W.Hillerらが、Zeitschrift fur Kristallogra
phic,159,p173のなかで報告しているが、混晶の可能性
については全く示唆されていない。
Regarding the respective crystal structures of oxytitanium phthalocyanine and oxyvanadium phthalocyanine,
For example, W. Hiller et al. Zeitschrift fur Kristallogra
Although it has been reported in phic, 159, p173, the possibility of mixed crystals is not suggested at all.

本発明者らは、より高性能な新規構造を有するフタロ
シアニンを得るべく鋭意検討した結果、分子性結晶の一
つであるフタロシアニン結晶において、チタニウムおよ
びバナジウムを中心金属として有するフタロシアニン分
子の間で混晶が生成されていることを見出し、しかも、
光半導体材料としてのひとつの用途である電子写真用感
光体の電荷発生剤として、前述の諸特性をバランス良く
満たしていることを見出し、本発明を完成するに至っ
た。
As a result of intensive studies to obtain a phthalocyanine having a higher-performance novel structure, the present inventors have found that in a phthalocyanine crystal that is one of molecular crystals, a mixed crystal is formed between phthalocyanine molecules having titanium and vanadium as central metals. Is generated, and
As a charge generating agent for a photoconductor for electrophotography, which is one application as an optical semiconductor material, the inventors have found that the above-mentioned various properties are well-balanced and completed the present invention.

(課題を解決するための手段) 本発明の目的は、従来にない新しいタイプのフタロシ
アニン結晶の提供、ならびにこれを用いた光半導体材
料、および広い波長域における感光性(とりわけ半導体
レーザの発振波長域である800nm近傍での感光性)など
の優れた初期電気特性、ならびに長期繰り返し使用時の
耐久性を満足させる電荷発生剤の提供にある。
(Means for Solving the Problems) An object of the present invention is to provide a novel type of phthalocyanine crystal that has never existed before, an optical semiconductor material using the same, and photosensitivity in a wide wavelength range (in particular, an oscillation wavelength range of a semiconductor laser). It is to provide a charge generating agent that satisfies excellent initial electrical characteristics such as the photosensitivity near 800 nm) and durability during long-term repeated use.

すなわち、本発明は、X線回折スペクトルにおいて、
ブラッグ角(2θ±0.2゜)9.2゜、13.1゜、20.7゜、2
6.2゜、27.1゜に強い回折ピーク(以下、β型という)
を示し、第1成分がオキシチタニウムフタロシアニン、
第2成分がオキシバナジウムフタロシアニンから構成さ
れ、オキシチタニウムフタロシアニンのモル分率が100
%未満80%を越える範囲にある、混晶からなるフタロシ
アニン結晶、およびX線回折スペクトルにおいて、ブラ
ッグ角(2θ±0.2゜)7.6゜、10.2゜、12.6゜、22.5
゜、24.3゜、28.6゜に強い回折ピーク(以下、α型とい
う)を示し、第1成分がオキシチタニウムフタロシアニ
ン、第2成分がオキシバナジウムフタロシアニンから構
成される混晶からなるフタロシアニン結晶、およびβ型
もしくはα型該化合物を含有する光半導体材料に存す
る。
That is, the present invention is based on the X-ray diffraction spectrum
Bragg angle (2θ ± 0.2 °) 9.2 °, 13.1 °, 20.7 °, 2
Strong diffraction peaks at 6.2 ° and 27.1 ° (hereinafter referred to as β type)
The first component is oxytitanium phthalocyanine,
The second component is composed of oxyvanadium phthalocyanine and has a molar fraction of oxytitanium phthalocyanine of 100.
% In the range of more than 80% and a mixed crystal of phthalocyanine, and X-ray diffraction spectrum, Bragg angles (2θ ± 0.2 °) 7.6 °, 10.2 °, 12.6 °, 22.5
Phthalocyanine crystals showing strong diffraction peaks (hereinafter referred to as α type) at °, 24.3 ° and 28.6 °, the first component being oxytitanium phthalocyanine, the second component being a mixed crystal composed of oxyvanadium phthalocyanine, and β type Alternatively, it exists in an optical semiconductor material containing the α-type compound.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明におけるオキシチタニウムフタロシアニン−オ
キシバナジウムフタロシアニン混晶は、それぞれ単独の
フタロシアニン結晶もしくは非結晶物を出発物質として
生成されるのが好適であるが、必ずしもこれに限定され
ない。
The oxytitanium phthalocyanine-oxyvanadium phthalocyanine mixed crystal in the present invention is preferably produced by using, as a starting material, a single phthalocyanine crystal or an amorphous substance, but is not necessarily limited thereto.

