JPH08227707A - Nickel-metal hydride battery - Google Patents

Nickel-metal hydride battery

Info

Publication number
JPH08227707A
JPH08227707A JP7057941A JP5794195A JPH08227707A JP H08227707 A JPH08227707 A JP H08227707A JP 7057941 A JP7057941 A JP 7057941A JP 5794195 A JP5794195 A JP 5794195A JP H08227707 A JPH08227707 A JP H08227707A
Authority
JP
Japan
Prior art keywords
nickel
separator
hydrogen compound
battery
porous plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7057941A
Other languages
Japanese (ja)
Inventor
Yasunobu Kamiya
泰伸 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP7057941A priority Critical patent/JPH08227707A/en
Publication of JPH08227707A publication Critical patent/JPH08227707A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To provide a nickel - metal hydride battery with excellent battery content in which an electrolyte retaining amount in a separator rarely reduces even if charge/discharge cycles are repeated and minor short circuit between a positive electrode and a negative electrode does not occur. CONSTITUTION: A nickel - metal hydride battery comprises a positive electrode containing nickel, a negative electrode containing a hydrogen storage alloy, a separator 10 placed between both electrodes, and an electrolyte. The separator 10 comprises a synthetic resin porous plate 1 having a large number of through holes 11 and a synthetic resin nonwoven fabric arranged on each side of the porous plate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ニッケル−水素化合物
電池,特にこれに用いるセパレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen compound battery, and more particularly to a separator used therein.

【0002】[0002]

【従来技術】図5及び図6に示すごとく,従来,ニッケ
ル−水素化合物電池90は,ニッケルを含有する正極9
1と,水素吸蔵合金を含有する負極92と,両者の間に
介設したセパレータ8と,電解液とからなるものがある
(特開平4−349349号公報)。
2. Description of the Related Art As shown in FIG. 5 and FIG. 6, a nickel-hydrogen compound battery 90 is conventionally composed of a positive electrode 9 containing nickel.
1, a negative electrode 92 containing a hydrogen storage alloy, a separator 8 interposed between the two, and an electrolytic solution (JP-A-4-349349).

【0003】上記ニッケル−水素化合物電池90を作製
するに当たっては,図7に示すごとく,上記負極92の
上下面をセパレータ8により覆い,これに正極91を重
ねて渦巻状に巻回し,渦巻状電極群とする。次いで,こ
の渦巻状電解群を,図7に示すごとく,電池ケース95
内に挿入すると共に電解液を注入する。
In manufacturing the nickel-hydrogen compound battery 90, as shown in FIG. 7, the upper and lower surfaces of the negative electrode 92 are covered with a separator 8 and a positive electrode 91 is superposed on the separator 8 and spirally wound to form a spiral electrode. Group. Next, this spiral electrolysis group is connected to a battery case 95 as shown in FIG.
Insert it and inject the electrolyte.

【0004】従来,上記セパレータ8としては,例えば
ポリアミドの不織布,ポリプロピレンの不織布,スルホ
ン基若しくはアルカリ塩の基を有するスルホン化ポリオ
レフィン系樹脂の不織布などが用いられている(例え
ば,特開昭64−57568号公報)。
Conventionally, as the separator 8, for example, a nonwoven fabric of polyamide, a nonwoven fabric of polypropylene, a nonwoven fabric of a sulfonated polyolefin resin having a sulfone group or an alkali salt group, etc. has been used (for example, JP-A-64- 57568).

【0005】[0005]

【解決しようとする課題】しかしながら,従来のニッケ
ル−水素化合物電池においては,その使用中にセパレー
タ中の電解液の保持量が減少し,電池容量が低下してし
まうという問題がある。
However, in the conventional nickel-hydrogen compound battery, there is a problem that the amount of the electrolytic solution held in the separator decreases during use thereof, resulting in a decrease in battery capacity.

【0006】即ち,従来のニッケル−水素化合物電池に
おいては,図8(A),(B)に示すごとく,充放電を
繰り返す間に,正極91が膨張し,同図(B)に示すご
とく,セパレータ8が正極91と負極92との間におい
て圧縮され,その厚みが減少してしまう。
That is, in the conventional nickel-hydrogen compound battery, as shown in FIGS. 8A and 8B, the positive electrode 91 expands during repeated charging and discharging, and as shown in FIG. The separator 8 is compressed between the positive electrode 91 and the negative electrode 92, and its thickness is reduced.

