JPH0822911A - Stressed magnetic core - Google Patents

Stressed magnetic core

Info

Publication number
JPH0822911A
JPH0822911A JP6157226A JP15722694A JPH0822911A JP H0822911 A JPH0822911 A JP H0822911A JP 6157226 A JP6157226 A JP 6157226A JP 15722694 A JP15722694 A JP 15722694A JP H0822911 A JPH0822911 A JP H0822911A
Authority
JP
Japan
Prior art keywords
core
foil
magnetic
stress
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6157226A
Other languages
Japanese (ja)
Inventor
Toshio Mukai
井 俊 夫 向
Hiroshi Tsuge
植 弘 志 柘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6157226A priority Critical patent/JPH0822911A/en
Publication of JPH0822911A publication Critical patent/JPH0822911A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a stem magnetic core wherein the permeability of a high frequency magnetization is enhanced over a superposed DC magnet field over a wide range in the magnetic core for an inductor such as switching power supply etc. CONSTITUTION:In the magnetic core comprising Fe-Ai alloy foil having Goss orientation, the compresion stress exceeding the elastic deformation range is imposed on the foil. Through these procedures, the magnetic core having the permeability in a specific value upto a high superposed DC magnetic field of 6kA/m can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング電源、無
停電電源など高周波で使用する電気機器のインダクタ素
子又はチョークコイルに用いる直流重畳特性に優れた磁
心に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic core having excellent DC superposition characteristics, which is used for an inductor element or a choke coil of electric equipment such as a switching power supply and an uninterruptible power supply used at high frequencies.

【0002】[0002]

【従来の技術】インダクタ素子は、スイッチング電源に
おいて、平滑チョークコイルとして2次側での電流の平
滑化のために使われる。また、ノイズフィルターとし
て、半導体スイッチに起因する高周波のノイズを取り除
くために使われている。インダクタ素子は、トロイダル
やEIと言った形状の磁心に巻き線を施して形成され
る。
2. Description of the Related Art An inductor element is used in a switching power supply as a smoothing choke coil for smoothing current on the secondary side. It is also used as a noise filter to remove high-frequency noise caused by semiconductor switches. The inductor element is formed by winding a magnetic core having a shape such as toroidal or EI.

【0003】トロイダル形状の場合には、磁心としての
物性値である透磁率μ(真空の透磁率に対する比透磁
率)と、インダクタ素子の特性値であるインダクタンス
値Lとの間には、L=μ0 μAn2 /lという関係があ
る。ここで、μ0 は真空の透磁率、Aは磁心の断面積、
nは巻き線の回数、lは磁路長である。透磁率が高けれ
ば、巻き線の回数、もしくは磁心の断面積を減らすこと
ができるので、インダクタ素子の小型化が可能になる。
In the case of the toroidal shape, between the magnetic permeability μ (relative magnetic permeability with respect to the magnetic permeability of vacuum) which is a physical property value of the magnetic core and the inductance value L which is a characteristic value of the inductor element, L = There is a relationship of μ 0 μAn 2 / l. Here, μ 0 is the magnetic permeability of vacuum, A is the cross-sectional area of the magnetic core,
n is the number of windings and l is the magnetic path length. If the magnetic permeability is high, the number of windings or the cross-sectional area of the magnetic core can be reduced, so that the inductor element can be downsized.

【0004】インダクタ素子の巻き線には、直流電流に
高周波電流が重ね合わされた電流が入力される。従っ
て、磁心は直流磁界のバイアスがかかった状態で小振幅
の高周波磁界を受ける。インダクタ素子をより高い直流
電流で使用するには、その電流により発生する直流磁場
で磁心の磁気特性が飽和しないことが必要である。すな
わち、直流磁界に対して磁心材料の磁束密度が一定の割
合で増加し続けるという、磁心の不飽和特性が要求され
る。
A current obtained by superposing a high frequency current on a direct current is input to the winding of the inductor element. Therefore, the magnetic core receives a high-frequency magnetic field with a small amplitude while being biased with a DC magnetic field. In order to use the inductor element with a higher DC current, it is necessary that the magnetic characteristics of the magnetic core are not saturated with the DC magnetic field generated by the current. That is, the unsaturated characteristic of the magnetic core is required such that the magnetic flux density of the magnetic core material continuously increases with respect to the DC magnetic field.