ここで用いられる出発物質としてのオキシチタニウム
フタロシアニンの合成方法は、モーザーおよびトーマス
の「フタロシアニン化合物」(Moser and Thomas “Ph
thalocianine Compounds")の公知方法等、いずれによ
ってもよい。例えば、O−フタロニトリルと四塩化チタ
ンを加熱融解またはα−クロロナフタレンなどの有機溶
媒の存在下で加熱する方法、O−フタロニトリルと四塩
化チタンのピリジニウム塩との反応、あるいはクロロチ
タニウムフタロシアニンの酸化により収率良く得られ
る。さらに、合成物を酸、アルカリ、あるいは該フタロ
シアニンの可溶性溶媒、例えば、メタノール、トルエ
ン、キシレン、クロロホルム、ジクロロエタン、トリク
ロロエタン、α−クロロナフタレン等による洗浄や水洗
を経て得られる。さらに、昇華精製やアシドペースト処
理することも可能である。
The method of synthesizing oxytitanium phthalocyanine as a starting material used herein is described by Moser and Thomas in "Phthalocyanine Compounds" (Moser and Thomas "Ph
thalocianine compounds "), etc., for example, a method of heating and melting O-phthalonitrile and titanium tetrachloride or heating in the presence of an organic solvent such as α-chloronaphthalene, O-phthalonitrile and tetrachloride. It can be obtained in good yield by reaction of titanium chloride with a pyridinium salt or oxidation of chlorotitanium phthalocyanine.In addition, the synthetic product is acid, alkali, or a soluble solvent of the phthalocyanine, for example, methanol, toluene, xylene, chloroform, dichloroethane, It can be obtained by washing with trichloroethane, α-chloronaphthalene, etc. and washing with water, and can be further subjected to sublimation purification or acid paste treatment.

また、出発物質として用いられるオキシバナジウムフ
タロシアニンの合成方法は、前述文献の公知の方法等い
ずれによってもよい。例えば、O−フタロニトリルと五
酸化バナジウムを加熱融解または有機溶媒の存在下で加
熱する方法、無水フタル酸を尿素および三塩化チタンと
加熱融解または有機溶媒の存在下で加熱する方法によっ
て収率良く得られる。さらに、合成物を酸、アルカリ、
あるいは該フタロシアニンの可溶性溶媒、例えば、メタ
ノール、トルエン、キシレン、クロロホルム、ジクロロ
エタン、トリクロロエタン、α−クロロナフタレン等に
よる洗浄や水洗を経て得られる。さらに、昇華精製やア
シドペースト処理することも可能である。
The method for synthesizing oxyvanadium phthalocyanine used as a starting material may be any of the known methods in the above-mentioned documents. For example, a good yield can be obtained by heating and melting O-phthalonitrile and vanadium pentoxide in the presence of an organic solvent, or heating phthalic anhydride with urea and titanium trichloride in the presence of an organic solvent and heating. can get. In addition, the synthetic
Alternatively, it can be obtained by washing with a soluble solvent of the phthalocyanine, for example, methanol, toluene, xylene, chloroform, dichloroethane, trichloroethane, α-chloronaphthalene, or washing with water. Further, sublimation purification and acid paste treatment can also be performed.

混晶の作成方法は、以下に述べる気相法を用いる。一
般に無機物における混晶の作成には、気相法以外に、融
解状態から生成する液相法、有機溶媒等の溶液状態から
再結晶させる方法などが知られており、該混晶物の作成
に当たっては、気相法に限定されるものではない。しか
しながら、液相法においてはフタロシアニンの熱分解や
昇華性の問題点、再結晶法においてはフタロシアニンの
溶解度などの問題点があり、昇華性に富んだフタロシア
ニンの場合には気相法が最も好適である。
The mixed phase is formed by the vapor phase method described below. In general, for the formation of mixed crystals of inorganic substances, in addition to the vapor phase method, a liquid phase method of producing from a molten state, a method of recrystallizing from a solution state of an organic solvent, etc. are known. Is not limited to the vapor phase method. However, the liquid phase method has problems such as thermal decomposition and sublimation of phthalocyanine, and the recrystallization method has problems such as solubility of phthalocyanine. In the case of phthalocyanine rich in sublimation, the gas phase method is most suitable. is there.

キャリアガス法による昇華装置の昇華源に、出発物質
として前述の方法で得られたオキシチタニウムフタロシ
アニンおよびオキシバナジウムフタロシアニンの粉末を
所定の比率で仕込み、加温する。昇華源の温度は500℃
から600℃が、付着温度としては480℃以下が好ましい。
キャリアガスとしては不活性ガス、例えば、アルゴンや
窒素ガスが良い。圧力は、10Torrから0.1Torrが好適で
あるが、キャリアガスを用いない、いわゆる単純昇華で
も可能である。
A powder of oxytitanium phthalocyanine and oxyvanadium phthalocyanine obtained by the above-mentioned method as a starting material is charged into a sublimation source of a sublimation apparatus by a carrier gas method at a predetermined ratio and heated. Sublimation source temperature is 500 ℃
To 600 ° C., and the adhesion temperature is preferably 480 ° C. or lower.
As the carrier gas, an inert gas such as argon or nitrogen gas is preferable. The pressure is preferably 10 Torr to 0.1 Torr, but so-called simple sublimation without using a carrier gas is also possible.

かくして、本発明のβ型もしくはα型の結晶型を持つ
該混晶物を得ることができる。
Thus, the mixed crystal having the β-type or α-type crystal form of the present invention can be obtained.