【0007】そのため,セパレータ8内に含浸されてい
た電解液が外部へ放出され,正極91と負極92との間
におけるセパレータ8中の電解液が減少する。また,そ
のため,内部抵抗が増大し,電池性能に悪影響を及ぼ
し,電池容量が低下する。また,セパレータ8の厚みが
減少するため,正極91と負極92との間の距離が短く
なり,両極間に電気的な微少短絡が発生する。
Therefore, the electrolytic solution impregnated in the separator 8 is discharged to the outside, and the electrolytic solution in the separator 8 between the positive electrode 91 and the negative electrode 92 decreases. In addition, this increases the internal resistance, which adversely affects the battery performance and reduces the battery capacity. Further, since the thickness of the separator 8 is reduced, the distance between the positive electrode 91 and the negative electrode 92 is shortened, and an electrical micro short circuit occurs between both electrodes.

【0008】本発明はかかる従来の問題点に鑑み,充放
電の繰り返しによっても,セパレータ中の電解液保持量
が殆ど減少せず,また正極と負極間の微少短絡の発生が
ない,優れた電池容量を有するニッケル−水素化合物電
池を提供しようとするものである。
In view of the above conventional problems, the present invention is an excellent battery in which the amount of electrolyte retained in the separator hardly decreases even after repeated charging and discharging, and a minute short circuit between the positive electrode and the negative electrode does not occur. It is an object of the present invention to provide a nickel-hydrogen compound battery having a capacity.

【0009】[0009]

【課題の解決手段】本発明は,ニッケルを含有する正極
と,水素吸蔵合金を含有する負極と,両極の間に介設す
るセパレータと,電解液とを有するニッケル−水素化合
物電池において,上記セパレータは,多数の貫通孔を設
けた合成樹脂の多孔板と,該多孔板の両面に配置した合
成樹脂の不織布とよりなることを特徴とするニッケル−
水素化合物電池にある。
The present invention provides a nickel-hydrogen compound battery having a positive electrode containing nickel, a negative electrode containing a hydrogen storage alloy, a separator interposed between both electrodes, and an electrolytic solution. Is a synthetic resin perforated plate having a large number of through holes, and a synthetic resin non-woven fabric disposed on both sides of the perforated plate.
It is in a hydrogen compound battery.

【0010】本発明において最も注目すべきことは,上
記セパレータが,合成樹脂製の多孔板と,その表裏両面
に配置した合成樹脂製の不織布とよりなることである。
上記多孔板及び不織布は,電解液がアルカリ性であるた
めに,耐アルカリ性を有することが好ましい。
What is most noticeable in the present invention is that the separator is composed of a synthetic resin porous plate and synthetic resin nonwoven fabrics arranged on both front and back surfaces thereof.
The porous plate and the non-woven fabric preferably have alkali resistance because the electrolyte is alkaline.

【0011】上記多孔板に用いる合成樹脂は,ポリプロ
ピレン,変性ポリフェニレンエーテル(PPE),ポリ
エーテルスルホンのグループから選ばれる1種以上であ
ることが好ましい。この場合には,耐アルカリ性に優
れ,初期の性能を長期間にわたり保持できるという効果
がある。
The synthetic resin used for the porous plate is preferably one or more selected from the group consisting of polypropylene, modified polyphenylene ether (PPE) and polyether sulfone. In this case, there is an effect that the alkali resistance is excellent and the initial performance can be maintained for a long time.

【0012】上記多孔板の貫通孔は,その孔径が1〜2
mmであることが好ましい。1mm未満では,電解液を
充分に保持することが困難である。一方,2mmを超え
ると電極の膨張に対し電極間距離を維持する目的を達成
できないという問題を生ずるおそれがある。上記多孔板
の厚みは0.1〜0.2mmであることが好ましい。
0.1mm未満では電解液保持空間が少ないという問題
を生ずるおそれがある。一方0.2mmを超えると体積
エネルギー密度の向上の点において好ましくないという
問題を生ずるおそれがある。
The through hole of the perforated plate has a hole diameter of 1 to 2
It is preferably mm. If it is less than 1 mm, it is difficult to sufficiently retain the electrolytic solution. On the other hand, if it exceeds 2 mm, there is a possibility that the problem of not being able to achieve the purpose of maintaining the distance between the electrodes against the expansion of the electrodes may occur. The thickness of the perforated plate is preferably 0.1 to 0.2 mm.
If it is less than 0.1 mm, there is a possibility that the problem that the electrolyte holding space is small may occur. On the other hand, when it exceeds 0.2 mm, there is a possibility that there is a problem that it is not preferable in terms of improvement of the volume energy density.