【0005】磁心に不飽和特性を与える手段としては、
コアの間にギャップを設けて反磁界を作用させる方法が
一般的である。しかし、この手法ではカットコアの作成
やギャップの調整等、加工工程が長くなるという問題が
あるばかりでなく、スイッチング電源に要求される小型
のコアを製造するには適当でない。また、ギャップの形
成によりコアの鉄損が大きくなるという問題もある。
Means for imparting unsaturated characteristics to the magnetic core include:
Generally, a gap is provided between the cores so that a demagnetizing field acts. However, this method not only has the problem of lengthening the processing steps such as making cut cores and adjusting gaps, but is also not suitable for manufacturing the small cores required for switching power supplies. There is also a problem that core loss increases due to the formation of the gap.

【0006】磁心にギャップを設けずに不飽和特性を得
るものに、ダストコアとアモルファスコアがある。ダス
トコアは、Fe−Se−Al合金等の金属粉末を圧粉成
形したもので、粉末粒子の反磁界により不飽和特性を得
ている(特公昭62−21041号公報参照)。しか
し、得られる透磁率の値が低いことや、透磁率の値を制
御できないという問題がある。一方、アモルファスコア
は、Fe−Si−Bの組成を基本とするもので、部分的
な結晶化により磁心の不飽和特定を引き出している(特
開平5−255820号公報参照)。しかし、結晶化に
より箔が脆くなり、コアの製造が難しいという問題があ
る。
Dust cores and amorphous cores are used to obtain unsaturated characteristics without providing a gap in the magnetic core. The dust core is formed by compacting a metal powder such as Fe-Se-Al alloy, and has an unsaturated characteristic due to the demagnetizing field of the powder particles (see Japanese Patent Publication No. 62-21041). However, there are problems that the obtained value of magnetic permeability is low and that the value of magnetic permeability cannot be controlled. On the other hand, the amorphous core is based on the composition of Fe-Si-B, and the unsaturation of the magnetic core is extracted by partial crystallization (see Japanese Patent Laid-Open No. 5-255820). However, there is a problem in that the crystallization makes the foil brittle, which makes it difficult to manufacture the core.

【0007】高い透磁率を広い重畳直流磁界範囲にわた
って得るためには、飽和磁束密度が高いことが必要であ
る。Fe−Si−B系のアモルファスの飽和磁束密度は
15kGであり、Fe−3%Si合金のそれは20kG
であるので、原理的にFe−Si磁心の方がよい直流重
畳特性が得られる。
In order to obtain a high magnetic permeability over a wide range of superimposed DC magnetic fields, it is necessary that the saturation magnetic flux density be high. The saturation magnetic flux density of Fe-Si-B system amorphous is 15 kG, and that of Fe-3% Si alloy is 20 kG.
Therefore, in principle, the Fe—Si magnetic core has better DC superposition characteristics.

【0008】本発明者等は、先にゴス方位のFe−Si
合金箔を巻くことにより、直流重畳特性のよいインダク
タ素子が得られることを提示した。しかしながら、応力
の範囲に関する規定が無く、特に弾性変形範囲を超える
応力の付加により高い直流磁場まで一定の透磁率が得ら
れることについての言及はされなかった。
The inventors of the present invention have previously conducted Fe-Si in the Goss orientation.
We have shown that by winding an alloy foil, an inductor element with good DC superposition characteristics can be obtained. However, there is no regulation concerning the range of stress, and it was not mentioned that a constant magnetic permeability can be obtained even in a high DC magnetic field by applying a stress exceeding the elastic deformation range.

【0009】[0009]

【発明が解決しようとする課題】インダクタ素子用の磁
心は、直流磁界重畳のもと高周波励磁で使われる。そこ
で、本発明では、スイッチング電源の特に高直流磁場重
畳下で使用されるインダクタ素子用磁心を提供すること
を目的とする。
A magnetic core for an inductor element is used for high frequency excitation under superposition of a DC magnetic field. Therefore, it is an object of the present invention to provide a magnetic core for an inductor element used in a switching power supply, especially under superposition of a high DC magnetic field.

【0010】[0010]

【課題を解決するための手段】本発明は、結晶粒の板面
方位が(110)、圧延方向が[001]であるFe−
Si合金箔で構成される磁心において、圧延方向へ弾性
変形範囲を超える圧縮応力が加えられていることを特徴
とする応力付加磁心である。本発明は、応力を加える手
段の一つとして箔を曲げる方法を用い、弾性範囲を超え
る圧縮応力を加えることにより、高い直流重畳磁界まで
一定の透磁率を持つ磁心が得られる。
Means for Solving the Problems In the present invention, Fe- in which the plate plane orientation of the crystal grains is (110) and the rolling direction is [001].
A stress-applied magnetic core characterized in that a compressive stress exceeding an elastic deformation range is applied in a rolling direction in a magnetic core made of a Si alloy foil. The present invention uses a method of bending a foil as one of means for applying a stress, and by applying a compressive stress exceeding the elastic range, a magnetic core having a constant magnetic permeability up to a high DC superimposed magnetic field can be obtained.