本発明の材料は、電子写真感光体として複写機、半導
体レーザプリンタ、LEDプリンタ、液晶シャッタープリ
ンタ等に用いられるだけでなく、太陽電池、イメージセ
ンサ等の光電変換素子、さらには光ディスクなどのメモ
リ材料としても好適である。
The material of the present invention is used not only as a copying machine, a semiconductor laser printer, an LED printer, a liquid crystal shutter printer, etc. as an electrophotographic photoreceptor, but also as a photoelectric conversion element such as a solar cell and an image sensor, and further a memory material such as an optical disk. Is also suitable.

(実施例) 以下、本発明を実施例により、具体的に説明するが、
以下の実施例に限定されるものではない。
(Examples) Hereinafter, the present invention will be specifically described with reference to Examples.
The present invention is not limited to the following examples.

製造例1(出発物質の製造) まず、出発物質としてのオキシチタニウムフタロシア
ニンの製造例を示す。
Production Example 1 (Production of Starting Material) First, an example of production of oxytitanium phthalocyanine as a starting material will be described.

O−ジフタロニトリル64.0g、四塩化チタン24.3gをα
−クロロナフタレン500ml中で230℃にて3時間反応後、
α−クロロナフタレン、メタノールおよび熱水の順で洗
浄した。その後、キシレンで洗浄、乾燥して46.0gのオ
キシチタニウムフタロシアニンを得た。この生成物を5
g、キャリアガス法昇華装置の昇華源部に仕込み、昇華
源部の温度を540℃、アルゴンガスの流量70ml/min、圧
力0.3Torrで1時間昇華を実施した。480〜350℃の温度
域の付着物3.6gをかきとって、出発物質とした。
O-diphthalonitrile 64.0g, titanium tetrachloride 24.3g α
-After reacting in 500 ml of chloronaphthalene at 230 ° C for 3 hours,
It was washed with α-chloronaphthalene, methanol and hot water in this order. Then, it was washed with xylene and dried to obtain 46.0 g of oxytitanium phthalocyanine. 5 of this product
g, was charged into the sublimation source part of the carrier gas method sublimation device, and sublimation was carried out for 1 hour at a temperature of the sublimation source part of 540 ° C., an argon gas flow rate of 70 ml / min, and a pressure of 0.3 Torr. 3.6 g of the deposit in the temperature range of 480 to 350 ° C. was scraped off to obtain a starting material.

次に、出発物質としてのオキシバナジウムフタロシア
ニンの製造例を示す。オキシバナジウムフタロシアニン
(関東化学製試薬)を5g、キャリアガス法昇華装置の昇
華源部に仕込み、昇華源部の温度を540℃、アルゴンガ
スの流量70ml/min、圧力0.3Torrで1時間昇華を実施し
た。480〜350℃の温度域の付着物3.5gをかきとって、出
発物質とした。
Next, an example of producing oxyvanadium phthalocyanine as a starting material is shown. 5 g of oxyvanadium phthalocyanine (reagent manufactured by Kanto Kagaku) was charged into the sublimation source part of the carrier gas sublimation device, and the temperature of the sublimation source part was 540 ° C, the flow rate of argon gas was 70 ml / min, and the pressure was 0.3 Torr. did. 3.5 g of the deposit in the temperature range of 480 to 350 ° C. was scraped off to obtain a starting material.

このようにして得られたオキシチタニウムフタロシア
ニンおよびオキシバナジウムフタロシアニンの粉末X線
回折スペクトルをそれぞれ第1図の(a)および(b)
に示す。また、後述の方法で得られた透過吸収スペクト
ルをそれぞれ第2図の(a)および(b)に、また、元
素分析および金属定量分析結果を表2にまとめた。オキ
シチタニウムフタロシアニンはブラッグ角9.2゜、13.1
゜、20.7゜、26.2゜、27.1゜に強い回折ピークがありβ
型であり、オキシバナジウムフタロシアニンはブラッグ
角7.6゜、10.2゜、12.6゜、22.5゜、24.3゜、28.6゜に
強い回折ピークがありα型であった。
The powder X-ray diffraction spectra of oxytitanium phthalocyanine and oxyvanadium phthalocyanine thus obtained are shown in FIGS. 1 (a) and (b), respectively.
Shown in Further, the transmission absorption spectra obtained by the method described below are summarized in (a) and (b) of FIG. 2, respectively, and the results of elemental analysis and metal quantitative analysis are summarized in Table 2. Oxytitanium phthalocyanine has a Bragg angle of 9.2 °, 13.1
There are strong diffraction peaks at °, 20.7 °, 26.2 ° and 27.1 ° β
Oxyvanadium phthalocyanine was α-type with strong diffraction peaks at Bragg angles of 7.6 °, 10.2 °, 12.6 °, 22.5 °, 24.3 ° and 28.6 °.

