JPH01247464A - Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom - Google Patents

Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom

Info

Publication number
JPH01247464A
JPH01247464A JP7697888A JP7697888A JPH01247464A JP H01247464 A JPH01247464 A JP H01247464A JP 7697888 A JP7697888 A JP 7697888A JP 7697888 A JP7697888 A JP 7697888A JP H01247464 A JPH01247464 A JP H01247464A
Authority
JP
Japan
Prior art keywords
zinc phthalocyanine
ray diffraction
phthalocyanine
electrophotographic photoreceptor
form zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7697888A
Other languages
Japanese (ja)
Inventor
Toshio Enokida
年男 榎田
Yasumasa Suda
康政 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP7697888A priority Critical patent/JPH01247464A/en
Publication of JPH01247464A publication Critical patent/JPH01247464A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

PURPOSE:To make it possible to improve the photographic sensitivity characteristics, wavelength characteristics, deterioration resistance, resistance to plate wear and image stability of an electrophotographic photoreceptor, by forming it so that it may give an X-ray diffraction pattern having specified X-ray diffraction peaks. CONSTITUTION:beta-Form zinc phthalocyanine is converted to the alpha-form by the acid basting process, acid slurry process or the like and the obtained alpha-form zinc phthalocyanine is optionally mixed with a grinding aid such as sodium chloride or Glauber's salt and converted to epsilon-form zinc phthalocyanine by mechanically grinding with a Banbury mixer, ball mill, homomixer or the like to obtain the title compound which can give an X-ray diffraction pattern having clear X-ray diffraction peaks in positions of Bragg angles (2theta+ or -0.2 deg.) of 7.6 deg., 9.2 deg., 11.3 deg., 15.3 deg., 16.9 deg., 17.5 deg., 20.5 deg., 21.0 deg., 21.4 deg., 23.1 deg., 26.0 deg., 27.4 deg. and 29.3 deg..

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、X線回折図上に特定のX線回折ピークを有す
るε型亜鉛フタロシアニン化合物であり、さらには2そ
れを用いた電子写真感光体に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention is an ε-type zinc phthalocyanine compound having a specific X-ray diffraction peak on an X-ray diffraction diagram, and furthermore, The present invention relates to the electrophotographic photoreceptor used.

(従来の技術) 従来、電子写真感光体の感光体としては、セレン。(Conventional technology) Conventionally, selenium has been used as the photoreceptor for electrophotographic photoreceptors.

セレン合金、酸化亜鉛、硫化カドミウムおよびテルルな
どの無機光導電体を用いたものが主として使用されて来
た。近年、半導体レーザーの発展は目覚ましく、小型で
安定したレーザー発振器が安価に入手出来るようになり
、電子写真用光源として用いられ始めている。しかし、
これらの装置に短波長光を発振する半導体レーザーを用
いるのは、寿命、出力等を考えれば問題が多い。従って
、従来用いられて来た短波長領域に感度を持つ材料を半
導体レーザー用に使うには不適当であり、長波長領域(
780nm以上)に高感度を持つ材料を研究する必要が
生して来た。最近は有機系の材料、特に長波長領域に感
度を持つことが期待されるフタロシアニンを使用し、こ
れを積層した積層型有機感光体の研究が盛んに行なわれ
ている。例えば、二価の金属フタロシアニンとしては、
ε型銅フタロシアニン(ε−CuPc)、、X型無金属
フタロシアニン(X−H2Pc)、  τ型無金属フタ
ロシアニン(τ−H2Pc)が長波長領域に感度を持つ
。三価、四価の金属フタロシアニンとしては、クロロア
ルミニウムフタロシアニン(AfPccn)、 クロロ
アルミニウムフタロシアニンクロライド(Cj2AIl
PcC1)、またはチタニルフタロシアニン(TiOP
c)、クロロインジウムフタロシアニン(InPcC/
)を蒸着し1次いで可溶性溶媒の蒸気に接触させて長波
長、高感度化する方法(特開昭57−39484号、特
開昭59−166959号公報)、第■族金属としてT
i、Snおよびpbを含有するフタロシアニンを各種の
置換基、誘導体またはクラウンエーテルなどのシフト化
剤を用いて長波長処理をする方法(特願昭59−362
54号、特願昭59−204045号)により、長波長
領域に感度を得ている。
Inorganic photoconductors such as selenium alloys, zinc oxide, cadmium sulfide and tellurium have been used primarily. In recent years, the development of semiconductor lasers has been remarkable, and small and stable laser oscillators have become available at low cost and are beginning to be used as light sources for electrophotography. but,
Using semiconductor lasers that emit short-wavelength light in these devices has many problems in terms of lifespan, output, etc. Therefore, the conventionally used materials sensitive in the short wavelength region are unsuitable for use in semiconductor lasers, and the materials sensitive in the long wavelength region (
It has become necessary to research materials with high sensitivity to wavelengths of 780 nm and above. Recently, research has been actively conducted on multilayer organic photoreceptors using organic materials, especially phthalocyanine, which is expected to have sensitivity in the long wavelength region. For example, as a divalent metal phthalocyanine,
ε-type copper phthalocyanine (ε-CuPc), X-type metal-free phthalocyanine (X-H2Pc), and τ-type metal-free phthalocyanine (τ-H2Pc) have sensitivity in the long wavelength region. Trivalent and tetravalent metal phthalocyanines include chloroaluminum phthalocyanine (AfPccn) and chloroaluminum phthalocyanine chloride (Cj2AIl).
PcC1), or titanyl phthalocyanine (TiOP
c), chloroindium phthalocyanine (InPcC/
) is vapor-deposited and then brought into contact with the vapor of a soluble solvent to achieve long wavelengths and high sensitivity (Japanese Patent Application Laid-open Nos. 57-39484 and 1982-166959), T as a group Ⅰ metal.
A method of long-wavelength treatment of phthalocyanine containing i, Sn, and pb using various substituents, derivatives, or shifting agents such as crown ethers (Japanese Patent Application No. 59-362)
No. 54 and Japanese Patent Application No. 59-204045), sensitivity is obtained in the long wavelength region.