【0011】以下に、本発明を詳細に説明する。直流磁
界重畳時に一定の大きさの透磁率を得るためには、磁心
に不飽和特性を付与しなければならない。その手段とし
て、本発明者等は、磁性体のもつ重要な性質の一つであ
る磁歪を利用した。方向性けい素鋼板のゴス方位は、圧
延面が(110)で、圧延方向が[001]である。圧
延方向の[001]方向は磁化容易軸であり、その方向
の磁束密度は、応力にきわめて敏感である。[001]
方向に応力σが施されると、[001]方向の磁歪定数
をλ100 として、磁気弾性効果によりEm =−3/2λ
100σのエネルギーの変化が起こる。けい素鋼板の[0
01]方向へ磁歪定数λ100は正であるので、圧縮応力
(σ<0)を加えることによりEm >0となり、圧延方
向に垂直な面内の方向が磁化容易方向となる。すなわ
ち、圧延方向は磁化困難方向となり、これにより磁心の
不飽和特性を得ることが出来る。
The present invention will be described in detail below. In order to obtain a certain degree of magnetic permeability when a DC magnetic field is superimposed, the magnetic core must be provided with unsaturated characteristics. As a means for this, the present inventors have utilized magnetostriction, which is one of the important properties of magnetic materials. Regarding the Goss orientation of the grain-oriented silicon steel sheet, the rolling surface is (110) and the rolling direction is [001]. The [001] direction of the rolling direction is the easy axis of magnetization, and the magnetic flux density in that direction is extremely sensitive to stress. [001]
When a stress σ is applied in the direction, the magnetostriction constant in the [001] direction is set to λ 100 , and E m = −3 / 2λ by the magnetoelastic effect
An energy change of 100 σ occurs. Silicon steel [0
Since the magnetostriction constant λ 100 is positive in the [01] direction, E m > 0 by applying compressive stress (σ <0), and the in-plane direction perpendicular to the rolling direction becomes the easy magnetization direction. That is, the rolling direction is the direction in which the magnetization is difficult, which makes it possible to obtain the unsaturated characteristics of the magnetic core.

【0012】本発明では、箔をトロイダルの形状に巻く
ことにより、箔に曲げ応力を加えた。曲げた箔の断面の
中心線より内側では圧縮応力が働き、外側では同じ大き
さの引っ張り応力が働く。本発明者等は、箔の圧力応力
がかかった部分では、磁化容易方向が圧延方向と垂直な
方向となり、圧延方向への磁界の印加に対して磁束密度
は一定の傾きを持って増加するという知見を得ている。
一方、中心線より外側の引張応力がかけられた部分で
は、圧延方向が磁化容易軸となっており、小さい磁界の
印加ですぐに磁束密度は飽和する。これら二つの領域が
曲げた箔に共存する結果、直流磁界重畳時の高周波励磁
透磁率は、零近傍の小さい磁界では非常に大きな値を示
し、それより高い直流磁界のある一定の範囲においては
一定の透磁率を示すことになる。
In the present invention, bending stress is applied to the foil by winding the foil in a toroidal shape. Compressive stress acts inside the center line of the cross section of the bent foil, and tensile stress of the same magnitude acts outside. The inventors of the present invention have stated that in the portion of the foil where pressure stress is applied, the easy magnetization direction is perpendicular to the rolling direction, and the magnetic flux density increases with a constant inclination with respect to the application of the magnetic field in the rolling direction. I have knowledge.
On the other hand, in the portion outside the center line where the tensile stress is applied, the rolling direction is the easy axis of magnetization, and the magnetic flux density is saturated immediately when a small magnetic field is applied. As a result of these two regions coexisting in a bent foil, the high-frequency excitation permeability when a DC magnetic field is superposed shows a very large value in a small magnetic field near zero, and is constant in a certain range of a DC magnetic field higher than that. The magnetic permeability of