【0013】上記不織布に用いる合成樹脂は,ポリオレ
フィン,ポリプロピレンのグループから選ばれる1種以
上であることが好ましい。上記多孔板と不織布とは熱融
着,接着剤等により接合されていることが好ましい。こ
れにより,両者間の剥離がない。
The synthetic resin used for the non-woven fabric is preferably one or more selected from the group consisting of polyolefin and polypropylene. The porous plate and the non-woven fabric are preferably joined by heat fusion, an adhesive or the like. As a result, there is no separation between the two.

【0014】[0014]

【作用及び効果】本発明のニッケル−水素化合物電池に
おいては,セパレータが上記のごとき多孔板とその両面
に配置した不織布とよりなる。そして,多孔板の貫通孔
は上記不織布によって囲まれ,その貫通孔内に電解液が
保持される。
FUNCTION AND EFFECT In the nickel-hydrogen compound battery of the present invention, the separator comprises the porous plate as described above and the non-woven fabric arranged on both surfaces thereof. The through hole of the perforated plate is surrounded by the non-woven fabric, and the electrolytic solution is retained in the through hole.

【0015】そのため,充放電の繰り返しによって,正
極が膨張しても,セパレータの中央部にある多孔板は何
らその厚みが変化しない。それ故,,上記正極の膨張に
よって,多孔板の両面にある不織布が圧縮されても,多
孔板内の貫通孔は何ら変化せず,当初のままその容量を
保持している。したがって,セパレータにおける電解液
の保持量は殆ど変化しない。
Therefore, even if the positive electrode expands due to repeated charging and discharging, the thickness of the porous plate at the center of the separator does not change. Therefore, even if the nonwoven fabrics on both sides of the porous plate are compressed by the expansion of the positive electrode, the through holes in the porous plate do not change at all, and the capacity is maintained as it is. Therefore, the amount of electrolyte retained in the separator hardly changes.

【0016】また,上記多孔板の存在によって,正極と
負極間の距離は少なくとも多孔板の厚み以上に保持され
る。そのため,正極と負極間に微少短絡が発生すること
もない。したがって,優れた電池容量を維持することが
できる。
Further, due to the presence of the porous plate, the distance between the positive electrode and the negative electrode is kept at least equal to or larger than the thickness of the porous plate. Therefore, a minute short circuit does not occur between the positive electrode and the negative electrode. Therefore, an excellent battery capacity can be maintained.

【0017】このように,本発明によれば,充放電の繰
り返しによってもセパレータ中の電解液保持量が殆ど減
少せず,また正極と負極間の微少短絡の発生がない,優
れた電池容量を有するニッケル−水素化合物電池を提供
することができる。
As described above, according to the present invention, even if the charge and discharge are repeated, the amount of the electrolytic solution retained in the separator is hardly reduced, and a minute short circuit between the positive electrode and the negative electrode does not occur, and an excellent battery capacity is obtained. A nickel-hydrogen compound battery having the same can be provided.

【0018】[0018]

【実施例】【Example】

実施例1 本発明の実施例にかかるニッケル−水素化合物電池につ
き,図1〜図3を用いて説明する。本例のニッケル−水
素化合物電池は,図3に示すごとく,ニッケルを含有す
る正極91と,水素吸蔵合金を含有する負極92と,両
極の間に介設するセパレータ10と,電解液(図示略)
とを有する。上記セパレータ10は,図1,図2に示す
ごとく,多数の貫通孔11を設けた合成樹脂製の多孔板
1と,該多孔板1の両面に配置した合成樹脂製の不織布
2とよりなる。
Example 1 A nickel-hydrogen compound battery according to an example of the present invention will be described with reference to FIGS. As shown in FIG. 3, the nickel-hydrogen compound battery of this example includes a positive electrode 91 containing nickel, a negative electrode 92 containing a hydrogen storage alloy, a separator 10 interposed between both electrodes, an electrolytic solution (not shown). )
Have and. As shown in FIGS. 1 and 2, the separator 10 is composed of a synthetic resin porous plate 1 provided with a large number of through holes 11, and a synthetic resin nonwoven fabric 2 arranged on both sides of the porous plate 1.

