JPH08226964A - Monitor for distance-between-two vehicles - Google Patents

Monitor for distance-between-two vehicles

Info

Publication number
JPH08226964A
JPH08226964A JP7032399A JP3239995A JPH08226964A JP H08226964 A JPH08226964 A JP H08226964A JP 7032399 A JP7032399 A JP 7032399A JP 3239995 A JP3239995 A JP 3239995A JP H08226964 A JPH08226964 A JP H08226964A
Authority
JP
Japan
Prior art keywords
inter
distance
vehicle distance
vehicle
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7032399A
Other languages
Japanese (ja)
Inventor
Tsutomu Shiotani
努 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7032399A priority Critical patent/JPH08226964A/en
Publication of JPH08226964A publication Critical patent/JPH08226964A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To stepwisely alter the receiving amplification factor and to accurately calculate the relative speed based on the rangefinding result before or after the factor is varied by reading a previous distance between two vehicles obtained by the same receiving amplification factor as a new suitable receiving amplification factor from reference-distance-between two vehicles preserving means, and giving it to relative speed calculating means. CONSTITUTION: A received signal is amplified at a suitable receiving amplification factor by a signal amplifier 1d to calculate the relative speed of the respective times, binarized by a signal processor 2, then synchronously added and preserved in a memory 3e. Then, the received signal is amplified by altering the factor to the amplification factor raised or lowered by one stage from the suitable receiving amplification factor, binarized, and the distance between two vehicles obtained by totally three times of rangefinding operations for synchronously adding the signal is preserved in the memory 3e. In order to calculate the relative speed, if the suitable receiving amplification factors at the previous time of one set three times of rangefinding operations and at this time of one set three times of the rangefinding operations are altered, a relative speed calculator 3 calculates the relative speed by using the distance between the two vehicles obtained by rangefinding at the suitable receiving amplification factor of this time and the distance between the two vehicles obtained by the same factor of the previous time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、先行車と自車両との
間の車間距離と相対速度と自車速を常に監視し、先行車
との車間距離が危険なほどに近づきすぎたときに自動的
に警報を発して運転者に知らせる車間距離監視装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention constantly monitors an inter-vehicle distance, a relative speed, and an own vehicle speed between a preceding vehicle and an own vehicle, and automatically detects when the distance between the preceding vehicle and the preceding vehicle becomes too dangerous. The present invention relates to an inter-vehicle distance monitoring device that gives a warning to inform a driver.

【0002】[0002]

【従来の技術】従来、ある車両から前方にパルス状の光
信号を放射し、その信号が前方の物標に反射して返って
来る方向からの信号を受信処理して前方の物標までの距
離を自動的に検出する車両用レーダ装置として、例えば
特願平6−146752号、特願平6−248438号
などが提案されている。
2. Description of the Related Art Conventionally, a certain vehicle emits a pulsed optical signal forward, and the signal from the direction in which the signal is reflected and returned to the front target is received and processed to the front target. For example, Japanese Patent Application Nos. 6-146752 and 6-248438 have been proposed as vehicle radar devices for automatically detecting a distance.

【0003】これらの発明の車両用レーダ装置は、原理
的には図13に示すような構成であり、距離センサヘッ
ド1と、信号処理部2と、コンピュータで構成され、車
間距離演算を行う車間距離演算部3から成る。
The vehicle radar devices of these inventions have a structure as shown in FIG. 13 in principle, and are composed of a distance sensor head 1, a signal processing unit 2 and a computer. The distance calculation unit 3 is included.

【0004】そして距離センサヘッド1は、LEDやレ
ーザ発光ダイオードで成り、パルス状の光信号を所定の
周期で外部へ送出する送光部1aと、この送光部1aを
所定のパルス幅、パルス間隔(周期)で駆動する駆動回
路1bと、送光部1aから送出された光信号が前方の物
標に反射して返って来る方向からの光信号(この信号に
はノイズが混じっていてもかまわない)を連続的に受信
して電気信号に変換する受光部1cと、受信信号を増幅
する信号増幅部1dから構成されている。
The distance sensor head 1 is composed of an LED or a laser light emitting diode, and a light transmitting section 1a for transmitting a pulsed optical signal to the outside at a predetermined cycle, and the light transmitting section 1a having a predetermined pulse width and pulse. A drive circuit 1b driven at intervals (cycles) and an optical signal from a direction in which an optical signal sent from the light transmitting unit 1a is reflected back to a target in front (even if this signal contains noise). Light receiving section 1c for continuously receiving and converting the received signal to an electric signal, and a signal amplifying section 1d for amplifying the received signal.

【0005】信号処理部2は、車間距離演算部3の制御
下で、信号増幅回路1dからの信号をその信号強度に応
じて2値化して、送光部1aの信号送出タイミング後の
複数の時間を異ならせたサンプリング点毎にサンプリン
グして同期加算し、各サンプリング点毎の加算値を記憶
する部分であり、車間距離演算部3は信号処理部2の信
号処理結果に基づいて、前方の物標までの車間距離を算
出する部分である。
Under the control of the inter-vehicle distance calculating section 3, the signal processing section 2 binarizes the signal from the signal amplifying circuit 1d in accordance with the signal strength thereof, and outputs a plurality of signals after the signal transmission timing of the light transmitting section 1a. This is a part for sampling at each sampling point with a different time, performing synchronous addition, and storing the added value for each sampling point. The inter-vehicle distance calculation section 3 is based on the signal processing result of the signal processing section 2, This is a part for calculating the inter-vehicle distance to the target.

【0006】以下、提案されている車両用レーダ装置の
動作について説明する。1回の測距動作中に、送光部1
aから所定のパルス幅Pwd(例えば、130nsec)及び
パルス間隔Pds(例えば、6μsec )で所定回数N(例
えば、8192回)送信し、この光信号が物標に反射し
て返ってくる方向からの光信号を受光部1cで受信し、
信号増幅回路1dで増幅して信号処理部2に出力する。
The operation of the proposed vehicle radar device will be described below. During one distance measurement operation, the light transmitting unit 1
From a, a predetermined number of times N (for example, 8192 times) is transmitted at a predetermined pulse width Pwd (for example, 130 nsec) and a pulse interval Pds (for example, 6 μsec), and this optical signal is reflected from the target and returned. The light receiving unit 1c receives the optical signal,
The signal is amplified by the signal amplification circuit 1d and output to the signal processing unit 2.

【0007】図14は信号処理部2と距離演算部3が実
行する受光信号に対するディジタル化、サンプリング処
理、距離演算処理までの信号処理の流れを示したもので
ある。まず、振幅増幅された受光信号b1(これには、
実際の送光信号の反射信号だけでなく、多くのノイズが
混じっている)は所定の基準値wref との比較によって
“0”、“1”に2値化されて2値化信号列b2とな
る。そしてこの2値化信号列b2に対して、前記送光部
1aのパルス送出タイミングと同期して1回のサンプリ
ング処理を開始し、一定サンプリング周期Δt(例え
ば、67nsec:距離換算で10m相当)でサンプリング
することにより、あらかじめ設定されているビット数の
ディジタルデータb3を得て記憶する。そして1回の測
距動作中に所定回数Nだけサンプリング処理してディジ
タルデータb3群を各ビットごとに同期加算処理してい
く。
FIG. 14 shows a flow of signal processing executed by the signal processing section 2 and the distance calculating section 3 for digitizing light-receiving signals, sampling processing, and distance calculating processing. First, the amplitude-amplified received light signal b1 (
Not only the reflected signal of the actual light-transmitting signal but also a lot of noise is mixed) is binarized into "0" and "1" by comparison with a predetermined reference value wref, and the binarized signal sequence b2 is obtained. Become. Then, for this binarized signal sequence b2, one sampling process is started in synchronization with the pulse transmission timing of the light transmitting unit 1a, and at a constant sampling period Δt (for example, 67 nsec: equivalent to 10 m in distance conversion). By sampling, digital data b3 having a preset number of bits is obtained and stored. Then, during one distance measuring operation, sampling processing is performed a predetermined number of times N and the digital data b3 group is subjected to synchronous addition processing for each bit.

【0008】こうして所定回数Nの送光動作とそれに同
期して実行されるN回のサンプリング処理で距離に対す
る加算値レベルの特性データb4を得る。この加算値レ
ベル特性は、受光信号がノイズレベルであれば2値化デ
ータが“0”と“1”になる確率が1/2ずつであり、
所定回数Nの加算値はほぼN/2となる。ところが、受
光信号に送光信号が前方の物標に反射して戻ってきた反
射信号が含まれていればその光信号の往復距離に対応す
るビットの信号レベルがノイズレベルよりも高くなり、
2値化データが“1”となる確率が1/2よりも高くな
り、所定回数Nの加算値がNとN/2との間の値にな
る。
In this way, the characteristic data b4 of the added value level with respect to the distance is obtained by the light transmitting operation of the predetermined number N and the sampling processing of N times executed in synchronization with it. In this added value level characteristic, the probability that the binarized data will be "0" and "1" is 1/2 each if the received light signal is the noise level.
The added value of the predetermined number of times N is approximately N / 2. However, if the received light signal includes the reflected signal that the transmitted light signal reflected back to the target in front, the signal level of the bit corresponding to the round-trip distance of the optical signal becomes higher than the noise level,
The probability that the binarized data becomes “1” becomes higher than 1/2, and the added value of the predetermined number N becomes a value between N and N / 2.