また、特開昭57−148745号には、スズ。Furthermore, JP-A-57-148745 discloses tin.

アルミニウム等の金属から選ばれた金属フタロシアニン
の蒸着膜を電荷発生層として作製した感光体も報告され
ているが、帯電性が著しく劣り、実用的ではなかった。
Photoreceptors have also been reported in which a charge generation layer is made of a vapor-deposited film of metal phthalocyanine selected from metals such as aluminum, but these have extremely poor charging properties and are not practical.

特開昭59−44053号、特開昭60−59354号
および特開昭60−260054号に中心核にガリウム
を有するフタロシアニンを蒸着して電荷発生層を形成し
た電子写真感光体が記載されているが、電荷発注層は蒸
着法でのみ使用可能であり、さらには9本発明者等が追
試した結果、電子写真特性の中の重要な要求項目である
帯電性および暗減衰特性が極めて不良であり、実用的な
電子写真感光体ではなかった。
JP-A-59-44053, JP-A-60-59354, and JP-A-60-260054 describe electrophotographic photoreceptors in which a charge generation layer is formed by vapor-depositing phthalocyanine having gallium in the central core. However, the charge ordering layer can only be used by vapor deposition, and further tests by the present inventors have revealed that the chargeability and dark decay properties, which are important requirements for electrophotographic properties, are extremely poor. However, it was not a practical electrophotographic photoreceptor.

以上のように、半導体レーザーの発振波長領域に高感度
を有する実用的な電荷発止材料は未だ数少なく、その開
発が待たれているのが現状である。
As described above, there are still only a few practical charge-stopping materials that have high sensitivity in the oscillation wavelength region of semiconductor lasers, and the development of such materials is currently awaited.

プリンター用のデジタル光源として、LEDも実用化さ
れている。可視光領域のLEDも使われているが、一般
に実用化されているものは、650nm以上、標準的に
は660nmの発振波長を持っている。
LEDs have also been put into practical use as digital light sources for printers. LEDs in the visible light range are also used, but those that are generally put into practical use have an oscillation wavelength of 650 nm or more, typically 660 nm.

アゾ化合物、ペリレン化合物、セレン、酸化亜鉛等は、
650nm前後で充分な光感度を有するとは言えないが
、フタロシアニン化合物は、650nm前後に吸収ピー
クを持つため、LED用電荷発生荊としても有効な材料
として使用できる。
Azo compounds, perylene compounds, selenium, zinc oxide, etc.
Although it cannot be said that the phthalocyanine compound has sufficient photosensitivity at around 650 nm, it has an absorption peak around 650 nm, so it can be used as an effective material as a charge-generating material for LEDs.

(発明が解決しようとする問題点) 本発明はε型亜鉛フタロシアニン化合物および優れた露
光感度特性、波長特性に加え、長期にわたる繰り返し使
用時の耐劣化特性、耐剛性9画像安定性を有する電子写
真感光体を得ることにある。
(Problems to be Solved by the Invention) The present invention uses an ε-type zinc phthalocyanine compound, and in addition to excellent exposure sensitivity characteristics and wavelength characteristics, electrophotography has excellent deterioration resistance characteristics, stiffness resistance, and image stability during repeated use over a long period of time. The purpose is to obtain a photoreceptor.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段および作用)X線回折図
上にブラッグ角度(2θ±0.2°)の7.6°、9.
2゜、11.3゜、15.3゜、16.9゜、17.5
゜、20.5゜、21.0°、21.4゜、23.1°
、26.0゜、27.4°および29.3 ’の位置に
明確なX線回折ピークを有することを特徴とするε型亜
鉛フタロシアニン化合物である。
(Means and effects for solving the problem) The Bragg angle (2θ±0.2°) of 7.6° on the X-ray diffraction diagram, 9.
2°, 11.3°, 15.3°, 16.9°, 17.5
°, 20.5 °, 21.0 °, 21.4 °, 23.1 °
, 26.0°, 27.4° and 29.3' positions.

さらには、導電性支持体上に、電荷発生剤を使用してな
る電子写真感光体において、電荷発生剤がε型亜鉛フタ
ロシアニン化合物であることを特徴とする電子写真感光
体および/または導電性支持体上に。
Furthermore, an electrophotographic photoreceptor comprising a charge generating agent on a conductive support, wherein the charge generating agent is an ε-type zinc phthalocyanine compound and/or the conductive support. on the body.

電荷発生剤および電荷移動剤を使用してなる電子写真感
光体において、電荷発生剤がε型亜鉛フタロシアニン化
合物であることを特徴とする電子写真感光体である。
An electrophotographic photoreceptor comprising a charge generation agent and a charge transfer agent, characterized in that the charge generation agent is an ε-type zinc phthalocyanine compound.

また9本発明のε型亜鉛フタロシアニン化合物は。Furthermore, the ε-type zinc phthalocyanine compound of the present invention is as follows.

前記記載のブラッグ角度に明確なピークを持つものであ
れば、そのベンゼン環に、いずれの置換基を有していて
も良い。さらには、その置換基数は、0〜4の整数であ
り、置換基および置換基数の異なる2種以上の混合物で
あっても良い。
The benzene ring may have any substituent as long as it has a clear peak at the Bragg angle described above. Furthermore, the number of substituents is an integer of 0 to 4, and a mixture of two or more substituents and different numbers of substituents may be used.

本発明のε型亜鉛フタロシアニン化合物は、大別して2
種類の方法で製造出来る。第1の方法は2合成したβ型
亜鉛フタロシアニンをアシッドペースティング法やアシ
ッドスラリー法などの方法によりα型に転移させた後に
2機械的磨砕法でε型に転移させる方法。第2の方法は
、l−アミノ−3−イミノイソインドレニンもしくはフ
タロジニトリル、亜鉛または亜鉛化合物および置換基を
有する金属フタロシアニンを非プロトン性極性溶媒中で
加熱する方法である。
The ε-type zinc phthalocyanine compounds of the present invention are broadly classified into two types.
It can be manufactured by various methods. The first method is to convert the synthesized β-type zinc phthalocyanine into the α-type using a method such as an acid pasting method or an acid slurry method, and then convert it into the ε-type using a mechanical grinding method. The second method is a method in which l-amino-3-iminoisoindolenine or phthalodinitrile, zinc or a zinc compound, and a metal phthalocyanine having a substituent are heated in an aprotic polar solvent.