実施例1 製造例1で得られたオキシチタニウムフタロシアニ
ン、オキシバナジウムフタロシアニンの粉末を各々3.6
g、0.4g混合して、キャリアガス法昇華装置の昇華源部
に仕込み、昇華源部の温度を540℃、アルゴンガスの流
量70ml/min、圧力0.3Torrで1時間昇華を実施した。480
〜350℃の温度域の付着物をかきとって、3.7gの生成物
を得た。この生成物の粉末X線回折スペクトルを第3図
(a)に示す。ブラッグ角(2θ±0.2゜)9.2゜、13.1
゜、20.7゜、26.2゜、27.1゜に強い回折ピークを示し、
β型オキシチタニウムフタロシアニン結晶と同一の回折
ピークが観察された。同時にブラッグ角(2θ±0.2
゜)7.6゜、10.2゜、12.6゜、22.5゜、24.3゜、28.6゜
に強い回折ピークを示し、後述のα型オキシチタニウム
フタロシアニンを特徴づける回折ピークがわずかではあ
るが観測された。すなわち、結晶型としてはβ型、α型
が混在している。
Example 1 The powders of oxytitanium phthalocyanine and oxyvanadium phthalocyanine obtained in Production Example 1 were each mixed with 3.6
g and 0.4 g were mixed and charged into a sublimation source section of a carrier gas sublimation apparatus, and sublimation was performed for 1 hour at a temperature of the sublimation source section of 540 ° C., an argon gas flow rate of 70 ml / min, and a pressure of 0.3 Torr. 480
The deposit in the temperature range of ˜350 ° C. was scraped off to obtain 3.7 g of the product. The powder X-ray diffraction spectrum of this product is shown in FIG. Bragg angle (2θ ± 0.2 °) 9.2 °, 13.1
Shows strong diffraction peaks at °, 20.7 °, 26.2 °, and 27.1 °,
The same diffraction peak as that of the β-type oxytitanium phthalocyanine crystal was observed. At the same time, the Bragg angle (2θ ± 0.2
(°) 7.6 °, 10.2 °, 12.6 °, 22.5 °, 24.3 °, 28.6 ° showed strong diffraction peaks, and the diffraction peaks which characterize the α-type oxytitanium phthalocyanine described later were observed, though a few. That is, β-type and α-type are mixed as the crystal type.

次に、昇華して得られた生成物が単なるオキシチタニ
ウムフタロシアニンとオキシバナジウムフタロシアニン
の混合物でないことを確かめるため、赤外吸収スペクト
ルを測定した。測定は、日本電子製FTIR(JIR−100)を
用い、核酸反射法にて分解能0.5cm-1で実施した。第6
図(b)に、波数900〜1020cm-1の赤外吸収スペクトル
を示す。表1に各吸収の帰属とピーク位置をまとめた。
後述の比較例1の、オキシチタニウムフタロシアニンと
オキシバナジウムフタロシアニンの粉末混合物では観測
されない。994cm-1付近のピーク(図中Bで示す)が新
たに出現しており、混晶が生成されたことによる分子間
力の変化にともなって、新たな分子振動モードが誘起さ
れたことを示している。
Next, in order to confirm that the product obtained by sublimation was not a simple mixture of oxytitanium phthalocyanine and oxyvanadium phthalocyanine, an infrared absorption spectrum was measured. The measurement was performed using a JEOL FTIR (JIR-100) by the nucleic acid reflection method at a resolution of 0.5 cm -1 . Sixth
In the figure, (b) shows an infrared absorption spectrum of wave numbers 900 to 1020 cm -1 . Table 1 summarizes the attribution and peak position of each absorption.
It is not observed in the powder mixture of oxytitanium phthalocyanine and oxyvanadium phthalocyanine of Comparative Example 1 described later. A new peak (indicated by B in the figure) near 994 cm -1 has appeared, indicating that a new molecular vibration mode has been induced with the change in intermolecular force due to the formation of mixed crystals. ing.

次に、この混晶結晶のオキシチタニウムフタロシアニ
ンおよびオキシバナジウムフタロシアニンの金属定量分
析結果、および元素分析結果を表2に示す。
Next, Table 2 shows the metal quantitative analysis results and the elemental analysis results of oxytitanium phthalocyanine and oxyvanadium phthalocyanine of this mixed crystal.

また、吸収スペクトルを測定するため、後述する応用
例1の方法によりフタロシアニンの分散液を調製し、カ
バーグラスの上に塗布、乾燥させて顔料分散層を形成し
た。第5図(a)に透過吸収スペクトルを示す。
Further, in order to measure the absorption spectrum, a dispersion liquid of phthalocyanine was prepared by the method of Application Example 1 described later, and was applied onto a cover glass and dried to form a pigment dispersion layer. The transmission absorption spectrum is shown in FIG.

比較例1 β型オキシチタニウムフタロシアニン、α型オキシバ
ナジウムフタロシアニンを重量比90:10で粉末状で混合
したものの赤外吸収スペクトルの結果を第6図(a)お
よび表1に示す。
Comparative Example 1 The results of infrared absorption spectrum of a mixture of β-type oxytitanium phthalocyanine and α-type oxyvanadium phthalocyanine in a powder form at a weight ratio of 90:10 are shown in FIG. 6 (a) and Table 1.

ここで用いたβ型オキシチタニウムフタロシアニン
は、製造例1で得られたオキシチタニウムフタロシアニ
ン4.0gを実施例1と同様の条件で再度昇華したものであ
る。
The β-type oxytitanium phthalocyanine used here was obtained by sublimating 4.0 g of oxytitanium phthalocyanine obtained in Production Example 1 again under the same conditions as in Example 1.