【0019】また,多孔板1の貫通孔11は,その両側
に配置した不織布2によって囲まれている。また,貫通
孔11を設けていない多孔板1の板部13と不織布2と
の接触面は,後述のように熱融着されている。そのた
め,多孔板1と不織布2とは一体的に構成されて,セパ
レータ10を形成している。また,上記正極91,セパ
レータ10,負極92は,前記図7,図8に示したごと
く,巻回し,電池ケース内に入れ,電解液を注入してニ
ッケル−水素化合物電池を構成する。
The through holes 11 of the porous plate 1 are surrounded by the nonwoven fabrics 2 arranged on both sides of the through holes 11. Further, the contact surface between the plate portion 13 of the perforated plate 1 not provided with the through holes 11 and the nonwoven fabric 2 is heat-sealed as described later. Therefore, the porous plate 1 and the nonwoven fabric 2 are integrally formed to form the separator 10. Further, the positive electrode 91, the separator 10 and the negative electrode 92 are wound as shown in FIGS. 7 and 8 and placed in a battery case, and an electrolytic solution is injected to form a nickel-hydrogen compound battery.

【0020】本例のニッケル−水素化合物電池において
は,充放電の繰り返しによって正極91が膨張しても,
セパレータ10の中にある多孔板1が芯材の役割をな
し,その厚みに何ら変化を生じない。それ故,上記膨張
によって,不織布2が圧縮されても多孔板1内の貫通孔
11は何ら変化せず,当初のまま,その容量を保持して
いる。
In the nickel-hydrogen compound battery of this example, even if the positive electrode 91 expands due to repeated charging and discharging,
The perforated plate 1 in the separator 10 serves as a core material, and its thickness does not change at all. Therefore, even if the nonwoven fabric 2 is compressed due to the expansion, the through holes 11 in the porous plate 1 do not change at all, and the capacity is maintained as it is.

【0021】したがって,セパレータ10における電解
液の保持量は殆ど変化しない。また,上記多孔板1の存
在によって,正極91と負極92との間の距離は,少な
くとも多孔板1の厚み以上に保持される。そのため,正
極91と負極92間に微少短絡が発生することもない。
それ故,優れた電池容量を維持することができる。
Therefore, the amount of the electrolytic solution held in the separator 10 hardly changes. Further, due to the presence of the porous plate 1, the distance between the positive electrode 91 and the negative electrode 92 is kept at least equal to or larger than the thickness of the porous plate 1. Therefore, a minute short circuit does not occur between the positive electrode 91 and the negative electrode 92.
Therefore, excellent battery capacity can be maintained.

【0022】実施例2 本例は,実施例1に示したニッケル−水素化合物電池の
具体例につき,その充放電テストを比較例と共に示す。
本例のニッケル−水素化合物電池においては,正極91
は公知のニッケル焼結板を用いた。
Example 2 In this example, a charging / discharging test of the specific example of the nickel-hydrogen compound battery shown in Example 1 is shown together with a comparative example.
In the nickel-hydrogen compound battery of this example, the positive electrode 91
Is a known nickel sintered plate.

【0023】負極92は,次のようにして作製した。即
ち,まずMm(ミッシュメタル)−Ni−Al−Co−
Mn系のMH合金を,水素吸蔵合金として用いた。この
水素吸蔵合金を機械的に粉砕して100メッシュ以下の
粉末とし,該粉末に無電解銅メッキを施した。銅のメッ
キ量は,上記粉末100%(重量比,以下同じ)に対し
て10%であった。
The negative electrode 92 was manufactured as follows. That is, first, Mm (Misch metal) -Ni-Al-Co-
A Mn-based MH alloy was used as a hydrogen storage alloy. This hydrogen storage alloy was mechanically pulverized into a powder of 100 mesh or less, and the powder was electroless copper plated. The amount of copper plating was 10% with respect to 100% of the powder (weight ratio, the same applies hereinafter).