第1の方法を以下に記述する。The first method is described below.

フタロシアニンは、フタロジニトリルと金属塩化物とを
加熱融解または有機溶媒存在下で加熱するフタロジニト
リル法、無水フタル酸を尿素および金属塩化物と加熱融
解または有機溶媒存在下で加熱するワイラー法、シアノ
ベンズアミドと金属塩とを高温で反応させる方法、ジリ
チウムフタロシアニンと金属塩を反応させる方法がある
が、これらに限定されるものではない。また有機溶媒と
しては、α−クロロナフタし・ン、β−クロロナフタレ
ン、α−メチルナフタレン、メトキシナフタレン、ジフ
ェニルエタン、エチレングリコール、ジアルキルエーテ
ル、キノリン、スルホラン、ジクロルベンゼンなど反応
不活性な高沸点の溶媒が望ましい。
Phthalocyanine can be produced by the phthalodinitrile method, in which phthalodinitrile and metal chloride are heated and melted or heated in the presence of an organic solvent; the Weiler method, in which phthalic anhydride is heated and melted with urea and metal chloride, or heated in the presence of an organic solvent; There are a method of reacting cyanobenzamide and a metal salt at a high temperature, and a method of reacting a dilithium phthalocyanine and a metal salt, but the methods are not limited to these. Examples of organic solvents include those with high boiling points that are inert to the reaction, such as α-chloronaphthalene, β-chloronaphthalene, α-methylnaphthalene, methoxynaphthalene, diphenylethane, ethylene glycol, dialkyl ether, quinoline, sulfolane, and dichlorobenzene. A solvent is preferred.

本発明で使用する亜鉛フタロシアニンは、モーザーおよ
びトーツスの「フタロシアニン化合物J  (Mose
r  and  Thomas@Phthal。
The zinc phthalocyanine used in the present invention is a phthalocyanine compound J (Mose
r and Thomas@Phthal.

cyanine  Compounds”)等の公知方
法および前記の適切な方法によって得られた合成物を酸
、アルカリ、アセトン、メチルエチルケトン。
Compounds obtained by known methods such as "cyanine compounds") and appropriate methods described above are used as acids, alkalis, acetone, methyl ethyl ketone.

テトラヒドロフラン、ピリジン、キノリン、スルホラン
、α−クロロナフタレン、トルエン、ジオキサン、キシ
レン、クロロホルム、四塩化炭素、ジクロロメタン、ジ
クロロエタン、トリクロロプロパン。
Tetrahydrofuran, pyridine, quinoline, sulfolane, α-chloronaphthalene, toluene, dioxane, xylene, chloroform, carbon tetrachloride, dichloromethane, dichloroethane, trichloropropane.

N、N’−ジメチルアセトアミド、N−メチルピロリド
ン、N、N’  −ジメチルホルムアミド等により晶法
、ソックスレー等の゛抽出法、および熱懸濁法などがあ
る。また、昇華精製することも可能である。
Examples include a crystallization method, an extraction method such as Soxhlet, and a thermal suspension method using N,N'-dimethylacetamide, N-methylpyrrolidone, N,N'-dimethylformamide, etc. It is also possible to purify by sublimation.

精製方法は5 これらに限られるものではない。この合
成物はβ型であるためα型に転移させるには、アシッド
ペースティングまたはアシッドスラリー法が最も良く選
択される。ここで、アシッドペースティングおよびアシ
ッドスラリー法とは硫酸中にフタロシアニン化合物を溶
解した後に2水へ注入して再析出させる方法を示す。
The purification methods are not limited to these five. Since this compound is in the β form, acid pasting or acid slurry methods are best selected to convert it to the α form. Here, the acid pasting and acid slurry methods refer to a method in which a phthalocyanine compound is dissolved in sulfuric acid and then poured into 2 water to be reprecipitated.

以上の方法で得られたα型亜鉛フタロシアニン化合物を
機械的磨砕法によりε型に転移させる。磨砕は乾式およ
び湿式のいずれでも良い。
The α-type zinc phthalocyanine compound obtained by the above method is transformed into the ε-type by mechanical grinding. Grinding may be done either dry or wet.

必要があれば1食塩やばう硝等の摩砕助剤を使用するこ
とも可能である。
If necessary, it is also possible to use a grinding aid such as common salt or sulfur sulfate.

摩砕時に使用される装置としては、ニーダ−、ノ\ンバ
リーミキサー、アトライター、エツジランナーミル、ロ
ールミル、ボールミル、サンドミル、5PEXミル、ホ
モミキサー、ディスパーザ−、アジター、ショークラッ
シャー、スタンプミル、カッターミル、マイクロナイザ
ー等あるが、これらに限られるものではない。また1機
械的磨砕時に、フタロシアニンに置換基を存するフタロ
シアニン誘導体を添加することにより、更に効率良くε
型に転移出来る。
Equipment used during grinding includes a kneader, no-bury mixer, attritor, edge runner mill, roll mill, ball mill, sand mill, 5PEX mill, homomixer, disperser, agitator, show crusher, stamp mill, and cutter. Examples include, but are not limited to, mills and micronizers. In addition, by adding a phthalocyanine derivative having a substituent to phthalocyanine during mechanical grinding, more efficient ε
Can be transferred to a mold.

第2の方法は9合成時に既に亜鉛フタロシアニンがε型
の結晶型を有する状態で生成し、その後のミリング過程
を全く必要としない非常に能率的なε型フタロシアニン
の製造法であり、その工業的意義は極めて大きいものが
あると言える。
The second method is a very efficient method for producing ε-type phthalocyanine, in which zinc phthalocyanine is already produced in the ε-type crystal form during the synthesis of 9, and does not require any subsequent milling process. It can be said that the significance is extremely large.