また、ここで用いたα型オキシバナジウムフタロシア
ニンは、製造例1で得られたオキシバナジウムフタロシ
アニン4.0gを実施例1と同様の条件で再度昇華したもの
である。
The α-type oxyvanadium phthalocyanine used here was obtained by sublimating 4.0 g of oxyvanadium phthalocyanine obtained in Production Example 1 again under the same conditions as in Example 1.

実施例2 製造例1で得られたオキシチタニウムフタロシアニ
ン、オキシバナジウムフタロシアニンの粉末を各々3.2
g、0.8g混合して、キャリアガス法昇華装置の昇華源部
に仕込み、実施例1と同様に昇華を実施した。480〜350
℃の温度域の付着物をかきとって、3.7gの生成物を得
た。この生成物の粉末X線回折スペクトルを第3図
(b)に示す。ブラッグ角(2θ±0.2゜)7.6゜、10.2
゜、12.6゜、22.5゜、24.3゜、28.6゜に強い回折ピーク
を示し、α型オキシチタニウムフタロシアニンと同一の
回折ピークを示した。しかしながら、実施例1とは異な
り、β型に由来する回折ピークは観察されなかった。
Example 2 3.2 parts each of powders of oxytitanium phthalocyanine and oxyvanadium phthalocyanine obtained in Production Example 1 were prepared.
g and 0.8 g were mixed and charged into a sublimation source section of a carrier gas sublimation apparatus, and sublimation was carried out in the same manner as in Example 1. 480-350
The deposit in the temperature range of ° C was scraped off to obtain 3.7 g of a product. The powder X-ray diffraction spectrum of this product is shown in FIG. 3 (b). Bragg angle (2θ ± 0.2 °) 7.6 °, 10.2
It showed strong diffraction peaks at °, 12.6 °, 22.5 °, 24.3 ° and 28.6 °, showing the same diffraction peak as α-type oxytitanium phthalocyanine. However, unlike Example 1, no diffraction peak derived from β type was observed.

次に、実施例1と同様に赤外吸収スペクトルを測定し
た。結果を第6図(d)、表1に示す。後述の比較例2
の、オキシチタニウムフタロシアニンとオキシバナジウ
ムフタロシアニンの粉末混合物で観測される1003cm-1
近のピーク(図中Aで示す)が、2cm-1ほど低波数側に
シフトしているのが観測された。こうした現象は無機物
混晶系で通常、観測され、混晶の同定の一つの手段とさ
えなっている。混晶の形成に伴う分子間力の微妙な変化
が分子振動エネルギーに変化を与えた結果であり、この
系で混晶が形成されていることを示している。
Next, the infrared absorption spectrum was measured in the same manner as in Example 1. The results are shown in FIG. 6 (d) and Table 1. Comparative Example 2 described below
Of, 1003 cm -1 vicinity of peaks observed in the powder mixture of oxytitanium phthalocyanine and oxyvanadium phthalocyanine (shown in the figure A) is, that has shifted about 2 cm -1 to a lower wavenumber side was observed. Such a phenomenon is usually observed in the mixed crystal system of inorganic substances, and it has become one of the means for identifying the mixed crystal. The subtle changes in intermolecular force due to the formation of mixed crystals are the result of changes in the molecular vibrational energy, indicating that mixed crystals are formed in this system.

次に、この混晶結晶のオキシチタニウムフタロシアニ
ンおよびオキシバナジウムフタロシアニンの金属定量分
析結果を表2に示す。
Next, Table 2 shows the metal quantitative analysis results of oxytitanium phthalocyanine and oxyvanadium phthalocyanine of this mixed crystal.

第5図(b)に透過吸収スペクトルを示す。 FIG. 5 (b) shows the transmission absorption spectrum.

比較例2 α型オキシチタニウムフタロシアニン、α型オキシバ
ナジウムフタロシアニンを重量比80:20で粉末状で混合
したものの赤外吸収スペクトルの結果を第6図(c)お
よび表1に示す。
Comparative Example 2 The results of infrared absorption spectrum of a mixture of α-type oxytitanium phthalocyanine and α-type oxyvanadium phthalocyanine in powder form at a weight ratio of 80:20 are shown in FIG. 6 (c) and Table 1.

ここで用いたα型オキシチタニウムフタロシアニン
は、製造例1で得られたオキシチタニウムフタロシアニ
ン4.0gを、付着温度を200℃に設定した以外は実施例1
と同様の条件で再度昇華したものである。
The α-type oxytitanium phthalocyanine used here was the same as in Example 1 except that 4.0 g of the oxytitanium phthalocyanine obtained in Production Example 1 was set to the adhesion temperature of 200 ° C.
It was sublimated again under the same conditions as.

また、ここで用いたα型オキシバナジウムフタロシア
ニンは、比較例1で得られたものである。
Further, the α-type oxyvanadium phthalocyanine used here is the one obtained in Comparative Example 1.