【0009】そこで、N/2よりも若干高めのしきい値
レベルTHを設定し、これを超える加算値を示すビット
を見いだし、それに対応する距離点を物標までの車間距
離として割出して出力する。
Therefore, a threshold level TH slightly higher than N / 2 is set, a bit indicating an added value exceeding this is found, and the corresponding distance point is indexed as the inter-vehicle distance to the target and output. To do.

【0010】しかしながら、サンプリング点(各ビット
に対応する)は10m刻みであるので、その中間点の車
間距離を正確に割出すことができない。このため、加算
値がピークとなるサンプリング点とその前後4点v1,
v2,v3,v4を取りだし、これらを2組に分けて各
組を結んだ直線ln1,ln2の交点Aを求め、この交点A
に対応する距離Bを物標までの車間距離と決定し、出力
するようにしている。
However, since the sampling points (corresponding to each bit) are in steps of 10 m, the inter-vehicle distance at the intermediate point cannot be accurately calculated. Therefore, the sampling point at which the added value has a peak and the four points v1 before and after the sampling point v1,
v2, v3, v4 are taken out, these are divided into two sets, and the intersection A of the straight lines ln1 and ln2 connecting each set is obtained, and this intersection A
The distance B corresponding to is determined as the inter-vehicle distance to the target and is output.

【0011】[0011]

【発明が解決しようとする課題】ところが、このような
提案されている車両用レーダ装置では、次のような点で
さらに改善することが必要となっていた。すなわち、広
い測距範囲を1種類の信号強度で測定しようとすると、
特に近距離物標検出時には信号強度が強すぎることにな
り、図15(a)に示すようにピークとなるサンプリン
グ点付近で加算値が総加算回数Nとほぼ等しい値となる
サンプリング点がいくつか出ること(つまり、加算飽和
してしまうこと)があり、上述のピーク検出処理では正
確に車間距離を求めることができなくなる。逆に遠距離
物標検出時には、図15(b)に示すように受光信号強
度が低く、ノイズレベルと区別できないほどに低い加算
値レベル特性しか得られず、S/Nが悪くなって距離検
出精度が低くなる。
However, in such a proposed vehicle radar device, it has been necessary to further improve the following points. That is, when trying to measure a wide range with one type of signal strength,
In particular, the signal strength becomes too strong at the time of detecting the short-distance target, and as shown in FIG. 15A, there are some sampling points where the added value is almost equal to the total number of times of addition N near the peak sampling point. It may occur (that is, addition saturation may occur), and the above-described peak detection process cannot accurately determine the inter-vehicle distance. On the other hand, when detecting a long-distance target, the received light signal intensity is low as shown in FIG. 15B, and only an added value level characteristic that is so low as to be indistinguishable from the noise level is obtained, and the S / N deteriorates to detect the distance. The accuracy is low.

【0012】これらの問題点に鑑みて、上記の出願の発
明では、測距精度を向上させる対策としては、1回の測
距動作が終了した後に、送光信号出力レベルや受信増幅
率をあらかじめ設定されている変化量ずつ段階的に変化
させ、加算値ピークがあらかじめ決められた範囲内とな
るように制御する方法が提案されている。
In view of these problems, in the invention of the above-mentioned application, as a measure for improving the accuracy of distance measurement, the light transmission signal output level and the reception amplification factor are previously set after one distance measurement operation is completed. A method has been proposed in which the added value peak is controlled to fall within a predetermined range by gradually changing the set change amount.

【0013】しかしながら、これらの方法によって測距
を実行する場合にも、さらに精度を向上させる必要があ
る。というのは、図16(a)に示すように物標との距
離d1,d2,…が測距タイミングt1,t2,…ごと
に変化し、タイミングt4,t5のように受信増幅率を
段階的に変化させる際、受信回路素子の位相特性が変化
するために、同一物標に対して測距を行っても各受信増
幅率間で測距値d4,d5が異なって出ることがある。
このため、同図(b)に示すように、受信増幅率を切替
えた時にその前後のタイミングt4,t5で異なる段階
の受信増幅率による測距値d4,d5間で相対速度演
算、例えば、 Vr=(di−di-1 )/θ ここで、θは測距周期、diはタイミングtiにおける
測距値を行うと、相対速度演算精度が低下することがあ
る。
However, even when the distance measurement is performed by these methods, it is necessary to further improve the accuracy. This is because, as shown in FIG. 16 (a), the distances d1, d2, ... To the target change at every distance measurement timing t1, t2 ,. Since the phase characteristic of the receiving circuit element changes when the distance is changed to, the distance measurement values d4 and d5 may be different between the respective reception amplification factors even if the distance measurement is performed on the same target.
Therefore, as shown in FIG. 9B, when the reception amplification factor is switched, relative velocity calculation, for example, Vr, is performed between the distance measurement values d4 and d5 by the reception amplification factor at different stages at timings t4 and t5 before and after the switching. = (Di−di−1) / θ where θ is the distance measurement cycle and di is the distance measurement value at the timing ti, the relative speed calculation accuracy may be degraded.

【0014】ところで、車両用レーダ装置では、その測
距結果を用いて先行車との間に適正車間距離が保たれて
いるかどうか判定し、近づきすぎて危険である場合には
運転者に警報を発する車間距離警報装置が備えられてい
るが、この警報車間距離演算には、車間距離、自車速と
共に先行車との間の相対速度も考慮される。なぜなら
ば、車間距離が短い場合でも自車速が遅く、先行車が加
速していて相対速度が+に出る場合、つまり、車間距離
が広がる傾向にあれば警報を発する必要がないし、逆に
車間距離は大きくても自車速が大きく、相対速度が−に
出る場合には車間距離が急に縮まる傾向にあるので警報
を発する必要があるからである。
By the way, the radar device for a vehicle judges whether or not an appropriate inter-vehicle distance is maintained between the preceding vehicle and the preceding vehicle by using the result of the distance measurement, and warns the driver when the vehicle is too close and dangerous. Although an inter-vehicle distance warning device is provided, the warning inter-vehicle distance calculation takes into account the inter-vehicle distance, the own vehicle speed, and the relative speed with respect to the preceding vehicle. This is because even if the inter-vehicle distance is short, the vehicle speed is slow, the preceding vehicle is accelerating, and the relative speed goes to +, that is, if the inter-vehicle distance tends to increase, there is no need to issue an alarm, and conversely This is because if the vehicle speed is large even if the vehicle speed is large and the inter-vehicle distance tends to decrease abruptly when the relative speed becomes negative, it is necessary to issue an alarm.

【0015】したがって、相対速度演算精度も高く保つ
必要があるが、上記のように受信増幅率を変化させた前
後で得られる測距値に対してなんらの補正を加えない場
合には精度の良い相対速度が得られなくなり、車間距離
警報の発報の信頼性を損うことになる。
Therefore, it is necessary to keep the relative speed calculation accuracy high, but the accuracy is good when no correction is made to the distance measurement values obtained before and after the reception amplification factor is changed as described above. Since the relative speed cannot be obtained, the reliability of the inter-vehicle distance warning is impaired.

【0016】そこで、受信増幅率の段階的変化に伴う相
対速度演算精度の低下の問題を解決する方法としては、
図17(a),(b)に示すように、各受信増幅率ごと
に測距値に対する補正値をあらかじめ特定のメモリに登
録しておき、測距動作後にこのメモリの補正値を参照し
て測距値を補正する方法が考えられる。
Therefore, as a method for solving the problem of deterioration of the relative speed calculation accuracy due to the stepwise change of the reception amplification factor,
As shown in FIGS. 17A and 17B, a correction value for the distance measurement value is registered in advance in a specific memory for each reception amplification factor, and the correction value in this memory is referred to after the distance measurement operation. A method of correcting the distance measurement value can be considered.

【0017】しかしながら、この方法では、受信増幅率
の各段階ごとに補正値をメモリに登録しておく必要があ
るので、受信増幅率の段階数と同数の補正値メモリが必
要となる問題点がある。
However, in this method, since it is necessary to register the correction value in the memory for each step of the reception amplification rate, there is a problem that the same number of correction value memories as the number of steps of the reception amplification rate are required. is there.