溶媒は非プロトン性極性溶媒、好ましくは沸点100℃
以上を有する溶媒であり2例えば酢酸セロソルブ、ジメ
チルホルムアミド、ジメチルスルホキシド、ヘキサメチ
ルホスホルアミド、テトラメチル尿素、エチレンカーボ
ネート、プロピレンカーボネート、α−ブチロラクトン
、スルホラン、ジグライム。
The solvent is an aprotic polar solvent, preferably a boiling point of 100°C
Solvents having the above-mentioned properties include cellosolve acetate, dimethylformamide, dimethylsulfoxide, hexamethylphosphoramide, tetramethylurea, ethylene carbonate, propylene carbonate, α-butyrolactone, sulfolane, and diglyme.

グライム、ジオキサン、ニトロメタン、ニトロエタン、
2−二トロプロパン1モルホリンなどが挙げられる。
Grime, dioxane, nitromethane, nitroethane,
Examples include 2-nitropropane, 1-morpholine, and the like.

使用する金属またはその化合物としては1例えば亜鉛の
金属粉、酸化物またはその塩化物、硫酸塩。
The metals or compounds thereof to be used include, for example, zinc metal powder, oxides, chlorides, and sulfates thereof.

硝酸塩および酢酸塩などが挙げられる。その使用量はフ
タロジニトリルおよびl−アミノ−3−イミノイソイン
ドレニンに対して4分の1モル以上が好ましい。
Examples include nitrates and acetates. The amount used is preferably 1/4 mole or more relative to phthalodinitrile and l-amino-3-iminoisoindolenine.

また本発明に用いられるフタロシアニン誘導体としては
フタロシアニンの4個のベンゼン核の1個以上に置換基
を有する金属フタロシアニンを含むものである。
Further, the phthalocyanine derivative used in the present invention includes a metal phthalocyanine having a substituent on one or more of the four benzene nuclei of the phthalocyanine.

以上の方法で作製したε型亜鉛フタロシアニン化合物を
用いた電荷発生層は、光吸収効率の大きな゛均一層であ
り、電荷発生層中の粒子間、電荷発生層と電荷移動層の
間、電荷発生層と下引き層または4電性基板の間の空隙
が少なく、繰り返し使用時での。
The charge generation layer using the ε-type zinc phthalocyanine compound prepared by the above method is a uniform layer with high light absorption efficiency. There are few gaps between the layer and the undercoat layer or the four-conductor substrate, even during repeated use.

電位安定性、明部電位の上昇防止等の電子写真感光体と
しての特性、および1画像欠陥の減少、耐刷性環、多く
の要求を満足する電子写真感光体を得ることができる。
It is possible to obtain an electrophotographic photoreceptor that satisfies many requirements, including characteristics as an electrophotographic photoreceptor such as potential stability and prevention of increase in bright area potential, reduction in single image defects, and printing durability.

n型感光体は、導電性基板上に、下引き層、電荷発生層
、電荷移動層の順に積層し作成される。またp型態光体
は、下引き層上に電荷移動層、電荷発生層の順に積層し
たもの、または、下引き層上に電荷発生剤と必要があれ
ば電荷移動剤とを適当な樹脂と共に分散塗工し作成され
たものがある。両感光体ともに必要があれば表面保護お
よびトナーによるフィルミング防止等の意味でオーバー
コート層を設けることも出来る。
An n-type photoreceptor is fabricated by laminating an undercoat layer, a charge generation layer, and a charge transfer layer in this order on a conductive substrate. In addition, the p-type photomaterial is one in which a charge transfer layer and a charge generation layer are laminated in this order on an undercoat layer, or a charge generation agent and, if necessary, a charge transfer agent are laminated on the undercoat layer together with a suitable resin. Some are made by dispersion coating. If necessary, an overcoat layer may be provided on both photoreceptors for surface protection and prevention of toner filming.

本発明のε型亜鉛フタロシアニン化合物は、前記各種感
光体についてすべて好適に用いられる。また。
The ε-type zinc phthalocyanine compound of the present invention can be suitably used for all of the above-mentioned various photoreceptors. Also.

電荷発生層は、ε型亜鉛フタロシアニン化合物と樹脂と
を適切な溶媒とで分散塗工して得られるが、必要であれ
ば、樹脂を除いて分散塗工しても使用出来る。
The charge generation layer can be obtained by dispersion coating an ε-type zinc phthalocyanine compound and a resin in a suitable solvent, but if necessary, it can also be used by dispersion coating without the resin.

感光体の電荷発生層の塗工は、スピンコーター。The charge generation layer on the photoconductor is applied using a spin coater.

アプリケーター、スプレーコーター、バーコーター。applicator, spray coater, bar coater.

浸漬コーター、ドクターブレード、ローラーコーター、
カーテンコーター、ビードコーターを用いて行ない、乾
燥は、望ましくは加熱乾燥で40〜200’c、10分
〜6時間の範囲で静止または送風条件下で行なう。乾燥
後膜厚は0.01から5ミクロン、望ましくは0.1か
ら1ミクロンになるように塗工される。
Dip coater, doctor blade, roller coater,
This is carried out using a curtain coater or a bead coater, and drying is preferably carried out by heating at 40 to 200'C for 10 minutes to 6 hours under stationary or blowing air conditions. After drying, the film is coated to a thickness of 0.01 to 5 microns, preferably 0.1 to 1 micron.

電荷発生層を塗工によって形成する際に用いうるバイン
ダーとしては広範な絶縁性樹脂から選択でき。
The binder that can be used when forming the charge generation layer by coating can be selected from a wide variety of insulating resins.