【0024】上記の銅メッキ粉末15gに,5%−PT
FE(ポリテトラ・フルオロエチレン)分散水溶液を加
え,混練し,シート状とした。このシートを,ニッケル
エキスパンドに挟んで,300kg/cm2 の圧力によ
り圧着して負極92を作製した。負極92は,厚み0.
6mm,幅33mm,長さ220mmである。
15% of the above copper plating powder was added to 5% -PT
An aqueous FE (polytetrafluoroethylene) dispersion solution was added and kneaded to form a sheet. This sheet was sandwiched between nickel expands and pressure-bonded with a pressure of 300 kg / cm 2 to produce a negative electrode 92. The negative electrode 92 has a thickness of 0.
The length is 6 mm, the width is 33 mm, and the length is 220 mm.

【0025】セパレータ10としては,ポリプロピレン
(PP)製の多孔板1と,その両側に表面が軽く熱融着
したポリプロピレン短繊維の不織布2からなるものを用
いた。上記多孔板1は,厚み0.1mmで,1cm2
たり1×1mmの四角状の貫通孔11を25個,パンチ
ングにより打抜きしたものを用いた。
As the separator 10, a separator made of a perforated plate 1 made of polypropylene (PP) and a polypropylene short fiber non-woven fabric 2 on both sides of which the surfaces were lightly fused was used. The perforated plate 1 had a thickness of 0.1 mm, and 25 rectangular through holes 11 of 1 × 1 mm per 1 cm 2 were punched and punched.

【0026】又,上記PP製の多孔板1は引っ張り強さ
が700kg/cm2 以上であった。一方,不織布2
は,重量40g/m2 ,厚さ0.1mmであった。な
お,上記正極91の幅,長さは,負極92とほぼ同じで
あり,一方セパレータ10はこれらよりも少し大きい。
The PP porous plate 1 had a tensile strength of 700 kg / cm 2 or more. On the other hand, non-woven fabric 2
Had a weight of 40 g / m 2 and a thickness of 0.1 mm. The width and length of the positive electrode 91 are almost the same as those of the negative electrode 92, while the separator 10 is slightly larger than these.

【0027】なお,上記多孔板1及び不織布2に用いた
ポリプロピレンには,少量のポリエチレンが混入されて
いる。これにより,熱融着時に上記ポリエチレンが接合
剤として働き,多孔板1,不織布2に変形を発生させる
ことなく,両者間の熱融着を容易に行うことができる。
なお,上記ポリエチレンに代えて,アクリル系樹脂を混
入させることもできる。また,多孔板1と不織布2と
は,上記熱融着以外にも耐アルカリ性の接着剤を用いて
接着することができる。
The polypropylene used for the porous plate 1 and the nonwoven fabric 2 contains a small amount of polyethylene. As a result, the polyethylene acts as a bonding agent during heat fusion, and the heat fusion between the porous plate 1 and the nonwoven fabric 2 can be easily performed without causing deformation.
Note that an acrylic resin may be mixed in place of the polyethylene. Further, the porous plate 1 and the non-woven fabric 2 can be bonded together by using an alkali resistant adhesive other than the above heat fusion.

【0028】また,電解液としては,IN(規定)・L
iOH−5N・KOH水溶液を用いた。そして,上記正
極91,セパレータ10,負極92を組合せると共に電
解液を注入して,円筒密閉型のニッケル−水素化合物電
池を構成した(図6参照)。
As the electrolytic solution, IN (normative) L
An iOH-5N.KOH aqueous solution was used. Then, the positive electrode 91, the separator 10 and the negative electrode 92 were combined with each other and an electrolytic solution was injected to form a cylindrical sealed nickel-hydrogen compound battery (see FIG. 6).

【0029】一方,セパレータとしてポリプロピレンの
不織布を用いた,比較ニッケル−水素化合物電池を構成
した。上記不織布は,重量72g/m2 ,厚さ0.19
mmである。正極,負極,電解液等は,上記実施例にか
かるニッケル−水素化合物電池と同様である。
On the other hand, a comparative nickel-hydrogen compound battery was constructed using a polypropylene non-woven fabric as a separator. The non-woven fabric has a weight of 72 g / m 2 and a thickness of 0.19.
mm. The positive electrode, the negative electrode, the electrolytic solution, etc. are the same as those of the nickel-hydrogen compound battery according to the above-mentioned embodiment.