【0018】また同一段階の受信増幅率による測距範囲
を1つの補正値で補正すると、受信増幅率の切換が行わ
れる端部で相対速度算出に影響を与える程度の誤差が生
じる問題点もある。これは、同一の受信増幅率による測
距であっても、物標との距離に応じて受信回路の位相特
性が変化するためである。つまり、図17(b)に示す
ように測距値と真値が全域にわたって一致する理想特性
Cとは少しずつ異なる傾きの測距特性Dn-1 ,Dn,D
n+1 ,…を持つからである。
Further, if the distance measurement range based on the reception amplification factor at the same stage is corrected by one correction value, there is a problem that an error that affects the relative speed calculation occurs at the end where the reception amplification factor is switched. . This is because the phase characteristic of the receiving circuit changes according to the distance to the target even if the distance is measured with the same reception amplification factor. That is, as shown in FIG. 17 (b), the distance measurement characteristics Dn-1, Dn, D having inclinations slightly different from the ideal characteristic C in which the distance measurement value and the true value match over the entire area.
Because it has n + 1, ...

【0019】この問題点を解決するために同一の受信増
幅率での測距範囲を細分割して1段階の受信増幅率が受
持つ距離範囲を狭める方法が考えられるが、この方法で
は補正値メモリ数が増大する問題点がある。
In order to solve this problem, a method is conceivable in which the distance measuring range with the same reception amplification factor is subdivided to narrow the distance range covered by one-step reception amplification factor. There is a problem that the number of memories increases.

【0020】さらに、精度の高い測距特性を実現しよう
とすると、上記の方法の場合には、個体差があるために
レーダ装置ごとに異なる補正値を設定する必要がある
が、そのようにすれば生産性がきわめて低くなる問題点
がある。
Further, in order to realize highly accurate distance measurement characteristics, in the case of the above method, it is necessary to set a different correction value for each radar device due to individual differences. There is a problem that productivity is extremely low.

【0021】以上の問題点は送光信号出力レベルの可変
制御を行う場合に同じように当てはまる。
The above problems similarly apply when variable control of the output level of the transmitted light signal is performed.

【0022】この発明はこのような技術的課題を解決す
るために発明されたもので、受信増幅率の段階的変更が
でき、しかも受信増幅率を変化させる前後の測距結果に
基づく相対速度の算出が精度良く行える車間距離監視装
置を提供することを目的とする。
The present invention was invented to solve such a technical problem, and the reception amplification factor can be changed stepwise, and the relative velocity based on the distance measurement results before and after the reception amplification factor is changed. It is an object of the present invention to provide an inter-vehicle distance monitoring device that can perform calculation with high accuracy.

【0023】この発明はまた、送出信号出力レベルの段
階的変更ができ、しかも信号出力レベルを変化させる前
後の測距結果に基づく相対速度の算出が精度良く行える
車間距離監視装置を提供することを目的とする。
The present invention also provides an inter-vehicle distance monitoring device capable of changing the output level of a transmission signal in a stepwise manner and accurately calculating the relative speed based on the distance measurement results before and after changing the signal output level. To aim.

【0024】[0024]

【課題を解決するための手段】請求項1の発明は、自車
両の速度を検出する速度検出手段と、パルス状の信号を
所定の送出周期ごとに外部へ送出する信号送出手段と、
信号送出手段が送出する信号が物標に反射して返って来
る方向からの信号を連続的に受信する受信手段と、受信
手段が受信した信号を2値化し、信号送出手段の各送出
周期における信号送出タイミングからの経過時間を異な
らせた複数のサンプリング点毎に所定の送出回数分ずつ
加算する加算手段と、加算手段の各サンプリング点の加
算値のピーク値を求めるピーク値検出手段と、ピーク値
検出手段が求めたピーク値を与えるサンプリング点に対
応する距離を前方の物標までの車間距離として算出する
車間距離算定手段と、車間距離算定手段が算出する車間
距離を保存する測距値保存手段と、車間距離算定手段が
新たな車間距離を算出したときに測距値保存手段に保存
されている前回算出された車間距離を読出し、これらの
車間距離の差から自車両と前方の物標との間の相対速度
を算出する相対速度算出手段と、速度検出手段が検出す
る自車両の速度と車間距離算定手段が算出する車間距離
と相対速度算出手段が算出する相対速度とに基づいて現
車間距離の適不適を判定する車間距離判定手段と、車間
距離判定手段が現車間距離を不適と判定するときに運転
者に対する警報を出力する警報出力手段とを備えて成る
車間距離監視装置において、ピーク値検出手段が検出す
るピーク値が所定のレベル内に収るように受信手段の適
正受信増幅率を段階的に制御する受信増幅率制御手段
と、受信手段の受信増幅率を、受信増幅率制御手段が調
整した適正受信増幅率に対して、それよりも1段階上、
1段階下それぞれの受信増幅率に変更して車間距離を求
めさせてこれらの車間距離を保存する参考車間距離保存
手段と、受信増幅率制御手段が調整する適正受信増幅率
が変更され、新たな車間距離が求められたとき、当該新
たな適正受信増幅率と同じ受信増幅率で求められた前回
の車間距離を参考車間距離保存手段から読出して相対速
度算出手段に与える相対速度演算補助手段とを備えたも
のである。
According to a first aspect of the present invention, there is provided speed detection means for detecting the speed of the host vehicle, and signal transmission means for transmitting a pulsed signal to the outside at a predetermined transmission cycle.
The receiving means for continuously receiving the signal from the direction in which the signal sent by the signal sending means is reflected by the target and returned, and the signal received by the receiving means is binarized in each sending cycle of the signal sending means. Adder means for adding a predetermined number of times for each of a plurality of sampling points with different elapsed times from the signal sending timing; peak value detecting means for obtaining a peak value of the added value at each sampling point of the adding means; An inter-vehicle distance calculating means for calculating the distance corresponding to the sampling point giving the peak value obtained by the value detecting means as an inter-vehicle distance to the target in front, and a distance measurement value saving for saving the inter-vehicle distance calculated by the inter-vehicle distance calculating means Means and the inter-vehicle distance calculating means calculates a new inter-vehicle distance, and reads out the previously calculated inter-vehicle distance stored in the distance-measuring value storage means. Relative speed calculating means for calculating the relative speed between the vehicle and the target in front, relative speed calculated by the speed detecting means for detecting the speed of the own vehicle and the inter-vehicle distance calculating means for calculating the relative distance between the vehicle and the relative speed calculating means. The vehicle-to-vehicle distance determining means determines whether or not the current vehicle-to-vehicle distance is appropriate based on the speed, and the alarm output means that outputs a warning to the driver when the vehicle-to-vehicle distance determining means determines that the current vehicle-to-vehicle distance is inappropriate. In an inter-vehicle distance monitoring device, a reception amplification rate control means for stepwise controlling an appropriate reception amplification rate of the reception means so that the peak value detected by the peak value detection means falls within a predetermined level, and a reception amplification of the reception means. The rate is one step higher than the proper reception amplification rate adjusted by the reception amplification rate control means,
One step down, the reference inter-vehicle distance storage means for changing the reception amplification factor of each to obtain the inter-vehicle distance and storing these inter-vehicle distances, and the proper reception amplification factor adjusted by the reception amplification factor control means are changed. When the inter-vehicle distance is obtained, a relative speed calculation assisting means for reading out the previous inter-vehicle distance obtained at the same reception amplification factor as the new appropriate reception amplification factor from the reference inter-vehicle distance storage means and giving it to the relative speed calculation means is provided. Be prepared.

【0025】請求項2の発明は、請求項1の発明の車間
距離監視装置における参考車間距離保存手段に代えて、
相対速度算出手段が算出する相対速度から前方の物標に
対して自車両が接近しているときには受信手段の適正受
信増幅率を1段階下げて、自車両が離脱しているときに
は適正受信増幅率を1段階上げて車間距離を求めさせて
その車間距離を保存する参考車間距離保存手段を用いた
ものである。
According to a second aspect of the present invention, in place of the reference inter-vehicle distance storage means in the inter-vehicle distance monitoring apparatus of the first aspect,
From the relative speed calculated by the relative speed calculation means, when the own vehicle is approaching the target ahead, the proper reception amplification factor of the reception means is lowered by one step, and when the own vehicle is leaving, the proper reception amplification factor is obtained. Is used to obtain the inter-vehicle distance, and the inter-vehicle distance is stored, and the reference inter-vehicle distance storage means is used.