またポリ−N−ビニルカルバゾール、ポリビニルアント
ラセンやポリビニルピレンなどの有機光導電性ポリマー
から選択できる。好ましくは、ポリビニルブチラール、
ボリアリレート(ビスフェノールAとフタル酸の縮重合
体など)、ポリカーボネート、ポリエステル、フェノキ
シ樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリアクリル
アミド樹脂、ポリアミド樹脂、ポリビニルピリジン、セ
ルロース系樹脂、ウレタン樹脂、エポキシ樹脂、シリコ
ン樹脂、ポリスチレン、ポリケトン樹脂、ポリ塩化ビニ
ル、塩ビー酸ビ共重合体、ポリビニルアセタール、ポリ
アクリロニトリル、フェノール樹脂、メラミン樹脂、カ
ゼイン、ポリビニルアルコール、ポリビニルピロリドン
等の絶縁性樹脂を挙げることができる。電荷発生層中に
含有する樹脂は、100重量%以下、好ましくは40重
量%以下が適している。またこれらの樹脂は、1種また
は2種以上組合せて用いても良い。
It can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene and polyvinylpyrene. Preferably polyvinyl butyral,
Polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide resin, polyvinylpyridine, cellulose resin, urethane resin, epoxy resin, silicone Examples include insulating resins such as resin, polystyrene, polyketone resin, polyvinyl chloride, vinyl chloride copolymer, polyvinyl acetal, polyacrylonitrile, phenol resin, melamine resin, casein, polyvinyl alcohol, and polyvinylpyrrolidone. The resin contained in the charge generation layer is suitably 100% by weight or less, preferably 40% by weight or less. Further, these resins may be used alone or in combination of two or more.

これらの樹脂を溶解する溶剤は樹脂の種類によって異な
り、後述する電荷発生層や下引き層を塗工時に影響を与
えないものから選択することが好ましい。
The solvent for dissolving these resins varies depending on the type of resin, and it is preferable to select a solvent that does not affect the charge generation layer and undercoat layer, which will be described later, during coating.

具体的にはベンゼン、キシレン、リグロイン、モノクロ
ルヘンゼン、ジクロルベンゼンなどの芳香族炭化水素、
アセトン、メチルエチルケトン、シクロヘキサノンなど
のケトン類、メタノール、エタノール。
Specifically, aromatic hydrocarbons such as benzene, xylene, ligroin, monochlorobenzene, dichlorobenzene,
Ketones such as acetone, methyl ethyl ketone, and cyclohexanone, methanol, and ethanol.

イソプロパツールなどのアルコール類、酢酸エチル。Alcohols such as isopropanol, ethyl acetate.

メチルセロソルブ、などのエステル類、四塩化炭素。Esters such as methyl cellosolve, carbon tetrachloride.

クロロホルム、ジクロルメタン、ジクロルエタン。Chloroform, dichloromethane, dichloroethane.

トリクロルエチレンなどの脂肪族ハロゲン化炭化水素類
1テトラヒドロフラン、ジオキサン、エチレングリコー
ルモノメチルエーテルなどのエーテル類。
Aliphatic halogenated hydrocarbons such as trichlorethylene 1 Ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether.

N、N−ジメチルホルムアミF°、N、N−ジメチルア
セトアミドなどのアミド類、およびジメチルスルホキシ
ドなどのスルホキシド類が用いられる。
Amides such as N,N-dimethylformamide F°,N,N-dimethylacetamide, and sulfoxides such as dimethylsulfoxide are used.

電荷移動層は、電荷移動物質体もしくは結着剤樹脂に溶
解分散させて形成される。本感光体に使用される電荷移
動剤は、電荷を輸送する能力のある化合物であれば、い
かなる種類の化合物であっても良い。
The charge transfer layer is formed by dissolving and dispersing it in a charge transfer substance or a binder resin. The charge transfer agent used in the present photoreceptor may be any type of compound as long as it has the ability to transport charges.

また、電荷移動物質は、1種または2種以上組合せて用
いることができる。電荷移動層に用いられる樹脂は、シ
リコン樹脂、ケトン樹脂、ポリメチルメタクリレート、
ポリ塩化ビニル1アクリル樹脂、ボリアリレート、ポリ
エステル、ポリカーボネート。
Further, charge transfer substances can be used alone or in combination of two or more types. Resins used for the charge transfer layer include silicone resin, ketone resin, polymethyl methacrylate,
Polyvinyl chloride 1 acrylic resin, polyarylate, polyester, polycarbonate.

ポリスチレン、アクリロニトリル−スチレンコポリマー
、アクリロニトリループクジエンコポリマー。
Polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-cyclodiene copolymer.

ポリビニルブチラール、ポリビニルホルマール、ポリス
ルホン、ポリアクリルアミド、ポリアミド、塩素化ゴム
などの絶縁性樹脂、ポリ−N−ビニルカルバゾール、ポ
リビニルアントラセン、ポリビニルピレンなどが用いら
れる。
Insulating resins such as polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, poly-N-vinylcarbazole, polyvinylanthracene, polyvinylpyrene, etc. are used.

塗工方法は、スピンコーター、アプリケーター。Coating methods include spin coater and applicator.

スプレーコーター、バーコーター、浸漬コーター。Spray coater, bar coater, dip coater.

ドクターブレード、ローラーコーター、カーテンコータ
ー、ビードコーター装置を用いて行ない、乾燥後膜厚は
5から50ミクロン、望ましくは1oがら20ミクロン
になるように塗工されるものが良い。
The coating is carried out using a doctor blade, roller coater, curtain coater, or bead coater, and the film thickness after drying is 5 to 50 microns, preferably 1 to 20 microns.

これらの各層に加えて、帯電性の低下防止、接着性向上
などの目的で下引き層を導電性基板上に設けることがで
きる。下引き層として、ナイロン6、ナイロン66、ナ
イロン11.ナイロン51 Q、 共重合ナイロン、ア
ルコキシメチル化ナイロンなどのポリアミド、カゼイン
、ポリビニルアルコール1 ニトロセルロース、エチレ
ン−アクリル酸コポリマー、ゼラチン、ポリウレタン、
ポリビニルブチラールおよび酸化アルミニウムなどの金
属酸化物が用いられる。
In addition to these layers, an undercoat layer can be provided on the conductive substrate for the purpose of preventing deterioration of chargeability, improving adhesion, and the like. As an undercoat layer, nylon 6, nylon 66, nylon 11. Nylon 51 Q, copolymerized nylon, polyamide such as alkoxymethylated nylon, casein, polyvinyl alcohol 1, nitrocellulose, ethylene-acrylic acid copolymer, gelatin, polyurethane,
Polyvinyl butyral and metal oxides such as aluminum oxide are used.