【0013】本発明では、磁心の直流重畳特性を評価す
るために、圧縮応力部からくる直流磁界に対して透磁率
が一定となる部分の平均透磁率をμp とし、透磁率が一
定の部分が終わる磁界(異方性磁界)をHa とした。H
a は透磁率がμp の80%になる値とした。引張応力部
からくる零磁界近傍の高い透磁率は、自励式のスイッチ
ング電源の平滑チョークコイルとしては有用な特性であ
る。
In the present invention, in order to evaluate the direct current superposition characteristic of the magnetic core, the average magnetic permeability of the portion where the magnetic permeability is constant with respect to the direct current magnetic field coming from the compressive stress portion is defined as μ p, and the portion where the magnetic permeability is constant is set. The magnetic field (anisotropic magnetic field) at which is ended is defined as H a . H
The value a was a value at which the magnetic permeability was 80% of μ p . The high magnetic permeability near the zero magnetic field from the tensile stress part is a useful characteristic as a smooth choke coil for a self-excited switching power supply.

【0014】本発明者等は、種々の巻きコアで評価した
結果、箔の表面における圧縮応力が材料の弾性変形の範
囲を超えるときには、透磁率μp と異方性磁界Ha は圧
縮応力σ(又は歪みε)にあまり依存しなくなることを
見出した。この性質は、実用上は肉厚の大きいリング状
のコアを作る時に重要となる。なぜならば、巻くの巻回
の操作によって応力を加える場合には、コアの内径に近
い側と外形に近い側とで加えられる応力が大きく異なる
場合が生じるからである。弾性変形の範囲では透磁率の
直流重畳特性は応力に依存して大きく変化するので、上
記のような肉厚の大きいコアを作る場合にはコアの内径
側と外形側で特定が大きく異なることになる。このよう
な問題は、コアを塑性変形の範囲で作ることにより避け
ることができる。
As a result of evaluation by various wound cores, the present inventors have found that when the compressive stress on the surface of the foil exceeds the range of elastic deformation of the material, the magnetic permeability μ p and the anisotropic magnetic field H a are the compressive stress σ. It has been found that (or strain ε) becomes less dependent. This property is practically important when making a ring-shaped core having a large wall thickness. This is because, when stress is applied by the winding operation, the stress applied to the side closer to the inner diameter of the core and the stress applied to the side closer to the outer shape may differ greatly. In the range of elastic deformation, the DC superimposition characteristic of magnetic permeability greatly changes depending on the stress.Therefore, when making a thick core as described above, the specifications differ greatly between the inner diameter side and the outer diameter side. Become. Such problems can be avoided by making the core within the range of plastic deformation.

【0015】本発明者等は、弾性範囲を超える圧縮応力
を付加することにより、6kA/mに及ぶ高い重畳直流
磁界まで100前後の高い透磁率を持つ磁心を製造でき
ることを見出して、本発明を完成するに至った。
The present inventors have found that by applying a compressive stress exceeding the elastic range, it is possible to manufacture a magnetic core having a high magnetic permeability of around 100 up to a high superimposed DC magnetic field of up to 6 kA / m. It came to completion.

【0016】以下、本発明の詳細を具体例を以て説明す
る。本発明に用いるFe−Si合金箔のSi含有量は、
重量百分率で1〜6%が望ましい。なぜなら、高周波に
おいては鉄損のほとんどは過電流損失からなっており、
Si含有量を増して電気抵抗を高めるほど鉄損が下がる
からである。逆に、Si含有量が1%未満では電気抵抗
が低いために鉄損が大きく、実用に供することができな
い。また、本発明では、直流重畳特性を引き出すだに磁
歪の効果を利用しており、Si含有量はFe−Si合金
箔で正の磁歪定数が得られる6%以下が望ましい。
The details of the present invention will be described below with reference to specific examples. The Si content of the Fe-Si alloy foil used in the present invention is
The weight percentage is preferably 1 to 6%. Because most of iron loss at high frequency consists of overcurrent loss,
This is because the iron loss decreases as the Si content increases and the electrical resistance increases. On the other hand, if the Si content is less than 1%, the electrical resistance is low and the iron loss is large, so that it cannot be put to practical use. Further, in the present invention, the effect of magnetostriction is utilized in order to bring out the direct current superposition characteristic, and the Si content is preferably 6% or less at which a positive magnetostriction constant can be obtained in the Fe-Si alloy foil.

【0017】箔の厚さは、10〜200μmが望まし
い。なぜなら、10μm未満の箔は圧延によって作り難
く、200μm超の箔出は鉄損が大きく実用に供するこ
とができないからである。
The thickness of the foil is preferably 10 to 200 μm. This is because it is difficult to make a foil having a thickness of less than 10 μm by rolling, and a foil having a thickness of more than 200 μm has a large iron loss and cannot be put to practical use.