実施例3〜5 製造例1で得られたオキシチタニウムフタロシアニ
ン、オキシバナジウムフタロシアニンの粉末を各々 3.8g、0.2g(実施例3) 2.4g、1.6g(実施例4) 0.8g、3.2g(実施例5) づつ混合して、キャリアガス法昇華装置の昇華源部に仕
込み、実施例1と同様に昇華をそれぞれ実施した。実施
例1と同様の方法で得られた、粉末X線回折スペクトル
を第4図(c),(d),(e)に、赤外吸収スペクト
ルを表1に、透過吸収スペクトルを第5図(c),
(d),(e)に、そして、金属定量分析および元素分
析の結果を表2にそれぞれ示す。
Examples 3-5 3.8 g, 0.2 g (Example 3) 2.4 g, 1.6 g (Example 4) 0.8 g, 3.2 g (implementation) of the powders of oxytitanium phthalocyanine and oxyvanadium phthalocyanine obtained in Production Example 1, respectively. Example 5) The components were mixed and charged into a sublimation source section of a carrier gas sublimation apparatus, and sublimation was performed in the same manner as in Example 1. Powder X-ray diffraction spectra obtained by the same method as in Example 1 are shown in FIGS. 4 (c), (d) and (e), an infrared absorption spectrum is shown in Table 1, and a transmission absorption spectrum is shown in FIG. (C),
The results of quantitative metal analysis and elemental analysis are shown in (d) and (e), respectively.

実施例3では、実施例1と同様に結晶型は、β型に由
来する回折ピークが強く観測され、α型のピークも回折
強度は弱いものの観測された。赤外吸収スペクトルにお
いては実施例1と同様、994cm-1付近のピーク(図中B
で示す)が新たに出現した。
In Example 3, similarly to Example 1, in the crystal form, a diffraction peak derived from β type was strongly observed, and an α type peak was also observed although the diffraction intensity was weak. In the infrared absorption spectrum, the peak around 994 cm -1 (B in the figure) was obtained as in Example 1.
(Indicated by) newly appeared.

実施例4、5では、実施例2と同様に結晶型は、α型
に由来する回折ピークのみが観測された。赤外吸収スペ
クトルにおいては実施例2と同様、1003cm-1付近のピー
ク(図中Aで示す)が、低波数側にシフトしているのが
観測された。
In Examples 4 and 5, only the diffraction peak derived from α type was observed in the crystal form as in Example 2. In the infrared absorption spectrum, as in Example 2, it was observed that the peak near 1003 cm -1 (indicated by A in the figure) was shifted to the lower wave number side.

いずれも混晶が生成れていることを示している。 Both show that mixed crystals are generated.

応用例1、2(電子写真感光体の作成) 実施例1で得た混晶結晶1gを、4−メトキシ−4−メ
チル−2−ペンタノン33gにブチラール樹脂(積水化学
製BM−2)0.5gを溶かした溶液に加え、ペイントシェカ
ーにて6時間分散した。この分散液を、アルミニウム上
に塗布していた膜厚0.1μmのポリアミド(東レ製、CM4
001)からなるアンダーコート層上に塗布し、100℃で1
時間乾燥させて、0.1μmの電荷発生層を形成した。次
に、電荷移動剤としてP−ジエチルアミノベンズアルデ
ヒド(ジフェニルヒドラゾン)50重量部、ポリカーボネ
ート樹脂(三菱ガス化学製PCZ)50重量部を1,2−ジクロ
ルエタン100重量部に溶かした液を電荷発生層上に塗
布、乾燥して17μmの電荷移動層を形成し、電子写真用
感光体を得た(応用例1)。同様の方法で、実施例2で
得た混晶結晶を用いて感光体を作成した(応用例2)。
これらの感光体特性の測定は以下の方法で行った。
Application Examples 1 and 2 (Preparation of Electrophotographic Photoreceptor) 1 g of the mixed crystal obtained in Example 1 was added to 33 g of 4-methoxy-4-methyl-2-pentanone and 0.5 g of butyral resin (BM-2 manufactured by Sekisui Chemical Co., Ltd.). Was added to the melted solution and dispersed for 6 hours with a paint shaker. This dispersion was coated on aluminum with a 0.1 μm thick polyamide (Toray, CM4
001) undercoat layer and apply at 100 ℃ for 1
It was dried for an hour to form a 0.1 μm charge generation layer. Next, a liquid prepared by dissolving 50 parts by weight of P-diethylaminobenzaldehyde (diphenylhydrazone) as a charge transfer agent and 50 parts by weight of a polycarbonate resin (PCZ manufactured by Mitsubishi Gas Chemical Co., Inc.) in 100 parts by weight of 1,2-dichloroethane was placed on the charge generation layer. A 17 μm-thick charge transfer layer was formed by coating and drying to obtain a photoconductor for electrophotography (Application Example 1). In the same manner, a photoconductor was prepared by using the mixed crystal crystal obtained in Example 2 (Application Example 2).
The characteristics of these photoconductors were measured by the following methods.