また、酸化亜鉛、酸化チタン等の金属酸化物、窒化ケイ
素、炭化ケイ素やカーポンプラッグなどの導電性および
誘電性粒子を樹脂中に含有させて調整することも出来る
Further, conductive and dielectric particles such as metal oxides such as zinc oxide and titanium oxide, silicon nitride, silicon carbide, and carpon plug can be incorporated into the resin for adjustment.

本発明の材料は800部1以上および650部mの波長
に吸収ピークを持ち、電子写真感光体として複写機、プ
リンターに用いられるだけでなく、太陽電池。
The material of the present invention has an absorption peak at a wavelength of 800 parts 1 or more and 650 parts m, and can be used not only as an electrophotographic photoreceptor in copying machines and printers, but also in solar cells.

光電変換素子および光デイスク用吸収材料としても好適
である。
It is also suitable as an absorbing material for photoelectric conversion elements and optical disks.

(実 施 例) 以下、本発明の実施例について具体的に説明する。(Example) Examples of the present invention will be specifically described below.

例中で部とは1重量部を示す。In the examples, part means 1 part by weight.

実施例1〜4 フタロジニl−IJル51.2部、無水酢酸亜鉛18.
7部をキノリン500部中で210℃で5時間加熱撹拌
した後に、水蒸気蒸留で溶媒を除いた。次いで。
Examples 1-4 51.2 parts of phthalodinyl-IJ, 18.2 parts of anhydrous zinc acetate.
After heating and stirring 7 parts in 500 parts of quinoline at 210°C for 5 hours, the solvent was removed by steam distillation. Next.

アセトンで洗浄、濾過して48.7部の亜鉛フタロシア
ニンクルードを得た。図2に本クルードのX線回折図を
示す。この亜鉛フタロシアニンクルード20部を5℃の
98%硫酸400部の中に少しづつ溶解し、その混合物
を約1時間、5℃以下の温度を保ち000部の氷水中に
、ゆっくりと注入し、析出した結晶を濾過する。結晶を
酸が残留しなくなるまで;に留水で洗浄し、アセトンで
精製した後、乾燥して19部を得た。
Washing with acetone and filtration yielded 48.7 parts of zinc phthalocyanine crude. Figure 2 shows the X-ray diffraction pattern of this crude. 20 parts of this zinc phthalocyanine crude was dissolved little by little in 400 parts of 98% sulfuric acid at 5°C, and the mixture was slowly poured into 1,000 parts of ice water while keeping the temperature below 5°C for about 1 hour to precipitate. Filter the resulting crystals. The crystals were washed with distilled water until no acid remained, purified with acetone, and then dried to obtain 19 parts.

以上の方法で作製したα型亜鉛フタロシアニンを使用し
て、第1表の条件により、ε型亜鉛フタロシアニンを製
造した。
Using the α-type zinc phthalocyanine produced by the above method, ε-type zinc phthalocyanine was produced under the conditions shown in Table 1.

得られた試料は、ε型亜鉛フタロシアニンに転移したこ
とをX線回折線測定により確認した後に、装置から取り
出して溶媒を取り除く、その後、2%の希硫酸溶液中で
洗浄、濾過を行い試料を怒想する。
After confirming that the obtained sample has been transferred to ε-type zinc phthalocyanine by X-ray diffraction measurement, it is taken out from the apparatus and the solvent is removed.Then, the sample is washed in a 2% dilute sulfuric acid solution and filtered. I get angry.

実施例1〜4で作製したε型亜鉛フタロシアニンは。The ε-type zinc phthalocyanine produced in Examples 1 to 4 is as follows.

XL?を回折図上にブラッグ角度(2θ±0.2@)の
7゜6゜、9.2゜、  11.3 @、  15.3
 @、  16.9゜、17.5゜、  20.5 ゜
、  21.0 ゜、  21.4゜、23.1゜、2
6.0゜、27.4°および29.3°の位置に明確な
X線回折ピークを有していた0図1に実施例1のε型亜
鉛フタロシアニンのX線回折図を示す。
XL? On the diffraction diagram, the Bragg angle (2θ±0.2@) is 7゜6゜, 9.2゜, 11.3@, 15.3
@, 16.9°, 17.5°, 20.5°, 21.0°, 21.4°, 23.1°, 2
Figure 1 shows an X-ray diffraction diagram of the ε-type zinc phthalocyanine of Example 1, which had distinct X-ray diffraction peaks at positions of 6.0°, 27.4°, and 29.3°.

実施例5 攪拌装置の付いた四ツロフラスコに1−アミノ−3−イ
ミノイソインドレニン7.3部、酢酸セロソルブ22部
を入れ、攪拌下に加熱して60℃にすると溶液状態とな
る0次に濃硫酸中で亜鉛フタロシアニン、2−ピロリド
ンおよびホルムアルデヒドを縮合して得た下記フタロシ
アニン誘導体0.4部を酢酸セロソルブ22部とともに
60℃に加熱して得られる溶液を前記溶液に攪拌下に添
加する。更に塩化亜鉛1、0部を加えた後、還流の開始
する温度まで加熱する。加熱還流下に2時間反応させた
後、室温まで冷却し濾過する。次いでメタノールおよび
水にて洗浄し、さらに2%塩酸および2%水酸化ナトリ
ウム水溶液の各500部中にて1時間煮沸した後濾過し
Example 5 7.3 parts of 1-amino-3-iminoisoindolenine and 22 parts of cellosolve acetate were placed in a Yotsuro flask equipped with a stirring device, and heated to 60°C with stirring to form a solution. A solution obtained by heating 0.4 part of the following phthalocyanine derivative obtained by condensing zinc phthalocyanine, 2-pyrrolidone, and formaldehyde in concentrated sulfuric acid to 60° C. with 22 parts of cellosolve acetate is added to the above solution while stirring. After further adding 1.0 parts of zinc chloride, the mixture is heated to a temperature at which reflux begins. After reacting for 2 hours under heating under reflux, the mixture is cooled to room temperature and filtered. The mixture was then washed with methanol and water, boiled for 1 hour in 500 parts each of 2% hydrochloric acid and 2% aqueous sodium hydroxide solution, and then filtered.