【0018】ゴス方位をもったFe−Si合金の方向性
電磁鋼板(厚さ:0.15〜0.4mm)に再圧延を施
し、適切な条件で焼鈍を行うと、一次再結晶により微細
結晶粒からなるゴス方位に戻ることが知られている(和
田他、日本金属学会誌40,1158(1976))。
この現象を利用することにより、所望のゴス方位を有す
るFe−Si合金箔を得ることができる。
When a grain-oriented electrical steel sheet (thickness: 0.15 to 0.4 mm) of a Fe-Si alloy having a Goss orientation is rerolled and annealed under appropriate conditions, fine crystals are formed by primary recrystallization. It is known to return to a Goss orientation composed of grains (Wada et al., The Japan Institute of Metals, 40, 1158 (1976)).
By utilizing this phenomenon, an Fe-Si alloy foil having a desired Goss orientation can be obtained.

【0019】最適のゴス方位を持った箔を得るために
は、圧延率としては50%以上が好ましく、また再結晶
のための熱処理温度は、700℃以上、1200℃以下
が好ましい。特に鉄損を下げる必要がある時には、熱処
理温度を800〜900℃に設定して結晶粒径を20〜
100μmに長生するのが効果的である。熱処理雰囲気
は、参加しない条件であれば良く、アルゴン、窒素、水
素又はそれらの二つ以上のガスの混合雰囲気を用いるこ
とができる。
In order to obtain a foil having an optimum Goss orientation, the rolling rate is preferably 50% or more, and the heat treatment temperature for recrystallization is preferably 700 ° C. or more and 1200 ° C. or less. Especially when it is necessary to reduce the iron loss, the heat treatment temperature is set to 800 to 900 ° C. and the crystal grain size is set to 20 to
It is effective to grow to 100 μm. The heat treatment atmosphere may be a condition that does not participate, and argon, nitrogen, hydrogen, or a mixed atmosphere of two or more gases thereof can be used.

【0020】次に、得られたゴス方位の箔を環状に巻き
トロイダルコアとする。箔を巻きコアとする時には、層
間の電気的導通をさけるために絶縁が必要である。絶縁
処理はAl2 3 等の酸化物を再結晶熱処理前に箔表面
に塗布してもよく、また、熱処理後に塗布しても良い。
より簡単には、絶縁皮膜としてシリケート系の樹脂を熱
処理後にコーティングしても良い。
Next, the obtained Goth-oriented foil is annularly wound to form a toroidal core. When a foil is used as a wound core, insulation is necessary to prevent electrical conduction between layers. For the insulating treatment, an oxide such as Al 2 O 3 may be applied to the foil surface before the recrystallization heat treatment, or may be applied after the heat treatment.
More simply, a silicate-based resin may be coated as an insulating film after heat treatment.

【0021】以下に、箔の応力制御方法について述べ
る。箔を巻くことによって容易に圧縮応力を生じせしめ
ることができる。巻く前の歪みのない箔はまっすぐでも
よいが、箔に曲率を持たせると応力制御の範囲が広が
る。具体的には、平均直径di の巻回体の状態で再結晶
熱処理を行い、曲率di /2の状態の歪みのない箔を用
意する。また、再結晶熱処理の終わった箔を平均直径d
i の径に巻き、再度歪み取りのための熱処理を行っても
良い。これを平均直径Df のトロイダルコアに巻直す
と、箔の表面には、ε=t(l/df ±1/di )の歪
みを与えることができる。
The method for controlling the stress of the foil will be described below. A compressive stress can be easily generated by winding the foil. The undistorted foil before winding may be straight, but if the foil has a curvature, the range of stress control is expanded. Specifically, recrystallization heat treatment is performed in the state of a wound body having an average diameter d i to prepare a foil without distortion and having a curvature d i / 2. The average diameter d of the foil after the recrystallization heat treatment is
It may be wound around the diameter of i and heat treated again for strain relief. When this is rewound on a toroidal core having an average diameter D f , a strain of ε = t (l / d f ± 1 / d i ) can be given to the surface of the foil.