【0026】請求項3の発明は、自車両の速度を検出す
る速度検出手段と、パルス状の信号を所定の送出周期ご
とに外部へ送出する信号送出手段と、信号送出手段が送
出する信号が物標に反射して返って来る方向からの信号
を連続的に受信する受信手段と、受信手段が受信した信
号を2値化し、信号送出手段の各送出周期における信号
送出タイミングからの経過時間を異ならせた複数のサン
プリング点毎に所定の送出回数分ずつ加算する加算手段
と、加算手段の各サンプリング点の加算値のピーク値を
求めるピーク値検出手段と、ピーク値検出手段が求めた
ピーク値を与えるサンプリング点に対応する距離を前方
の物標までの車間距離として算出する車間距離算定手段
と、車間距離算定手段が算出する車間距離を保存する測
距値保存手段と、車間距離算定手段が新たな車間距離を
算出したときに測距値保存手段に保存されている前回算
出された車間距離を読出し、これらの車間距離の差から
自車両と前方の物標との間の相対速度を算出する相対速
度算出手段と、速度検出手段が検出する自車両の速度と
車間距離算定手段が算出する車間距離と相対速度算出手
段が算出する相対速度とに基づいて現車間距離の適不適
を判定する車間距離判定手段と、車間距離判定手段が現
車間距離を不適と判定するときに運転者に対する警報を
出力する警報出力手段とを備えて成る車間距離監視装置
において、ピーク値検出手段が検出するピーク値が所定
のレベル内に収るように信号送出手段の適正信号出力レ
ベルを段階的に制御する信号出力制御手段と、信号送出
手段の信号出力レベルを、信号出力制御手段が調整した
適正信号出力レベルに対して、それよりも1段階上、1
段階下それぞれの信号出力レベルに変更して車間距離を
求めさせてこれらの車間距離を保存する参考車間距離保
存手段と、信号出力制御手段が調整する適正信号出力レ
ベルが変更され、新たな車間距離が求められたとき、当
該新たな適正信号出力レベルと同じ信号出力レベルで求
められた前回の車間距離を参考車間距離保存手段から読
出して相対速度算出手段に与える相対速度演算補助手段
とを備えたものである。
According to a third aspect of the present invention, there are provided a speed detecting means for detecting the speed of the host vehicle, a signal sending means for sending a pulsed signal to the outside at a predetermined sending cycle, and a signal sent by the signal sending means. The receiving means for continuously receiving the signal from the direction in which the signal is reflected back to the target and the signal received by the receiving means are binarized, and the elapsed time from the signal sending timing in each sending cycle of the signal sending means is shown. Addition means for adding a predetermined number of times of transmission for each of a plurality of different sampling points, peak value detection means for obtaining the peak value of the added value at each sampling point of the addition means, and peak value obtained by the peak value detection means And an inter-vehicle distance calculating means for calculating a distance corresponding to a sampling point as an inter-vehicle distance to a target ahead, and a distance measurement value saving means for saving the inter-vehicle distance calculated by the inter-vehicle distance calculating means, When the inter-vehicle distance calculation means calculates a new inter-vehicle distance, the previously-calculated inter-vehicle distance stored in the distance-measurement value storage means is read, and the difference between these inter-vehicle distances is used to calculate the distance between the host vehicle and the target ahead. Relative speed calculating means for calculating the relative speed of the vehicle, the speed of the own vehicle detected by the speed detecting means and the inter-vehicle distance calculated by the inter-vehicle distance calculating means, and the current inter-vehicle distance based on the relative speed calculated by the relative speed calculating means. A vehicle-to-vehicle distance monitoring device comprising an inter-vehicle distance determining means for determining suitability and an inter-vehicle distance monitoring means for outputting an alarm to a driver when the inter-vehicle distance determining means determines that the current inter-vehicle distance is unsuitable. The signal output control means for stepwise controlling the appropriate signal output level of the signal sending means so that the peak value detected by the means falls within a predetermined level, and the signal output level of the signal sending means Against the proper signal output level control means is adjusted, one step on than, 1
Reference inter-vehicle distance storage means that changes the signal output level of each step to determine the inter-vehicle distance and saves these inter-vehicle distances, and the appropriate signal output level adjusted by the signal output control means are changed, and the new inter-vehicle distance is changed. And a relative speed calculation assisting means for reading out the previous inter-vehicle distance obtained at the same signal output level as the new appropriate signal output level from the reference inter-vehicle distance storing means and giving it to the relative speed calculating means. It is a thing.

【0027】請求項4の発明は、請求項3の発明の車間
距離監視装置における参考車間距離保存手段に代えて、
相対速度算出手段が算出する相対速度から前方の物標に
対して自車両が接近しているときには信号送出手段の適
正信号出力レベルを1段階下げ、自車両が離脱している
ときには適正信号出力レベルを1段階上げて車間距離を
求めさせてその車間距離を保存する参考車間距離保存手
段を用いたものである。
According to a fourth aspect of the present invention, in place of the reference inter-vehicle distance storing means in the inter-vehicle distance monitoring device of the third aspect,
From the relative speed calculated by the relative speed calculating means, the appropriate signal output level of the signal sending means is lowered by one step when the own vehicle is approaching the target ahead, and when the own vehicle is leaving the appropriate signal output level. Is used to obtain the inter-vehicle distance, and the inter-vehicle distance is stored, and the reference inter-vehicle distance storage means is used.

【0028】[0028]

【作用】請求項1の発明の車間距離監視装置では、パル
ス状の信号を所定の送出周期ごとに外部へ送出し、送出
信号が物標に反射して返って来る方向からの信号を連続
的に受信し、受信信号を2値化し、各信号送出周期にお
ける信号送出タイミングからの経過時間を異ならせた複
数のサンプリング点毎に所定の送出回数分ずつ2値化受
信信号を加算し、各サンプリング点の加算値のピーク値
をピーク値検出手段によって求め、このピーク値を与え
るサンプリング点に対応する距離を前方の物標までの車
間距離として算出し、この車間距離を車間距離保存手段
に一時的に保存する。
According to the inter-vehicle distance monitoring apparatus of the present invention, a pulsed signal is sent to the outside at a predetermined sending cycle, and a signal from the direction in which the sent signal is reflected back to the target is continuously sent. , The received signal is binarized, the binarized received signal is added by a predetermined number of times at each of a plurality of sampling points with different elapsed times from the signal sending timing in each signal sending cycle, and each sampling is performed. The peak value of the added value of the points is obtained by the peak value detecting means, the distance corresponding to the sampling point giving this peak value is calculated as the inter-vehicle distance to the target in front, and this inter-vehicle distance is temporarily stored in the inter-vehicle distance storage means. Save to.

【0029】そして新たな車間距離を算出したときに、
相対速度算出手段が保存されている前回車間距離を読出
し、これらの前回と今回の車間距離の差から自車両と前
方の物標との間の相対速度を算出し、この相対速度と現
在の自車速と現在の車間距離とに基づいて現在の車間距
離の適不適を判定し、現在の車間距離が不適のときに運
転者に対する警報を出力する。
When a new inter-vehicle distance is calculated,
The previous vehicle-to-vehicle distance stored in the relative speed calculation means is read, and the relative speed between the host vehicle and the target in front of the vehicle is calculated from the difference between the previous and current vehicle-to-vehicle distances. The suitability of the current inter-vehicle distance is determined based on the vehicle speed and the current inter-vehicle distance, and an alarm is output to the driver when the current inter-vehicle distance is unsuitable.

【0030】ここで、ピーク値検出手段が検出するピー
ク値が所定の加算値レベル内に収るように受信手段の適
正受信増幅率を受信増幅率制御手段によって段階的に制
御し、受信手段の受信増幅率を常に適正なものに可変調
整する。
Here, the proper reception amplification rate of the reception means is controlled stepwise by the reception amplification rate control means so that the peak value detected by the peak value detection means falls within a predetermined added value level. The reception amplification factor is always variably adjusted to an appropriate value.

【0031】これと共に、受信増幅率制御手段が調整し
た適正受信増幅率による測距と共に、参考車間距離保存
手段により受信手段の受信増幅率を適正受信増幅率より
も1段階上、1段階下に変更して車間距離を求めさせて
これらの車間距離を保存しておく。そして、新たに適正
受信増幅率が変更され、新たな車間距離が求められたと
き、相対速度演算補助手段により当該新たな適正受信増
幅率と対応する受信増幅率で求められ、保存されている
車間距離を参考車間距離保存手段から読出して前回の車
間距離として相対速度算出手段に与え、相対速度を算出
する。
At the same time, along with the distance measurement by the proper reception amplification rate adjusted by the reception amplification rate control means, the reference inter-vehicle distance storage means makes the reception amplification rate of the reception means one step above and one step below the proper reception amplification rate. Change them to obtain inter-vehicle distances and save these inter-vehicle distances. When the proper reception amplification factor is newly changed and a new inter-vehicle distance is obtained, the relative speed calculation assisting unit obtains a reception amplification factor corresponding to the new proper reception amplification factor, and the inter-vehicle distance is saved. The distance is read from the reference inter-vehicle distance storage means and given to the relative speed calculation means as the previous inter-vehicle distance to calculate the relative speed.

【0032】これによって、受信増幅率が変更調整され
ても、その調整前後で同一の受信増幅率で測距した車間
距離を用いて相対速度を算出できるようにし、精度の良
い相対速度の算出を行い、車間距離警報の発報の信頼性
を向上させる。
As a result, even if the reception amplification factor is changed and adjusted, the relative speed can be calculated using the inter-vehicle distance measured with the same reception amplification factor before and after the adjustment, and the relative speed can be calculated with high accuracy. To improve the reliability of issuing the inter-vehicle distance warning.