水洗、乾燥を行うことによりε型の結晶型を有する亜鉛
フタロシアニン6.7部を得る。
By washing with water and drying, 6.7 parts of zinc phthalocyanine having an ε-type crystal form is obtained.

次にこの実施例1〜5のε型亜鉛フタロシアニンを、電
荷発生剤として使用した電子写真感光体の作成方法を述
べる。
Next, a method for producing an electrophotographic photoreceptor using the ε-type zinc phthalocyanine of Examples 1 to 5 as a charge generating agent will be described.

共重合ナイロン(東し製アミランCM−8000)10
部をエタノール190部とともにボールミルで3時間混
合し、溶解させた塗液を、ポリエチレンテレフタレート
(PET)フィルム上にアルミニウムを蒸着したシート
上に、ワイヤーバーで塗布した後、乾燥させて膜厚0.
5ミクロンの下引き層を持つシートを得た。
Copolymerized nylon (Amiran CM-8000 manufactured by Toshi) 10
was mixed with 190 parts of ethanol in a ball mill for 3 hours, and the resulting coating liquid was applied onto a sheet of polyethylene terephthalate (PET) film with aluminum vapor-deposited using a wire bar, and then dried to a film thickness of 0.
A sheet with a 5 micron subbing layer was obtained.

実施例1〜5で得たε型亜鉛フタロシアニン2部を充分
に微細化した後にTHF97部にポリビニルブチラール
樹脂1部(種水化学社製BH−3)を溶解した樹脂液と
ともにボールミルで6時間分散した。
After sufficiently pulverizing 2 parts of ε-type zinc phthalocyanine obtained in Examples 1 to 5, it was dispersed in a ball mill for 6 hours with a resin solution prepared by dissolving 1 part of polyvinyl butyral resin (BH-3 manufactured by Tanesui Kagaku Co., Ltd.) in 97 parts of THF. did.

この分散液を下引き層上に塗布し、乾燥させた後。After applying this dispersion onto the undercoat layer and drying it.

0.3ミクロンの電荷発生層を形成した。A 0.3 micron charge generation layer was formed.

ポリカーボネート樹脂(奇人化成@製パンライトL−1
250)1部を塩化メチレン8部で混合溶解した。この
液を電荷発生層上に塗布し、乾燥した後。
Polycarbonate resin (Kijin Kasei @ Panlite L-1
250) was mixed and dissolved in 8 parts of methylene chloride. After applying this liquid onto the charge generation layer and drying it.

15ミクロンの電荷移動層を形成し、電子写真特性を測
定した。
A 15 micron charge transport layer was formed and electrophotographic properties were measured.

感光体の電子写真特性は、下記の方法で測定した。The electrophotographic properties of the photoreceptor were measured by the following method.

静電複写紙試験装置5P−428(川口電機製)により
スタティックモード2.コロナ帯電は−5,2KVで1
表面電位と5 Luxの白色光または1μWの780部
mに調整した光を照射して、帯電量が1/2まで減少す
る時間から白色光半減露光量感度(El/2)を調べた
Static mode 2. Corona charge is 1 at -5.2KV
The surface potential was irradiated with 5 Lux of white light or 1 μW of light adjusted to 780 parts m, and the white light half-reduction exposure sensitivity (El/2) was determined from the time when the amount of charge decreased to 1/2.

電子写真特性の結果を第1表に示す。The results of electrophotographic properties are shown in Table 1.

第1表の結果、実施例1〜5の感光体は、帯電性。As shown in Table 1, the photoreceptors of Examples 1 to 5 were chargeable.

感度が良<、780部mの波長領域で1μJ / ca
1以上の高感度を存していた。
Good sensitivity <1μJ/ca in the wavelength range of 780 parts m
It had a high sensitivity of 1 or more.

比較例1 電荷発生剤として、実施例1で作製した亜鉛フタロシア
ニンクルードを使用する以外は、実施例1と同様の方法
で電子写真感光体を作製して、その電子写真特性を測定
した。
Comparative Example 1 An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that the zinc phthalocyanine crude prepared in Example 1 was used as a charge generating agent, and its electrophotographic properties were measured.

比較例2 電荷発生剤として、実施例1で作製したα型亜鉛フタロ
シアニンを使用する以外は、実施例1と同様の方法で電
子写真感光体を作製して、その電子写真特性を測定した
Comparative Example 2 An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that the α-type zinc phthalocyanine prepared in Example 1 was used as a charge generating agent, and its electrophotographic properties were measured.

結果を第2表に示す。The results are shown in Table 2.

第   2   表 i 第2表の結果、亜鉛フタロシアニンのα型およびクルー
ド(β型)は、780r+n+で10 (μJ/cat
)以下の感度であった。
Table 2 i As a result of Table 2, the α type and crude (β type) of zinc phthalocyanine are 10 (μJ/cat
) The sensitivity was as follows.

すなわち、比較例1.2で作製した感光体は実施例1〜
4の感光体に比べて2表面電位が極めて低く。
That is, the photoreceptors produced in Comparative Example 1.2 were those of Examples 1 to 2.
Compared to photoreceptor No. 4, the surface potential of No. 2 is extremely low.

感度も大幅に劣っているために、実用的ではなかった。The sensitivity was also significantly lower, making it impractical.

従って、本発明のε型亜鉛フタロシアニンを電荷発生剤
として使用して2表面電位および感度等の電子写真緒特
性の優れた感光体を得ることが出来た。
Therefore, by using the ε-type zinc phthalocyanine of the present invention as a charge generating agent, it was possible to obtain a photoreceptor with excellent electrophotographic properties such as surface potential and sensitivity.