【0022】ここで、括弧内の符号は、巻直しを同方向
に行う場合にはマイナスであり、巻き直しを反対方向に
行う場合にはプラスである。弾性変形を仮定すると箔の
内側表面ではσ=Eεの圧縮応力がかかり(Eはヤング
率)、箔の外側表面では同じ大きさの引っ張り応力がか
かる。塑性変形範囲になると、応力は上式に従わない
が、この場合でも歪みの大きさが弾性変形の範囲内か範
囲外かの判断の基準になる。
Here, the reference numerals in parentheses are negative when rewinding is performed in the same direction, and are positive when rewinding is performed in the opposite direction. Assuming elastic deformation, a compressive stress of σ = Eε is applied to the inner surface of the foil (E is Young's modulus), and a tensile stress of the same magnitude is applied to the outer surface of the foil. In the plastic deformation range, the stress does not follow the above formula, but even in this case, the strain becomes a criterion for judging whether the strain is within the elastic deformation range or outside the range.

【0023】Fe−3%Si合金の降伏応力は37kg
/mm2 であり、[001]方向のヤング率は1.27
x104 kg/mm2 である。したがって、Fe−Si
合金の弾性限界応力は約40kg/mm2 とするとがで
き、それに対応する歪みεは0.31%である。
The yield stress of Fe-3% Si alloy is 37 kg.
/ Mm 2 , and the Young's modulus in the [001] direction is 1.27.
It is x10 4 kg / mm 2 . Therefore, Fe-Si
The elastic limit stress of the alloy can be set to about 40 kg / mm 2, and the corresponding strain ε is 0.31%.

【0024】[0024]

【実施例】以下に、本発明を実施例に基づいてさらに説
明する。実施例1 Fe−3%Siのゴス方位を持った厚さ280μmの方
向性電磁鋼板に冷間圧延を施して、厚さ50μmの箔を
得た。次に、箔の圧延方向が長手方向となるように切断
し、幅5mmのリボン状の箔を作成した。窒素中で85
0℃で10分間の熱処理を施し、平均結晶粒径50μm
の微細結晶粒からなるゴス方位のFe−Si合金箔を得
た。熱処理は平均直径50mmと32mmに巻いた状態
で行い、その径の応力のかかっていない箔を用意した。
EXAMPLES The present invention will be further described below based on examples. Example 1 A 280 [mu] m thick grain-oriented electrical steel sheet having a Goss orientation of Fe-3% Si was cold-rolled to obtain a 50 [mu] m thick foil. Next, the foil was cut so that the rolling direction was the longitudinal direction, and a ribbon-shaped foil having a width of 5 mm was prepared. 85 in nitrogen
Heat treatment at 0 ℃ for 10 minutes, average crystal grain size 50μm
A Goss-oriented Fe-Si alloy foil composed of the above fine crystal grains was obtained. The heat treatment was performed in a state of being wound with an average diameter of 50 mm and 32 mm, and a foil having no stress of that diameter was prepared.

【0025】次に、絶縁のために箔の表面にシリケート
系の樹脂をコーティングし、巻き直しにより外径18m
mのコア(肉厚1.5mm)と外径28mmのコア(肉
厚1mm)を作製した。ここで、32mm径の熱処理箔
を上記の実コアに巻き直す時に、巻く方向を反対向にし
た。すなわち、熱処理時に裏側であった箔表面が実コア
では表面にくるようにした。このような操作により、4
0kg/cm2 以上の塑性変形範囲にある応力が加えら
れる。この時にコアに加えられる歪みは、コアの大きさ
に対応してε=0.34%,0.46%である。一方、
50mm径の熱処理箔を実コアに巻き直す時には、巻く
方向を同方向とした。すなわち、熱処理時に表側であっ
た箔表面は実コアでも表側にくるようにした。このよう
な条件では、弾性変形範囲にある応力が加えられる。こ
の時にコアに加えられる歪みは、測定コアの大きさに対
応して、ε=0.09%,0.20%である。
Next, a silicate resin is coated on the surface of the foil for insulation and is rewound to have an outer diameter of 18 m.
m core (thickness 1.5 mm) and outer diameter 28 mm core (thickness 1 mm) were produced. Here, when the heat-treated foil having a diameter of 32 mm was rewound on the actual core, the winding directions were opposite to each other. That is, the foil surface, which was the back side at the time of heat treatment, was made to come to the surface of the actual core. With this operation, 4
A stress in the plastic deformation range of 0 kg / cm 2 or more is applied. The strains applied to the core at this time are ε = 0.34% and 0.46% corresponding to the size of the core. on the other hand,
When the heat-treated foil having a diameter of 50 mm was rewound on the actual core, the winding direction was the same direction. That is, the foil surface, which was on the front side during the heat treatment, was made to be on the front side even with the actual core. Under such conditions, stress within the elastic deformation range is applied. The strains applied to the core at this time are ε = 0.09% and 0.20% corresponding to the size of the measurement core.