【0033】請求項2の発明の車間距離監視装置では、
パルス状の信号を所定の送出周期ごとに外部へ送出し、
送出信号が物標に反射して返って来る方向からの信号を
連続的に受信し、受信信号を2値化し、各信号送出周期
における信号送出タイミングからの経過時間を異ならせ
た複数のサンプリング点毎に所定の送出回数分ずつ2値
化受信信号を加算し、各サンプリング点の加算値のピー
ク値をピーク値検出手段によって求め、このピーク値を
与えるサンプリング点に対応する距離を前方の物標まで
の車間距離として算出し、この車間距離を車間距離保存
手段に一時的に保存する。
According to the inter-vehicle distance monitoring device of the invention of claim 2,
Send a pulsed signal to the outside at a predetermined sending cycle,
Multiple sampling points that continuously receive signals from the direction in which the transmitted signal is reflected back to the target, binarize the received signal, and change the elapsed time from the signal transmission timing in each signal transmission cycle. The binarized reception signals are added for each predetermined number of times of transmission, the peak value of the added value at each sampling point is obtained by the peak value detecting means, and the distance corresponding to the sampling point giving this peak value is the front target. Is calculated as the inter-vehicle distance, and the inter-vehicle distance is temporarily stored in the inter-vehicle distance storage means.

【0034】そして新たな車間距離を算出したときに、
相対速度算出手段が保存されている前回車間距離を読出
し、これらの前回と今回の車間距離の差から自車両と前
方の物標との間の相対速度を算出し、この相対速度と現
在の自車速と現在の車間距離とに基づいて現在の車間距
離の適不適を判定し、現在の車間距離が不適のときに運
転者に対する警報を出力する。
When a new inter-vehicle distance is calculated,
The previous vehicle-to-vehicle distance stored in the relative speed calculation means is read, and the relative speed between the host vehicle and the target in front of the vehicle is calculated from the difference between the previous and current vehicle-to-vehicle distances. The suitability of the current inter-vehicle distance is determined based on the vehicle speed and the current inter-vehicle distance, and an alarm is output to the driver when the current inter-vehicle distance is unsuitable.

【0035】ここで、ピーク値検出手段が検出するピー
ク値が所定の加算値レベル内に収るように受信手段の適
正受信増幅率を受信増幅率制御手段によって段階的に制
御し、受信手段の受信増幅率を常に適正なものに可変調
整する。
Here, the proper reception amplification rate of the reception means is controlled stepwise by the reception amplification rate control means so that the peak value detected by the peak value detection means falls within a predetermined added value level. The reception amplification factor is always variably adjusted to an appropriate value.

【0036】これと共に、受信増幅率制御手段が調整し
た適正受信増幅率による測距と共に、参考車間距離保存
手段により相対速度算出手段が算出する相対速度から前
方の物標に対して自車両が接近しているときには適正受
信増幅率を1段階下げ、逆に自車両が離脱しているとき
には適正受信増幅率を1段階上げて車間距離を求めさせ
てその車間距離を保存しておく。そして、新たに適正受
信増幅率が変更され、新たな車間距離が求められたと
き、相対速度演算補助手段により当該新たな適正受信増
幅率と対応する受信増幅率で求められ、保存されている
車間距離を参考車間距離保存手段から読出して前回の車
間距離として相対速度算出手段に与え、相対速度を算出
する。
At the same time, along with the distance measurement based on the proper reception amplification rate adjusted by the reception amplification rate control means, the host vehicle approaches the target ahead from the relative speed calculated by the relative speed calculation means by the reference inter-vehicle distance storage means. If so, the proper reception amplification factor is decreased by one step, and conversely, if the vehicle is departing, the proper reception amplification factor is increased by one step to obtain the inter-vehicle distance, and the inter-vehicle distance is stored. When the proper reception amplification factor is newly changed and a new inter-vehicle distance is obtained, the relative speed calculation assisting unit obtains a reception amplification factor corresponding to the new proper reception amplification factor, and the inter-vehicle distance is saved. The distance is read from the reference inter-vehicle distance storage means and given to the relative speed calculation means as the previous inter-vehicle distance to calculate the relative speed.

【0037】これによって、受信増幅率が変更調整され
ても、その調整前後で同一の受信増幅率で測距した車間
距離を用いて相対速度を算出できるようにし、精度の良
い相対速度の算出を行い、車間距離警報の発報の信頼性
を向上させる。
As a result, even if the reception amplification factor is changed and adjusted, the relative speed can be calculated using the inter-vehicle distance measured with the same reception amplification factor before and after the adjustment, and the relative speed can be calculated with high accuracy. To improve the reliability of issuing the inter-vehicle distance warning.

【0038】加えて、各測距動作において適正受信増幅
率と1段階上あるいは1段階下いずれかに1段階変化さ
せた受信増幅率との2種類の受信増幅率だけで測距する
ことにより応答速度を速める。
In addition, in each distance measuring operation, a response is obtained by measuring the distance with only two kinds of reception amplification factors, that is, the proper reception amplification factor and the reception amplification factor which is changed by one step up or down by one step. Speed up.

【0039】請求項3の発明の車間距離監視装置では、
パルス状の信号を所定の送出周期ごとに外部へ送出し、
送出信号が物標に反射して返って来る方向からの信号を
連続的に受信し、受信信号を2値化し、各信号送出周期
における信号送出タイミングからの経過時間を異ならせ
た複数のサンプリング点毎に所定の送出回数分ずつ2値
化受信信号を加算し、各サンプリング点の加算値のピー
ク値をピーク値検出手段によって求め、このピーク値を
与えるサンプリング点に対応する距離を前方の物標まで
の車間距離として算出し、この車間距離を車間距離保存
手段に一時的に保存する。
According to the inter-vehicle distance monitoring device of the invention of claim 3,
Send a pulsed signal to the outside at a predetermined sending cycle,
Multiple sampling points that continuously receive signals from the direction in which the transmitted signal is reflected back to the target, binarize the received signal, and change the elapsed time from the signal transmission timing in each signal transmission cycle. The binarized reception signals are added for each predetermined number of times of transmission, the peak value of the added value at each sampling point is obtained by the peak value detecting means, and the distance corresponding to the sampling point giving this peak value is the front target. Is calculated as the inter-vehicle distance, and the inter-vehicle distance is temporarily stored in the inter-vehicle distance storage means.

【0040】そして新たな車間距離を算出したときに、
相対速度算出手段が保存されている前回車間距離を読出
し、これらの前回と今回の車間距離の差から自車両と前
方の物標との間の相対速度を算出し、この相対速度と現
在の自車速と現在の車間距離とに基づいて現在の車間距
離の適不適を判定し、現在の車間距離が不適のときに運
転者に対する警報を出力する。
When a new inter-vehicle distance is calculated,
The previous vehicle-to-vehicle distance stored in the relative speed calculation means is read, and the relative speed between the host vehicle and the target in front of the vehicle is calculated from the difference between the previous and current vehicle-to-vehicle distances. The suitability of the current inter-vehicle distance is determined based on the vehicle speed and the current inter-vehicle distance, and an alarm is output to the driver when the current inter-vehicle distance is unsuitable.

【0041】ここで、ピーク値検出手段が検出するピー
ク値が所定の加算値レベル内に収るように信号送出手段
の信号出力レベルを信号出力制御手段によって段階的に
制御し、信号出力レベルを常に適正なものに可変調整す
る。
Here, the signal output level of the signal output means is controlled stepwise by the signal output control means so that the peak value detected by the peak value detection means falls within a predetermined added value level, and the signal output level is changed. Always variably adjust to the appropriate one.

【0042】これと共に、信号出力制御手段が調整した
適正信号出力レベルによる測距と共に、参考車間距離保
存手段により信号送出手段の信号出力レベルを適正信号
出力レベルよりも1段階上、1段階下に変更して車間距
離を求めさせてこれらの車間距離を保存しておく。そし
て、新たに適正信号出力レベルが変更され、新たな車間
距離が求められたとき、相対速度演算補助手段により当
該新たな適正信号出力レベルと対応する信号出力レベル
で求められ、保存されている車間距離を参考車間距離保
存手段から読出して前回の車間距離として相対速度算出
手段に与え、相対速度を算出する。
At the same time, along with the distance measurement based on the proper signal output level adjusted by the signal output control means, the reference inter-vehicle distance storage means makes the signal output level of the signal sending means one step above and one step below the appropriate signal output level. Change them to obtain inter-vehicle distances and save these inter-vehicle distances. Then, when the appropriate signal output level is newly changed and a new inter-vehicle distance is obtained, the relative speed calculation assisting means obtains a signal output level corresponding to the new appropriate signal output level, and the inter-vehicle distance is saved. The distance is read from the reference inter-vehicle distance storage means and given to the relative speed calculation means as the previous inter-vehicle distance to calculate the relative speed.

【0043】これによって、信号出力レベルが変更調整
されても、その調整前後で同一の信号出力レベルで測距
した車間距離を用いて相対速度を算出できるようにし、
精度の良い相対速度の算出を行い、車間距離警報の発報
の信頼性を向上させる。
As a result, even if the signal output level is changed and adjusted, the relative speed can be calculated using the inter-vehicle distance measured at the same signal output level before and after the adjustment,
It calculates the relative speed with high accuracy and improves the reliability of the inter-vehicle distance warning.