C発明の効果〕 本発明により、優れた露光怒度特性、波長特性を有する
電子写真感光体を得ることが出来た。
C Effects of the Invention] According to the present invention, an electrophotographic photoreceptor having excellent exposure intensity characteristics and wavelength characteristics could be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で作製した1本発明のε型亜鉛フタ
ロシアニンのX線回折図、第2図は、比較例1で使用し
たβ型亜鉛フタロシアニンのX線回折図。 第3図は実施例1で作製したε型亜鉛フタロシアニンの
IRスペクトル、をそれぞれ示す。
FIG. 1 is an X-ray diffraction diagram of the ε-type zinc phthalocyanine of the present invention produced in Example 1, and FIG. 2 is an X-ray diffraction diagram of the β-type zinc phthalocyanine used in Comparative Example 1. FIG. 3 shows the IR spectra of the ε-type zinc phthalocyanine produced in Example 1.

Claims (1)

【特許請求の範囲】 1、X線回折図上にブラッグ角度(2θ±0.2゜)の
7.6゜、9.2゜、11.3゜、15.3゜、16.
9゜、17.5゜、20.5°、21.0゜、21.4
゜、23.1゜、26.0゜、27.4゜および29.
3゜の位置に明確なX線回折ピークを有することを特徴
とするε型亜鉛フタロシアニン化合物。 2、導電性支持体上に、電荷発生剤を使用してなる電子
写真感光体において、電荷発生剤が請求項1記載のε型
亜鉛フタロシアニン化合物であることを特徴とする電子
写真感光体。 3、導電性支持体上に、電荷発生剤および電荷移動剤を
使用してなる電子写真感光体において、電荷発生剤が請
求項1記載のε型亜鉛フタロシアニン化合物であること
を特徴とする電子写真感光体。
[Claims] 1. Bragg angles (2θ±0.2°) of 7.6°, 9.2°, 11.3°, 15.3°, 16. on the X-ray diffraction diagram.
9°, 17.5°, 20.5°, 21.0°, 21.4
°, 23.1 °, 26.0 °, 27.4 ° and 29.
An ε-type zinc phthalocyanine compound characterized by having a clear X-ray diffraction peak at a position of 3°. 2. An electrophotographic photoreceptor comprising a charge generating agent on a conductive support, wherein the charge generating agent is the ε-type zinc phthalocyanine compound according to claim 1. 3. An electrophotographic photoreceptor comprising a charge generating agent and a charge transfer agent on a conductive support, wherein the charge generating agent is the ε-type zinc phthalocyanine compound according to claim 1. Photoreceptor.
JP7697888A 1988-03-30 1988-03-30 Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom Pending JPH01247464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7697888A JPH01247464A (en) 1988-03-30 1988-03-30 Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7697888A JPH01247464A (en) 1988-03-30 1988-03-30 Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom

Publications (1)

Publication Number Publication Date
JPH01247464A true JPH01247464A (en) 1989-10-03

Family

ID=13620872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7697888A Pending JPH01247464A (en) 1988-03-30 1988-03-30 Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom

Country Status (1)

Country Link
JP (1) JPH01247464A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009252A1 (en) * 1999-08-03 2001-02-08 Ciba Specialty Chemicals Holding Inc. Stable polymorphic copper-free phthalocyanine pigment
JP2007100008A (en) * 2005-10-07 2007-04-19 Toyo Ink Mfg Co Ltd METHOD FOR PREPARING epsilon-PHTHALOCYANINE PIGMENT
JP2011084694A (en) * 2009-10-19 2011-04-28 National Institute Of Advanced Industrial Science & Technology Process for producing phthalocyanine complex crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009252A1 (en) * 1999-08-03 2001-02-08 Ciba Specialty Chemicals Holding Inc. Stable polymorphic copper-free phthalocyanine pigment
US6506244B1 (en) 1999-08-03 2003-01-14 Ciba Specialty Chemicals Corporation Stable polymorphic copper-free phthalocyanine pigment
JP2007100008A (en) * 2005-10-07 2007-04-19 Toyo Ink Mfg Co Ltd METHOD FOR PREPARING epsilon-PHTHALOCYANINE PIGMENT
JP2011084694A (en) * 2009-10-19 2011-04-28 National Institute Of Advanced Industrial Science & Technology Process for producing phthalocyanine complex crystal

Similar Documents

Publication Publication Date Title
JP2561940B2 (en) Gallium phthalocyanine compound and electrophotographic photoreceptor using the same
JPS63198067A (en) Photosemiconductor material and electrophotographic sensitive body using same
JP2512081B2 (en) R-type titanium phthalocyanine compound, method for producing the same, and electrophotographic photoreceptor using the same
JPS63116158A (en) Photosemiconductor material and electrophotographic sensitive body prepared by using it
JPH09157540A (en) Phthalocyanine composition, its production, and electrophotographic photoreceptor and coating fluid for charge generation layer each using the same
JP2870985B2 (en) Electrophotographic photoreceptor
JP2861116B2 (en) Electrophotographic photoreceptor
JPH01247464A (en) Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom
KR980010653A (en) Coating solution for electrophotographic photosensitive member and charge transport layer
JPH01123868A (en) Quasi-noncrystalline titanium phthalocyanine compound, its production and electrophotographic material
JP2599170B2 (en) Electrophotographic photoreceptor
JPH01144057A (en) Photosemiconductive material and electrophotographic sensitive body using same
JPH01230581A (en) Novel metal-free phtalocyanine compound, its production and electrophotographic photoreceptor using the same
JPH02289657A (en) Epsilon type cobalt phthalocyanine compound and electrophotographic sensitive body using same compound
JPH01163749A (en) Semiconductor material, its production, and electrophotographic sensitive material
JP2805896B2 (en) Electrophotographic photoreceptor
JP2542716B2 (en) Epsilon-type nickel phthalocyanine compound and electrophotographic photoreceptor using the same
JP2805866B2 (en) Electrophotographic photoreceptor
JP2805915B2 (en) Electrophotographic photoreceptor
JP2861083B2 (en) Electrophotographic photoreceptor
JPH0572776A (en) Electrophotographic sensitive material and production of coppor phthalocynine
JP2985254B2 (en) Electrophotographic photoreceptor
JP2811831B2 (en) Electrophotographic photoreceptor
JP2693955B2 (en) Titanium phthalocyanine compound, method for producing the same, and electrophotographic photoreceptor using the same
JPH01204969A (en) Titanium phthalocyanine compound and electrophotographic photoreceptor containing same