【0026】作製したコアに導線の巻き線を施し、LC
Rメーターにより直流電流重畳時の高周波励磁(50k
Hz)におけるインダクタンスを測定し、その値から透
磁率μを算出した。印加直流磁界に対して透磁率μをプ
ロットした結果(直流重畳特性)を図1および図2に示
す。図1には塑性変形範囲にあるコアの測定結果を示
し、図2には弾性変形範囲にあるコアの測定結果を示
す。
Conductor winding is applied to the produced core, and LC
High frequency excitation (50k) when superimposing DC current by R meter
Hz) and the magnetic permeability μ was calculated from the measured inductance. The results of plotting the permeability μ against the applied DC magnetic field (DC superposition characteristics) are shown in FIGS. 1 and 2. FIG. 1 shows the measurement result of the core in the plastic deformation range, and FIG. 2 shows the measurement result of the core in the elastic deformation range.

【0027】図1から分かるように、塑性変形範囲では
直流重畳特性はあまり変形量に依存せず、異方性磁界H
a としては6kA/mに及ぶ高い値が得られる。一方、
図2から分かるように、弾性変形範囲では直流重畳特性
は変形量に依存して大きく変化し、Ha としても高い値
を得ることができない。
As can be seen from FIG. 1, in the plastic deformation range, the DC superposition characteristics do not depend so much on the deformation amount, and the anisotropic magnetic field H
As a , a value as high as 6 kA / m can be obtained. on the other hand,
As can be seen from FIG. 2, in the elastic deformation range, the DC superimposition characteristic greatly changes depending on the deformation amount, and a high value cannot be obtained even for H a .

【0028】実施例2 実施例1と同様に、Fe−3%Si合金の厚さ50μm
の箔を平均直径38mmと54mmの巻回体として熱処
理を施した。箔の幅は11mmとした。次にこれらの箔
を巻き直して、内径15mm、外径27mmの肉厚の大
きいコアを作製した。ここで、直径38mmのコアを巻
き直す時には反対方向に巻き、塑性変形範囲の応力を加
えた。また、直径54mmのコアから巻き直す時には同
方向に巻き直し、弾性変形範囲にある応力を加えた。巻
き直したコアの直流重畳特定を実施例1と同じ条件で測
定し、その結果を、図3に示す。
Example 2 As in Example 1, the thickness of the Fe-3% Si alloy was 50 μm.
The foil was heat treated as a wound body having an average diameter of 38 mm and 54 mm. The width of the foil was 11 mm. Next, these foils were rewound to produce a thick core having an inner diameter of 15 mm and an outer diameter of 27 mm. Here, when the core having a diameter of 38 mm was rewound, the core was wound in the opposite direction and a stress in the plastic deformation range was applied. Further, when the core having a diameter of 54 mm was rewound, the core was rewound in the same direction, and a stress within the elastic deformation range was applied. The DC superimposition specification of the rewound core was measured under the same conditions as in Example 1, and the results are shown in FIG.

【0029】図3からわかるように、塑性変形範囲にあ
るコアは広い直流磁界範囲にわたって一定の透磁率を示
す。弾性変形範囲にあるコアの透磁率は、直流磁界に対
する変化が大きい。
As can be seen from FIG. 3, the core in the plastic deformation range exhibits a constant magnetic permeability over a wide range of DC magnetic field. The magnetic permeability of the core in the elastic deformation range changes greatly with respect to the DC magnetic field.

【0030】[0030]

【発明の効果】従来、Fe−Si合金箔においては、直
流重畳特性を得るためにコアにギャップを設けていた。
本発明は、ギャップ無しで、応力付加により直流重畳特
性を引き出している。ギャップが無いことにより、製造
工程が簡略化され、低コストで磁心を提供することがで
きる。本発明の塑性変形の範囲では透磁率は応力に依存
しないので、コアの内径側と外径側で付加応力が著しく
異なるような肉厚の大きいコアにおいて、部位によらな
い一定の透磁率を得ることができる。
In the conventional Fe-Si alloy foil, a gap is provided in the core in order to obtain a DC superposition characteristic.
The present invention derives the DC superposition characteristic by applying stress without a gap. Since there is no gap, the manufacturing process can be simplified and the magnetic core can be provided at low cost. Since the magnetic permeability does not depend on the stress in the plastic deformation range of the present invention, a constant magnetic permeability that does not depend on the part is obtained in a thick core in which the additional stress is significantly different between the inner diameter side and the outer diameter side of the core. be able to.