【0030】次に,上記の本実施例及び比較例のニッケ
ル−水素化合物電池を用いて,充放電サイクルテストを
行った。このテストは,50℃にて,0.3Cで120
%充電,0.3C放電,カット電圧0.9Vの条件にお
いて,充放電を繰り返すことにより行った。
Next, a charge / discharge cycle test was conducted using the nickel-hydrogen compound batteries of the present example and comparative example described above. This test is 120 ° C at 0.3 ° C at 50 ° C.
The charging and discharging were repeated under the conditions of% charge, 0.3 C discharge, and cut voltage 0.9 V.

【0031】その結果を,図4に,横軸に充放電サイク
ル数(回),縦軸に放電容量比(%)をとって示す。上
記テスト結果は,それぞれ3個のニッケル−水素化合物
電池について行った平均値である。ここに,放電容量比
とは,充放電サイクル10回目の放電容量を100%と
したときの,各充放電サイクルにおける放電容量の割合
をいう。
The results are shown in FIG. 4 with the horizontal axis representing the number of charge / discharge cycles (times) and the vertical axis representing the discharge capacity ratio (%). The above test results are average values of three nickel-hydrogen compound batteries. Here, the discharge capacity ratio means the ratio of the discharge capacity in each charge / discharge cycle when the discharge capacity at the 10th charge / discharge cycle is 100%.

【0032】図4より知られるごとく,本実施例のニッ
ケル−水素化合物電池は,充放電650サイクルにおい
てもなお高い放電容量をし有している。これに対して,
従来型の比較例のニッケル−水素化合物電池は,450
サイクル付近より急激に放電容量が低下していることが
分かる。
As is known from FIG. 4, the nickel-hydrogen compound battery of this example has a high discharge capacity even after 650 cycles of charging and discharging. On the contrary,
The conventional comparative nickel-hydrogen compound battery is 450
It can be seen that the discharge capacity drops sharply from near the cycle.

【0033】また,上記のテスト後にニッケル−水素化
合物電池を分解,観察したところ,容量劣化が発生した
比較例は,セパレータ中に電解液が殆ど残っていなかっ
た。これに対して,本実施例のニッケル−水素化合物電
池は,セパレータ中に,かなりの量の電解液が残ってい
た。このことにより,比較電池の容量劣化は,電解液の
ドライアウトが原因であることが分かる。
Further, when the nickel-hydrogen compound battery was disassembled and observed after the above test, in the comparative example in which the capacity deterioration occurred, almost no electrolytic solution remained in the separator. On the other hand, in the nickel-hydrogen compound battery of this example, a considerable amount of the electrolytic solution remained in the separator. From this, it is understood that the capacity deterioration of the comparative battery is caused by the dryout of the electrolytic solution.

【0034】セパレータ中の電解液が押し出される原因
としては,活性化の進行と共に正極が膨張し,セパレー
タには巻き取り時以上の圧力が加えられていくことによ
ると考えられる。更に,正極が活性化の進行と共にセパ
レータ中の電解液を吸い上げ易くなることも一因と考え
られる。比較例の電池では,この圧力に対して,何らの
対策もなされていないが,本実施例の場合には上記多孔
板が比較的硬質のため,電極からの圧力に抵抗し,電解
液の保持を維持する。それ故,本実施例のニッケル−水
素化合物電池は,優れた電池容量を有している。
It is considered that the reason why the electrolytic solution in the separator is extruded is that the positive electrode expands as the activation progresses and the separator receives a pressure higher than that at the time of winding. Another reason is that the positive electrode becomes easier to suck up the electrolytic solution in the separator as the activation progresses. In the battery of the comparative example, no measures are taken against this pressure, but in the case of this example, the porous plate is relatively hard, so that it resists the pressure from the electrode and retains the electrolytic solution. To maintain. Therefore, the nickel-hydrogen compound battery of this example has an excellent battery capacity.

【0035】次に,上記本実施例及び上記比較例のニッ
ケル−水素化合物電池を,それぞれ100個づつ作製し
た。そして,それぞれ,上記の充放電を20回行ない,
その後における微少短絡の有無を確認した。その結果,
本実施例のニッケル−水素化合物電池においては,微少
短絡の発生は皆無であった。これに対して,比較例にお
いては,100個中4個に微少短絡が発生していた。
Next, 100 nickel-hydrogen compound batteries were prepared for each of the present embodiment and the comparative example. Then, each of the above charging and discharging is performed 20 times,
It was confirmed whether or not there was a minute short circuit thereafter. as a result,
In the nickel-hydrogen compound battery of this example, there was no occurrence of micro short circuit. On the other hand, in the comparative example, a minute short circuit occurred in 4 out of 100 pieces.