川口電気(株)製静電複写紙試験機モデルEPA−8100
にて、−6kVkのコロナ帯電を行い、暗所で1秒間保持し
た後、干渉フィルターで単色化された波長800nmおよび6
50nmを4.2μW/cm22秒間露光し、表面電位を測定した。
初期帯電位(Vo)、半減露光感度(E1/2)、露光量5
μJ/cm2での表面電位(Vi)、残留電位(Vr)、暗減衰
(DD)および繰り返し特性を求めた。結果を表3に初期
特性、表4には帯電・露光繰り返し1万回後の特性を示
す。
Kawaguchi Electric Co., Ltd. electrostatic copying paper tester model EPA-8100
At −6kVk, charged in a dark place for 1 second, and then monochromated with an interference filter at wavelengths of 800nm and 6
The surface potential was measured by exposing 50 nm to 4.2 μW / cm 2 for 2 seconds.
Initial charge position (Vo), half exposure sensitivity (E 1/2 ), exposure amount 5
The surface potential (Vi), residual potential (Vr), dark decay (DD) and repeatability at μJ / cm 2 were determined. The results are shown in Table 3, and Table 4 shows the characteristics after 10,000 charging / exposure cycles.

Vo、E1/2、Vi、Vr、DDともに非常に良好な電子写真
特性を示し、繰り返し特性も満足のいくものである。
Vo, E 1/2 , Vi, Vr, and DD all show very good electrophotographic characteristics, and the repeating characteristics are also satisfactory.

(発明の効果) 以上説明したように、本発明のフタロシアニン混晶結
晶は、半導体レーザ発振波長域から発光ダイオード発光
域にかけて優れた光電変換能を有する。
(Effects of the Invention) As described above, the phthalocyanine mixed crystal of the present invention has an excellent photoelectric conversion ability from the semiconductor laser oscillation wavelength range to the light emitting diode emission range.

【図面の簡単な説明】[Brief description of drawings]

第1図は製造例1で得られた出発物質としてのフタロシ
アニンの粉末X線回折スペクトル、第2図は同じフタロ
シアニンから得られた分散層の透過吸収スペクトルを示
し、(a)はオキシチタニウムフタロシアニン、(b)
はオキシバナジウムフタロシアニンである。第3図およ
び第4図は実施例のフタロシアニンの粉末X線回折スペ
クトル、第5図は同じフタロシアニンから得られた分散
層の透過吸収スペクトルを示し、(a)は実施例1、
(b)は実施例2、(c)は実施例3、(d)は実施例
4、そして(e)は実施例5のものである。第6図は実
施例および比較例のフタロシアニンの赤外吸収スペクト
ルを示し、(a)は比較例1、(b)は実施例1、
(c)は比較例2、(d)は実施例2のものである。
FIG. 1 shows a powder X-ray diffraction spectrum of phthalocyanine as a starting material obtained in Production Example 1, FIG. 2 shows a transmission absorption spectrum of a dispersion layer obtained from the same phthalocyanine, and (a) shows oxytitanium phthalocyanine. (B)
Is oxyvanadium phthalocyanine. 3 and 4 show powder X-ray diffraction spectra of phthalocyanines of Examples, FIG. 5 shows transmission absorption spectra of dispersion layers obtained from the same phthalocyanines, (a) shows Example 1,
(B) is Example 2, (c) is Example 3, (d) is Example 4, and (e) is Example 5. FIG. 6 shows infrared absorption spectra of phthalocyanines of Examples and Comparative Examples, (a) is Comparative Example 1, (b) is Example 1,
(C) is for Comparative Example 2, and (d) is for Example 2.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】X線回折スペクトルにおいて、ブラッグ角
(2θ±0.2゜)9.2゜、13.1゜、20.7゜、26.2゜、27.1
゜に強い回折ピークを示し、第1成分がオキシチタニウ
ムフタロシアニン、第2成分がオキシバナジウムフタロ
シアニンから構成され、オキシチタニウムフタロシアニ
ンのモル分率が100%未満80%を越える範囲にある、混
晶からなるフタロシアニン結晶。
1. In X-ray diffraction spectrum, Bragg angles (2θ ± 0.2 °) 9.2 °, 13.1 °, 20.7 °, 26.2 °, 27.1
Shows a strong diffraction peak at ゜, the first component is oxytitanium phthalocyanine, the second component is oxyvanadium phthalocyanine, and the molar fraction of oxytitanium phthalocyanine is less than 100% and more than 80%. Phthalocyanine crystal.
【請求項2】X線回折スペクトルにおいて、ブラッグ角
(2θ±0.2゜)7.6゜、10.2゜、12.6゜、22.5゜、24.3
゜、28.6゜に強い回折ピークを示し、第1成分がオキシ
チタニウムフタロシアニン、第2成分がオキシバナジウ
ムフタロシアニンから構成される混晶からなるフタロシ
アニン結晶。
2. In X-ray diffraction spectrum, Bragg angle (2θ ± 0.2 °) 7.6 °, 10.2 °, 12.6 °, 22.5 °, 24.3
A phthalocyanine crystal that shows a strong diffraction peak at 2 ° and 28.6 °, and is a mixed crystal composed of oxytitanium phthalocyanine as the first component and oxyvanadium phthalocyanine as the second component.
【請求項3】X線回折スペクトルにおいて、ブラッグ角
(2θ±0.2゜)9.2゜、13.1゜、20.7゜、26.2゜、27.1
゜に強い回折ピークを示し、第1成分がオキシチタニウ
ムフタロシアニン、第2成分がオキシバナジウムフタロ
シアニンから構成され、オキシチタニウムフタロシアニ
ンのモル分率が100%未満80%を越える範囲にある、混
晶からなるフタロシアニン結晶、もしくはX線回折スペ
クトルにおいて、ブラッグ角(2θ±0.2゜)7.6゜、1
0.2゜、12.6゜、22.5゜、24.3゜、28.6゜に強い回折ピ
ークを示し、第1成分がオキシチタニウムフタロシアニ
ン、第2成分がオキシバナジウムフタロシアニンから構
成される混晶からなるフタロシアニン結晶のうち少なく
とも1種を含有する光半導体材料。
3. In X-ray diffraction spectrum, Bragg angles (2θ ± 0.2 °) 9.2 °, 13.1 °, 20.7 °, 26.2 °, 27.1
Shows a strong diffraction peak at ゜, the first component is oxytitanium phthalocyanine, the second component is oxyvanadium phthalocyanine, and the molar fraction of oxytitanium phthalocyanine is less than 100% and more than 80%. In the phthalocyanine crystal or X-ray diffraction spectrum, Bragg angle (2θ ± 0.2 °) 7.6 °, 1
It shows strong diffraction peaks at 0.2 °, 12.6 °, 22.5 °, 24.3 ° and 28.6 °, and at least one of phthalocyanine crystals composed of a mixed crystal composed of oxytitanium phthalocyanine as the first component and oxyvanadium phthalocyanine as the second component. An optical semiconductor material containing a seed.
JP63222500A 1988-09-07 1988-09-07 Metal phthalocyanine having a novel crystal structure and photosemiconductor material Expired - Lifetime JPH0822976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222500A JPH0822976B2 (en) 1988-09-07 1988-09-07 Metal phthalocyanine having a novel crystal structure and photosemiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222500A JPH0822976B2 (en) 1988-09-07 1988-09-07 Metal phthalocyanine having a novel crystal structure and photosemiconductor material