【0044】請求項4の発明の車間距離監視装置では、
パルス状の信号を所定の送出周期ごとに外部へ送出し、
送出信号が物標に反射して返って来る方向からの信号を
連続的に受信し、受信信号を2値化し、各信号送出周期
における信号送出タイミングからの経過時間を異ならせ
た複数のサンプリング点毎に所定の送出回数分ずつ2値
化受信信号を加算し、各サンプリング点の加算値のピー
ク値をピーク値検出手段によって求め、このピーク値を
与えるサンプリング点に対応する距離を前方の物標まで
の車間距離として算出し、この車間距離を車間距離保存
手段に一時的に保存する。
According to the inter-vehicle distance monitoring device of the invention of claim 4,
Send a pulsed signal to the outside at a predetermined sending cycle,
Multiple sampling points that continuously receive signals from the direction in which the transmitted signal is reflected back to the target, binarize the received signal, and change the elapsed time from the signal transmission timing in each signal transmission cycle. The binarized reception signals are added for each predetermined number of times of transmission, the peak value of the added value at each sampling point is obtained by the peak value detecting means, and the distance corresponding to the sampling point giving this peak value is the front target. Is calculated as the inter-vehicle distance, and the inter-vehicle distance is temporarily stored in the inter-vehicle distance storage means.

【0045】そして新たな車間距離を算出したときに、
相対速度算出手段が保存されている前回車間距離を読出
し、これらの前回と今回の車間距離の差から自車両と前
方の物標との間の相対速度を算出し、この相対速度と現
在の自車速と現在の車間距離とに基づいて現在の車間距
離の適不適を判定し、現在の車間距離が不適のときに運
転者に対する警報を出力する。
When a new inter-vehicle distance is calculated,
The previous vehicle-to-vehicle distance stored in the relative speed calculation means is read, and the relative speed between the host vehicle and the target in front of the vehicle is calculated from the difference between the previous and current vehicle-to-vehicle distances. The suitability of the current inter-vehicle distance is determined based on the vehicle speed and the current inter-vehicle distance, and an alarm is output to the driver when the current inter-vehicle distance is unsuitable.

【0046】ここで、ピーク値検出手段が検出するピー
ク値が所定の加算値レベル内に収るように信号送出手段
の適正信号出力レベルを信号出力制御手段によって段階
的に制御し、信号送出手段の信号出力レベルを常に適正
なものに可変調整する。
Here, the appropriate signal output level of the signal sending means is controlled stepwise by the signal output control means so that the peak value detected by the peak value detecting means falls within a predetermined added value level, and the signal sending means is controlled. Always variably adjust the signal output level of to an appropriate level.

【0047】これと共に、信号出力制御手段が調整した
適正信号出力レベルによる測距と共に、参考車間距離保
存手段により相対速度算出手段が算出する相対速度から
前方の物標に対して自車両が接近しているときには適正
信号出力レベルを1段階下げ、逆に自車両が離脱してい
るときには適正信号出力レベルを1段階上げて車間距離
を求めさせてその車間距離を保存しておく。そして、新
たに適正信号出力レベルが変更され、新たな車間距離が
求められたとき、相対速度演算補助手段により当該新た
な適正信号出力レベルと対応する信号出力レベルで求め
られ、保存されている車間距離を参考車間距離保存手段
から読出して前回の車間距離として相対速度算出手段に
与え、相対速度を算出する。
At the same time, along with the distance measurement based on the appropriate signal output level adjusted by the signal output control means, the host vehicle approaches the target ahead from the relative speed calculated by the relative speed calculation means by the reference inter-vehicle distance storage means. The appropriate signal output level is lowered by one step when the vehicle is leaving, and conversely, the appropriate signal output level is raised by one step when the host vehicle is leaving to obtain the inter-vehicle distance, and the inter-vehicle distance is stored. Then, when the appropriate signal output level is newly changed and a new inter-vehicle distance is obtained, the relative speed calculation assisting means obtains a signal output level corresponding to the new appropriate signal output level, and the inter-vehicle distance is saved. The distance is read from the reference inter-vehicle distance storage means and given to the relative speed calculation means as the previous inter-vehicle distance to calculate the relative speed.

【0048】これによって、信号出力レベルが変更調整
されても、その調整前後で同一の信号出力レベルで測距
した車間距離を用いて相対速度を算出できるようにし、
精度の良い相対速度の算出を行い、車間距離警報の発報
の信頼性を向上させる。
As a result, even if the signal output level is changed and adjusted, the relative speed can be calculated using the inter-vehicle distance measured at the same signal output level before and after the adjustment.
It calculates the relative speed with high accuracy and improves the reliability of the inter-vehicle distance warning.

【0049】加えて、各測距動作において適正信号出力
レベルと1段階上あるいは1段階下いずれかに1段階変
化させた信号出力レベルとの2種類の信号出力レベルだ
けで測距することにより応答速度を速める。
In addition, in each distance measuring operation, the response is obtained by measuring the distance with only two kinds of signal output levels, that is, the appropriate signal output level and the signal output level which is changed by one step up or down by one step. Speed up.

【0050】[0050]

【実施例】以下、この発明の実施例を図に基づいて詳説
する。図1は請求項1の発明の一実施例の回路構成を示
しており、この実施例の車間距離監視装置は大きく分け
て、距離センサヘッド1と、信号処理部2と、コンピュ
ータで構成される車間距離演算部3と、車速センサ4
と、不適正車間距離を警報する警報ブザー5から構成さ
れている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows a circuit configuration of an embodiment of the invention of claim 1, and an inter-vehicle distance monitoring apparatus of this embodiment is roughly divided into a distance sensor head 1, a signal processing unit 2 and a computer. Inter-vehicle distance calculation unit 3 and vehicle speed sensor 4
And an alarm buzzer 5 for alarming an improper inter-vehicle distance.

【0051】距離センサヘッド1は、LEDまたはレー
ザ発光ダイオードで構成され、光信号を前方に送出する
送光部1aと、この送光部1aを一定周期ごとに一定パ
ルス幅ずつ発光させる駆動回路1bと、光信号を受信し
て電気信号に変換して出力するフォトダイオードで構成
され、送光部1aからの光信号が前方の物標に反射して
返って来る方向からの光信号を連続的に受光する受光部
1cと、この受光部1cの信号を増幅する増幅率可変形
の信号増幅回路1dと、この信号増幅回路1dの増幅率
を段階的に可変制御する増幅率制御回路1eから構成さ
れている。
The distance sensor head 1 is composed of an LED or a laser light emitting diode, and has a light transmitting section 1a for transmitting an optical signal to the front, and a driving circuit 1b for causing the light transmitting section 1a to emit light with a constant pulse width at a constant cycle. And a photodiode that receives an optical signal, converts it into an electrical signal, and outputs it, and continuously outputs an optical signal from the direction in which the optical signal from the light transmitting unit 1a is reflected back to the target in front. A light receiving portion 1c for receiving light, a signal amplification circuit 1d of variable amplification factor for amplifying the signal of the light receiving portion 1c, and an amplification factor control circuit 1e for variably controlling the amplification factor of the signal amplification circuit 1d in stages. Has been done.

【0052】信号処理部2は信号増幅回路1dの出力信
号をある基準値と比較して2値化信号とし、さらに送光
部1aの所定回数N回のパルス信号送出タイミングごと
にその送出タイミングと同期してサンプリングを開始
し、複数の時間を異ならせたサンプリング点ごとに2値
化信号をサンプリングし、“0”又は“1”の2値をサ
ンプリング点ごとに所定回数N回ずつ加算処理する部分
である。この構成は従来の技術の欄に示した特願平6−
146752号、特願平6−248438号に用いたも
のと同じものが用いられている。
The signal processing section 2 compares the output signal of the signal amplifying circuit 1d with a certain reference value to obtain a binarized signal, and further, at every predetermined number N times of pulse signal transmission timings of the light transmitting section 1a, the transmission timing thereof. Sampling is started in synchronism, the binarized signal is sampled at each sampling point at a plurality of different times, and a binary value of "0" or "1" is added a predetermined number of times N times at each sampling point. It is a part. This configuration is disclosed in Japanese Patent Application No. 6-
The same materials as those used in No. 146752 and Japanese Patent Application No. 6-248438 are used.