【0036】その理由は,次のように考えられる。即
ち,前記のごとく,正極,セパレータ,負極を巻回する
際に,その巻取りを確実に行うために,セパレータにテ
ンションをかける。しかし,比較例のセパレータは,不
織布のみからなるため,十分な機械的強度を有しない。
そのため,上記巻回時にセパレータが部分的に伸長して
厚みが減少し,正極と負極間が接近し微少短絡を発生さ
せるためと考えられる。一方,本実施例のセパレータ
は,多孔板を用いているため,上記巻回時には殆ど伸長
しない。そのため,上記微少短絡は発生しない。
The reason is considered as follows. That is, as described above, when the positive electrode, the separator, and the negative electrode are wound, tension is applied to the separator to ensure the winding. However, the separator of the comparative example does not have sufficient mechanical strength because it is made of only nonwoven fabric.
Therefore, it is considered that the separator partially expands during the above-mentioned winding to reduce the thickness, and the positive electrode and the negative electrode come close to each other to cause a minute short circuit. On the other hand, since the separator of this embodiment uses the perforated plate, it hardly expands during the winding. Therefore, the minute short circuit does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における,セパレータの斜視図。FIG. 1 is a perspective view of a separator according to a first embodiment.

【図2】実施例1における,セパレータの断面図。FIG. 2 is a cross-sectional view of the separator according to the first exemplary embodiment.

【図3】実施例1における,正極,セパレータ及び負極
の組み合わせ状態の断面図。
FIG. 3 is a cross-sectional view of a combined state of a positive electrode, a separator and a negative electrode in Example 1.

【図4】実施例2における,充放電サイクルテストの線
図。
FIG. 4 is a diagram of a charge / discharge cycle test in Example 2.

【図5】従来例における,正極,セパレータ,負極の斜
視図。
FIG. 5 is a perspective view of a positive electrode, a separator, and a negative electrode in a conventional example.

【図6】従来例における,ニッケル−水素化合物電池の
説明図。
FIG. 6 is an explanatory view of a nickel-hydrogen compound battery in a conventional example.

【図7】従来例における,正極,セパレータ,負極の巻
回前の状態を示す斜視図。
FIG. 7 is a perspective view showing a state before winding a positive electrode, a separator, and a negative electrode in a conventional example.

【図8】従来例における,(A)正極,セパレータ,負
極の組み合わせ状態,及び(B)その問題点を示す説明
図。
FIG. 8 is an explanatory diagram showing (A) a combination state of a positive electrode, a separator, and a negative electrode, and (B) a problem thereof in a conventional example.

【符号の説明】[Explanation of symbols]

1・・・多孔板, 10・・・セパレータ, 11・・・貫通孔, 2・・・不織布, 91・・・正極, 92・・・負極, DESCRIPTION OF SYMBOLS 1 ... Perforated plate, 10 ... Separator, 11 ... Through hole, 2 ... Nonwoven fabric, 91 ... Positive electrode, 92 ... Negative electrode,