Publications (2)

Publication Number Publication Date
JPH0270763A JPH0270763A (en) 1990-03-09
JPH0822976B2 true JPH0822976B2 (en) 1996-03-06

Family

ID=16783405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222500A Expired - Lifetime JPH0822976B2 (en) 1988-09-07 1988-09-07 Metal phthalocyanine having a novel crystal structure and photosemiconductor material

Country Status (1)

Country Link
JP (1) JPH0822976B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754739B2 (en) * 1989-06-06 1998-05-20 日本電気株式会社 Phthalocyanine crystal, method for producing the same, and electrophotographic photoreceptor using the same
JP2961562B2 (en) * 1991-02-07 1999-10-12 コニカ株式会社 Electrophotographic photoreceptor and mixed crystal manufacturing method
JPH04372663A (en) * 1991-06-21 1992-12-25 Fuji Xerox Co Ltd Phthalocyanine crystal mixture and electrophotographic photoreceptor prepared thereform
JPH05186702A (en) * 1992-01-13 1993-07-27 Fuji Xerox Co Ltd Mixed crystal of dihalogenotin phthalocyanone with halogenogallium phthalocyanine and electrophotographic photoreceptor comprising the same

Also Published As

Publication number Publication date
JPH0270763A (en) 1990-03-09

Similar Documents

Publication Publication Date Title
US4664997A (en) Crystalline oxytitanium phthalocyanine and photoreceptor for use in electrophotography
EP0405420B1 (en) Electrophotographic photoreceptor
US5556967A (en) Process for producing hydroxygallium phthalocyanine
JPS63186251A (en) Metallonaphthalocyanine derivative film and electrophotographic sensitive body
JPH03194560A (en) Electrophotographic recording material
JP3343275B2 (en) Phthalocyanine composition, method for producing the same, electrophotographic photoreceptor using the same, and coating liquid for charge generation layer
JPH0822976B2 (en) Metal phthalocyanine having a novel crystal structure and photosemiconductor material
JPH06122833A (en) Pigmentation of metal phthalocyanine hydroxide pigment
EP0288876B1 (en) Electrophotographic plate
JPH078961B2 (en) Titanyl phthalocyanine crystal form conversion method
JP2861116B2 (en) Electrophotographic photoreceptor
JPH10312072A (en) Electrophotographic photoreceptor
JPH07103322B2 (en) Method for producing titanyl phthalocyanine crystal
JPH0635215A (en) Electrophotographic recording material containing phthalocyanine
JP2599170B2 (en) Electrophotographic photoreceptor
JP3780544B2 (en) Novel phthalocyanine compound and electrophotographic photoreceptor using the same
JP3603478B2 (en) Method for producing oxytitanium phthalocyanine and electrophotographic photoreceptor using the same
JPH11130775A (en) Titanylphthalocyanine and its use
JPH01144057A (en) Photosemiconductive material and electrophotographic sensitive body using same
JPH02178358A (en) Novel phthalocyanine compound and sensitive material for electrophotography using the compound
JP2765399B2 (en) Method for producing hydroxygallium phthalocyanine crystal
US5491228A (en) Preparative processes for dihydroxygermanium phthalocyanine
JP2542716B2 (en) Epsilon-type nickel phthalocyanine compound and electrophotographic photoreceptor using the same
JPH01247464A (en) Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom
KR20000001827A (en) Phthalocyanine compositions and electrophotographic sensitizing material containing them