【0053】車間距離演算部3はコンピュータで構成さ
れるが、演算処理ごとに機能分解して示すと、測距処理
順序を統括して各部に制御信号を与える測距順序制御部
3aと、光信号の送出タイミング制御、受光信号の処理
タイミングを制御する信号処理制御部3bと、車間距離
演算を行う車間距離演算部3cと、受信信号の増幅率の
変更の必要性を判断する受信増幅率変更判断部3dと、
各種の測距データを保存するメモリ3eと、相対速度を
演算する相対速度演算部3fと、車速センサ4からの車
速、相対速度演算部3fからの相対速度に基づいて警報
距離を演算する警報距離演算部3gと、この警報距離演
算部3gが求める警報距離と車間距離演算部3cが求め
る現車間距離とを比較して警報発令の必要性を判定し、
警報ブザー5の発報を制御する警報発令判定部3hから
構成されている。
The inter-vehicle distance calculation unit 3 is composed of a computer. When the functions of each calculation process are decomposed and shown, the distance measurement order control unit 3a which controls the distance measurement process sequence and gives a control signal to each unit, and the optical distance calculation unit 3a. A signal processing control unit 3b that controls signal transmission timing control and light-receiving signal processing timing, an inter-vehicle distance calculation unit 3c that performs inter-vehicle distance calculation, and a reception amplification rate change that determines the necessity of changing the amplification rate of a reception signal. The determination unit 3d,
A memory 3e that stores various distance measurement data, a relative speed calculation unit 3f that calculates a relative speed, an alarm distance that calculates an alarm distance based on the vehicle speed from the vehicle speed sensor 4 and the relative speed from the relative speed calculation unit 3f. Comparing the calculation unit 3g with the warning distance calculated by the warning distance calculation unit 3g and the current inter-vehicle distance calculated by the inter-vehicle distance calculation unit 3c, the necessity of issuing a warning is determined.
The alarm buzzer 5 is composed of an alarm issuance determination unit 3h that controls the alarm issuance.

【0054】車速センサ4は車速データを車間距離演算
部3に入力する。
The vehicle speed sensor 4 inputs vehicle speed data to the inter-vehicle distance calculating section 3.

【0055】警報ブザー5は運転席に設置され、危険車
間距離と判定された場合に発報して運転者に知らせる。
The alarm buzzer 5 is installed in the driver's seat, and notifies the driver by issuing a warning when it is determined that the distance is a dangerous inter-vehicle distance.

【0056】次に、上記の構成の車間距離監視装置の動
作について説明する。車間距離演算部3の測距順序制御
部3aの指令に基づき、信号処理制御部3bから信号処
理部2に測距指令が与えられ、信号処理部2は距離セン
サヘッド1の駆動回路1bを制御して1回の測距動作中
に所定回数N回、所定周期で一定パルス幅の駆動信号を
送光部1aに与え、送光部1aから前方に所定回数N
回、所定周期で一定パルス幅の光信号が送出される。
Next, the operation of the inter-vehicle distance monitoring device having the above configuration will be described. The signal processing control unit 3b gives a distance measurement command to the signal processing unit 2 based on the command of the distance measurement order control unit 3a of the inter-vehicle distance calculation unit 3, and the signal processing unit 2 controls the drive circuit 1b of the distance sensor head 1. Then, a driving signal having a constant pulse width is given to the light transmitting section 1a at a predetermined number of times N times during one distance measuring operation, and the light transmitting section 1a is forwarded a predetermined number of times N times.
Once, an optical signal having a constant pulse width is transmitted at a predetermined cycle.

【0057】一方、受光部1cは連続的に前方からの光
信号を受光している。そしてその受光信号に前方の物標
である先行車からの反射信号が含まれていない場合、つ
まり前方に車両がない場合には、ノイズレベルの光信号
を受光し、電気信号に変換して信号増幅回路1dに出力
し、ここで所定の増幅率で増幅されて信号処理部2に出
力される。しかしながら、この場合、受光信号はノイズ
レベルであるので、信号処理部2で2値化される信号は
“0”と“1”がほぼ同じ確率で現れる信号であり、そ
の2値化信号を送光タイミングと同期して所定回数N回
だけ各サンプリング点ごとに加算処理しても各サンプリ
ング点の加算値はほぼN/2のノイズレベルとなり、車
間距離は得られない。
On the other hand, the light receiving section 1c continuously receives optical signals from the front. When the received light signal does not include the reflected signal from the preceding vehicle, which is the target in the front, that is, when there is no vehicle ahead, the optical signal at the noise level is received and converted into an electric signal. The signal is output to the amplifier circuit 1d, where it is amplified by a predetermined amplification factor and output to the signal processing unit 2. However, in this case, since the received light signal has a noise level, the signal binarized by the signal processing unit 2 is a signal in which “0” and “1” appear at almost the same probability, and the binarized signal is transmitted. Even if the addition processing is performed for each sampling point N times a predetermined number of times in synchronization with the optical timing, the added value at each sampling point becomes a noise level of approximately N / 2, and the inter-vehicle distance cannot be obtained.

【0058】しかしながら、前方に車両が存在し、送光
信号がその先行車に反射して返って来る光信号が受光部
1cで受光される場合、信号処理部2で2値化処理し、
同期加算処理して得られる加算値レベル特性は、図14
のb4のようなものとなる。
However, when there is a vehicle ahead and the light signal reflected by the preceding vehicle and returned is received by the light receiving section 1c, the signal processing section 2 performs binarization processing,
The added value level characteristic obtained by the synchronous addition processing is shown in FIG.
B4.

【0059】そしてこの加算値データは車間距離演算部
3cに出力され、図14に基づいて従来例で説明したよ
うに、加算ピーク値を示すサンプリング点を求め、その
加算ピーク値を示すサンプリング点の周囲4点の加算値
データv1,v2,v3,v4から従来例と同じように
ピーク点Aを求め、それに対応する距離点Bを割出し、
現受信増幅率Gn(以下、メイン増幅率という)での測
距値(車間距離)として一時的にメモリ3eのメモリD
_hold に保存する。これと共に、その測距値は相対速度
演算部3fにも出力される。なお、メモリD_hold はシ
フトレジスタのように少なくとも2回分のデータが保存
でき、新たなデータの書込みがあれば、直前に書込まれ
たデータが前回分のデータとしてシフトされるものとす
る。後述するメモリD_down 、メモリD_up についても
同様である。
This added value data is output to the inter-vehicle distance calculation unit 3c, and as described in the conventional example based on FIG. 14, the sampling point indicating the added peak value is obtained, and the sampling point indicating the added peak value is calculated. The peak point A is obtained from the added value data v1, v2, v3, v4 of four surrounding points in the same manner as in the conventional example, and the distance point B corresponding to the peak point A is calculated.
The memory D of the memory 3e is temporarily used as a distance measurement value (inter-vehicle distance) at the current reception amplification factor Gn (hereinafter, referred to as main amplification factor).
Save to _hold. At the same time, the measured distance value is also output to the relative speed calculation unit 3f. It is assumed that the memory D_hold can store data for at least two times like a shift register, and if new data is written, the data written immediately before is shifted as the data for the previous time. The same applies to memories D_down and D_up described later.

【0060】あるメイン増幅率Gnでの測距動作が終了
したタイミングで、測距順序制御部3aは増幅率制御回
路1eにメイン増幅率Gnから1段階下げた増幅率Gn-
1 に変更する指令を与え、同時に信号処理制御部3bに
次の測距動作指令を与えることによって次回の測距動作
を実行し、メイン増幅率Gnから1段階下げた増幅率G
n-1 での同期加算値データから車間距離演算部3cが車
間距離を求めてメモリ3eのメモリD_down に保存す
る。
At the timing when the distance measuring operation at a certain main amplification factor Gn ends, the distance measurement order control unit 3a causes the amplification factor control circuit 1e to lower the amplification factor Gn- by one step from the main amplification factor Gn.
The next distance measuring operation is executed by giving a command to change to 1 and at the same time the next distance measuring operation command to the signal processing control section 3b, and the amplification factor Gn which is one step lower than the main amplification factor Gn is executed.
The inter-vehicle distance calculation unit 3c obtains the inter-vehicle distance from the synchronous addition value data at n-1 and stores it in the memory D_down of the memory 3e.

【0061】測距順序制御部3aは次に、増幅率制御回
路1eにメイン増幅率Gnから1段階上げた増幅率Gn+
1 に変更する指令を与え、同時に信号処理制御部3bに
次の測距動作指令を与えることによって次々回の測距動
作を実行し、メイン増幅率Gnから1段階上げた増幅率
Gn+1 での同期加算値データから車間距離演算部3cが
車間距離を求めてメモリ3eのメモリD_up に保存す
る。
Next, the distance measurement order control unit 3a causes the amplification factor control circuit 1e to increase the amplification factor Gn + by one step from the main amplification factor Gn.
By giving a command to change to 1 and simultaneously giving the next distance measurement operation command to the signal processing control unit 3b, the next distance measurement operation is executed, and the amplification factor Gn + 1 is increased by one step from the main amplification factor Gn. The inter-vehicle distance calculating unit 3c obtains the inter-vehicle distance from the synchronous added value data and stores it in the memory D_up of the memory 3e.