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ニッケルを含有する正極と,水素吸蔵合
金を含有する負極と,両極の間に介設するセパレータ
と,電解液とを有するニッケル−水素化合物電池におい
て,上記セパレータは,多数の貫通孔を設けた合成樹脂
の多孔板と,該多孔板の両面に配置した合成樹脂の不織
布とよりなることを特徴とするニッケル−水素化合物電
池。
1. A nickel-hydrogen compound battery comprising a positive electrode containing nickel, a negative electrode containing a hydrogen storage alloy, a separator interposed between both electrodes, and an electrolytic solution, wherein the separator has a plurality of penetrating holes. A nickel-hydrogen compound battery comprising a perforated plate of synthetic resin having holes, and a non-woven fabric of synthetic resin arranged on both sides of the perforated plate.
【請求項2】 請求項1において,上記多孔板に用いる
合成樹脂は,ポリプロピレン,変性ポリフェニレンエー
テル(PPE),ポリエーテルスルホンのグループから
選ばれる1種以上であることを特徴とするニッケル−水
素化合物電池。
2. The nickel-hydrogen compound according to claim 1, wherein the synthetic resin used for the porous plate is at least one selected from the group consisting of polypropylene, modified polyphenylene ether (PPE) and polyether sulfone. battery.
【請求項3】 請求項1又は2において,上記多孔板の
貫通孔は,その孔径が1〜2mmであることを特徴とす
るニッケル−水素化合物電池。
3. The nickel-hydrogen compound battery according to claim 1, wherein the through hole of the porous plate has a hole diameter of 1 to 2 mm.
【請求項4】 請求項1〜3のいずれか1項において,
上記多孔板の厚みは0.1〜0.2mmであることを特
徴とするニッケル−水素化合物電池。
4. The method according to claim 1, wherein
The nickel-hydrogen compound battery, wherein the porous plate has a thickness of 0.1 to 0.2 mm.
【請求項5】 請求項1〜4のいずれか1項において,
上記不織布に用いる合成樹脂は,ポリオレフィン,ポリ
プロピレンのグループから選ばれる1種以上であること
を特徴とするニッケル−水素化合物電池。
5. The method according to any one of claims 1 to 4,
The nickel-hydrogen compound battery, wherein the synthetic resin used for the non-woven fabric is one or more selected from the group of polyolefin and polypropylene.
【請求項6】 請求項1〜5のいずれか1項において,
上記多孔板と不織布とは接合されていることを特徴とす
るニッケル−水素化合物電池。
6. The method according to any one of claims 1 to 5,
A nickel-hydrogen compound battery, wherein the porous plate and the non-woven fabric are bonded together.
JP7057941A 1995-02-21 1995-02-21 Nickel-metal hydride battery Pending JPH08227707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7057941A JPH08227707A (en) 1995-02-21 1995-02-21 Nickel-metal hydride battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7057941A JPH08227707A (en) 1995-02-21 1995-02-21 Nickel-metal hydride battery

Publications (1)

Publication Number Publication Date
JPH08227707A true JPH08227707A (en) 1996-09-03

Family

ID=13070069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7057941A Pending JPH08227707A (en) 1995-02-21 1995-02-21 Nickel-metal hydride battery

Country Status (1)

Country Link
JP (1) JPH08227707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052800B2 (en) 2001-08-29 2006-05-30 Sanyo Electric Co., Ltd. Separator for nickel-metal hydride storage battery and nickel-metal hydride storage battery
JP2013211192A (en) * 2012-03-30 2013-10-10 Tdk Corp Porous film and lithium ion secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052800B2 (en) 2001-08-29 2006-05-30 Sanyo Electric Co., Ltd. Separator for nickel-metal hydride storage battery and nickel-metal hydride storage battery
JP2013211192A (en) * 2012-03-30 2013-10-10 Tdk Corp Porous film and lithium ion secondary battery using the same

Similar Documents

Publication Publication Date Title
CN1121079C (en) Cylindrical alkali accumulator adapting non-sintered electrode and manufacturing method therefor
CN102856538B (en) Negative plate, include the cylindrical battery of this negative plate
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP2003109600A (en) Current collector material for battery, and battery using the same
JP3387158B2 (en) Zinc plate
JPH08227707A (en) Nickel-metal hydride battery
US6653023B1 (en) Rectangular battery
JP2002025604A (en) Alkaline secondary battery
JPH11162440A (en) Manufacture of alkaline storage battery
JP3893856B2 (en) Square alkaline storage battery
JP3168686B2 (en) Alkaline secondary battery and method of manufacturing the same
JP2002252025A (en) Nickel/hydrogen secondary battery
JP2000090965A (en) Cylindrical alkaline secondary battery
CN103887463A (en) Cylindrical battery
JPH11233107A (en) Alkaline storage battery using nonsintred type electrode, and its manufacture
JP2008181825A (en) Nickel electrode for alkaline cell
JP2001068145A (en) Rectangular alkaline secondary battery
JP2008117579A (en) Hydrogen absorbing alloy negative electrode for alkaline battery
JP5355038B2 (en) Non-sintered nickel electrode and alkaline storage battery
JP4025929B2 (en) Battery electrode
JP2003288902A (en) Current collecting material for battery and battery using the same
JP2000164246A (en) Alkali storage battery
CN111092198A (en) Alkaline secondary battery
JP2000340251A (en) Square battery
JP2001210358A (en) Square type alkaline secondary battery