【0031】また、本発明の応力付加磁心は6kA/m
に及ぶ高磁界まで高い透磁率を示すので、高電流条件下
で高いインダクタンスを求めらめるインダクタ(又はチ
ョークコイル)を実現することができる。
The stress-applied magnetic core of the present invention is 6 kA / m.
Since it exhibits high magnetic permeability up to a high magnetic field, it is possible to realize an inductor (or choke coil) that requires high inductance under high current conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】塑性変形範囲にあるコアの透磁率の直流重畳特
性を示した図である。
FIG. 1 is a diagram showing a DC superimposition characteristic of magnetic permeability of a core in a plastic deformation range.

【図2】弾性変形範囲にあるコアの透磁率の直流重畳特
性を示す図である。
FIG. 2 is a diagram showing a DC superimposition characteristic of magnetic permeability of a core in an elastic deformation range.

【図3】塑性変形範囲にあるコアと弾性変形範囲にある
コアの透磁率の直流重畳特性を示す図である。
FIG. 3 is a diagram showing DC superimposition characteristics of magnetic permeability of a core in a plastic deformation range and a core in an elastic deformation range.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 27/24 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01F 27/24 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】結晶粒の板面方位が(110)、圧延方向
が[001]であるFe−Si合金箔で構成される磁心
であって、圧延方向へ弾性変形範囲を超える圧縮応力が
加えられていることを特徴とする応力付加磁心。
1. A magnetic core composed of a Fe—Si alloy foil having a grain surface orientation of (110) and a rolling direction of [001], wherein a compressive stress exceeding an elastic deformation range is applied to the rolling direction. A stress-applied magnetic core characterized by being provided.
【請求項2】前記合金箔の表面における圧縮応力が、4
0kg/mm2 以上であり、その圧縮応力が箔を曲げる
ことによって生じていることを特徴とする請求項1に記
載の応力付加磁心。
2. The compressive stress on the surface of the alloy foil is 4
The stress-applied magnetic core according to claim 1, wherein the stress-applied magnetic core is 0 kg / mm 2 or more, and the compressive stress is generated by bending the foil.
JP6157226A 1994-07-08 1994-07-08 Stressed magnetic core Withdrawn JPH0822911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6157226A JPH0822911A (en) 1994-07-08 1994-07-08 Stressed magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6157226A JPH0822911A (en) 1994-07-08 1994-07-08 Stressed magnetic core

Publications (1)

Publication Number Publication Date
JPH0822911A true JPH0822911A (en) 1996-01-23

Family

ID=15644988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6157226A Withdrawn JPH0822911A (en) 1994-07-08 1994-07-08 Stressed magnetic core

Country Status (1)

Country Link
JP (1) JPH0822911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125798A (en) * 2011-12-13 2013-06-24 Denkoh Electric Industry Co Ltd Reactor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125798A (en) * 2011-12-13 2013-06-24 Denkoh Electric Industry Co Ltd Reactor device

Similar Documents

Publication Publication Date Title
JPS5933183B2 (en) Low loss amorphous alloy
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
Luborsky Perspective on application of amorphous alloys in magnetic devices
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JPH01247557A (en) Manufacture of hyperfine-crystal soft-magnetic alloy
JPH11186020A (en) Zero-phase current transformer
JPH0822911A (en) Stressed magnetic core
JP2778697B2 (en) Fe-based soft magnetic alloy
JP5131747B2 (en) Manufacturing method of bi-directional electrical steel sheet
JP2698769B2 (en) Manufacturing method of high permeability core
KR930009975B1 (en) Process for preparing wound core having low core loss
US7056595B2 (en) Magnetic implement using magnetic metal ribbon coated with insulator
JPH0257683B2 (en)
JPH0817615A (en) Stress applied magnetic core
JPH0811818B2 (en) Heat treatment method for toroidal amorphous magnetic core
JPH07201549A (en) Inductor element
JP2941534B2 (en) Fe-Co based soft magnetic material having good soft magnetism and soft magnetic electric component assembly
JPH07235429A (en) Inductor element
JPH0845750A (en) Fe-al stress-added magnetic core
JPH02260612A (en) Laminated iron core
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JP2693453B2 (en) Winding core
JPH09102408A (en) Magnetic foil and its manufacture and high-frequency magnetic core using it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002