【0062】以上のメイン増幅率Gnでの測距動作とそ
れよりも1段階下の増幅率Gn-1 、1段階上の増幅率G
n+1 それぞれでの測距動作との合計3回の測距動作が1
回の相対速度算定のために繰返し実行される。
Distance measuring operation with the above main amplification factor Gn and amplification factor Gn-1 one step lower than that and amplification factor G one step higher than that
A total of three distance measuring operations including the distance measuring operation for each of n + 1
It is repeatedly executed to calculate the relative speed once.

【0063】1回の相対速度演算のための合計3回の測
距動作において、車間距離演算部3cが求めたメイン増
幅率Gnでの加算値データのピーク値は受信増幅率変更
判断部3dにも出力され、ここで加算ピーク値を適正範
囲と比較し、適正範囲を超えていれば加算値データが飽
和しているとして受信信号増幅率を1段階下げる指令を
増幅率制御回路1eに出力し、逆に適正範囲よりも低け
れば受信信号増幅率を1段階上げる指令を増幅率制御回
路1eに出力する。
In a total of three distance measuring operations for one relative speed calculation, the peak value of the added value data at the main amplification factor Gn obtained by the inter-vehicle distance calculation unit 3c is sent to the reception amplification factor change determination unit 3d. Is also output. Here, the added peak value is compared with the proper range, and if it exceeds the proper range, it is determined that the added value data is saturated, and a command to reduce the received signal amplification factor by one step is output to the amplification factor control circuit 1e. Conversely, if it is lower than the proper range, a command to increase the reception signal amplification factor by one step is output to the amplification factor control circuit 1e.

【0064】そしてメイン増幅率が適正範囲であって変
更が必要でないと判断された場合には、新たな1組3回
の測距動作が開始されたとき、車間距離演算部3cは現
増幅率Gnでの新たな測距値(車間距離)DをメモリD
_hold に保存すると共に、相対速度演算部3fにも出力
する。
When it is determined that the main amplification factor is within the proper range and does not need to be changed, when a new set of three distance measuring operations is started, the following distance calculation unit 3c determines that the current amplification factor is present. Memory G for new distance measurement value (distance between vehicles) D in Gn
It is stored in _hold and also output to the relative speed calculation unit 3f.

【0065】相対速度演算部3fは新たに測距値Dが入
力されると、メモリ3e内のメモリD-hold に保存され
ている前回の測距値を呼出し、今回の測距値との差から
前方の物標(先行車)との間の相対速度を算出して警報
距離演算部3gに出力する。
When a new distance measurement value D is input, the relative speed calculation unit 3f calls the previous distance measurement value stored in the memory D-hold in the memory 3e, and the difference from the current distance measurement value is obtained. Calculates the relative speed between the target object and the vehicle ahead (the preceding vehicle) and outputs it to the alarm distance calculation unit 3g.

【0066】この相対速度演算部3fにおける相対速度
演算式としては、次のようなものが用いられる。すなわ
ち、メモリD_hold に保存されている前回の測距値がD
_hold 、今回の測距値がDであり、前回の測距動作から
今回の測距動作までの時間3・ΔTとすると、現相対速
度Vrを次の式(1)に基づいて算出する。
The following formula is used as the relative velocity calculation formula in the relative velocity calculation unit 3f. That is, the previous distance measurement value stored in the memory D_hold is D
_hold, the current distance measurement value is D, and the time from the last distance measurement operation to the current distance measurement operation is 3 · ΔT, the current relative speed Vr is calculated based on the following equation (1).

【0067】[0067]

【数1】 Vr=(D−D_hold )/3・ΔT …(1) ここで、ΔTはある測距から次の測距までの時間、つま
り測距周期(例えば、50msecに設定される)であり、
この実施例では1組3回の測距動作を1つの相対速度算
出のために行うため、前回のメイン増幅率での測距と今
回のメイン増幅率での測距との間の時間は3・ΔTとな
る。
## EQU00001 ## Vr = (DD-hold) /3.multidot..DELTA.T (1) where .DELTA.T is the time from one distance measurement to the next distance measurement, that is, the distance measurement cycle (for example, set to 50 msec). Yes,
In this embodiment, one set of three distance measuring operations is performed to calculate one relative speed, so that the time between the last distance measurement with the main amplification factor and the current distance measurement with the main amplification factor is three.・ It becomes ΔT.

【0068】しかしながらいま、ある測距動作で得られ
た同期加算値のピーク値が適正範囲から逸脱していて、
受信増幅率変更判断部3dがメイン増幅率を1段階下
げ、あるいは上げる指令を増幅率制御回路1eに出力し
たときには、その増幅率変更指令は相対速度演算部3f
にも与えられる。
However, now, the peak value of the synchronous addition value obtained in a certain distance measuring operation deviates from the proper range,
When the reception amplification factor change determination unit 3d outputs a command to decrease or increase the main amplification factor by one step to the amplification factor control circuit 1e, the amplification factor change command is the relative speed calculation unit 3f.
Also given to.

【0069】そして増幅率の変更指令が出力されたとき
には、増幅率制御回路1eがその変更指令に基づいて信
号増幅回路1dの受信信号増幅率を1段階下げ、あるい
は上げる制御を行う。そして新たに上記の1組3回の測
距動作が開始され、その測距結果はメモリ3e内のメモ
リD_hold ,D_down ,D_up それぞれに新たな測距値
として保存される。
When the amplification factor change command is output, the amplification factor control circuit 1e controls the received signal amplification factor of the signal amplification circuit 1d to be lowered or raised by one step based on the change command. Then, the above-mentioned one set of three distance measuring operations are newly started, and the distance measuring results are stored as new distance measuring values in the memories D_hold, D_down, and D_up in the memory 3e.

【0070】この増幅率変更後の1組3回の測距動作が
終了すれば、相対速度演算部3fは車間距離演算部3c
が求める新たなメイン増幅率での測距値Dと、そのメイ
ン増幅率が前回より1段階下げられたものであればメモ
リD_down に保存されている前回の測距値とを用いて、
次の式(1)´に基づいて相対速度が算出される。
When the one set of three distance measuring operations after the change of the amplification rate is completed, the relative speed calculating section 3f changes the inter-vehicle distance calculating section 3c.
Using the distance measurement value D at the new main amplification rate that is calculated by and the previous distance measurement value stored in the memory D_down if the main amplification rate is one step lower than the previous time,
The relative speed is calculated based on the following equation (1) ′.

【0071】[0071]

【数2】 Vr=(D−D_down )/2・ΔT …(1)´ 逆に今回の測距でメイン増幅率が前回より1段階上げら
れたものであれば、新たなメイン増幅率での測距値と、
メモリD_up に保存されている前回の測距値とを用い
て、次の式(1)″に基づき、相対速度を算出する。
## EQU00002 ## Vr = (DD-down) /2..DELTA.T (1) 'On the contrary, if the main amplification factor has been raised by one step from the previous one in the current distance measurement, the new main amplification factor Distance measurement value,
Using the previous distance measurement value stored in the memory D_up, the relative speed is calculated based on the following equation (1) ″.

【0072】[0072]

【数3】 Vr=(D−D_up )/ΔT …(1)″ 相対速度演算部3fによって算出された相対速度は警報
距離演算部3gに出力され、ここで次の式(2)に基づ
く警報車間距離Dwが算出され、警報発令判定部3hに
与えられる。
## EQU00003 ## Vr = (D-D_up) /. DELTA.T (1) "The relative speed calculated by the relative speed calculation unit 3f is output to the alarm distance calculation unit 3g, where an alarm based on the following equation (2) is generated. The inter-vehicle distance Dw is calculated and given to the warning issuance determination unit 3h.

【0073】[0073]

【数4】 Dw=Vf*t1+Vr*t2 …(2) ここで、Vfは車速センサ4から入力される自車速、V
rは相対速度演算部3fから入力される相対速度、t
1,t2は実験的に決定される係数である。
## EQU00004 ## Dw = Vf * t1 + Vr * t2 (2) where Vf is the vehicle speed input from the vehicle speed sensor 4, and Vf
r is the relative speed input from the relative speed calculator 3f, t
1 and t2 are coefficients determined experimentally.

【0074】例えば、現車間距離Dが大きくとも、自車
速Vfも大きく、かつ相対速度Vrが−で大きい場合、
つまり先行車に急接近の傾向にあれば追突の恐れが高い
ので警報を発する必要があり、逆に、現車間距離Dが小
さくとも、自車速Vfが小さく、相対速度Vrが+であ
れば先行車が離脱する傾向にあるので追突の恐れが低い
ので警報を発する必要がない。そこで、上記(2)の式
に基づき、自車速Vfと相対速度Vrを考慮して現実の
走行条件での警報車間距離Dwをリアルタイムに決定す
るのである。
For example, when the current vehicle distance D is large, the own vehicle speed Vf is also large, and the relative speed Vr is large at-,
In other words, if there is a tendency to suddenly approach the preceding vehicle, there is a high risk of a rear-end collision, so it is necessary to issue an alarm. Conversely, even if the current inter-vehicle distance D is small, if the vehicle speed Vf is small and the relative speed Vr is + There is no need to issue an alarm because the risk of a rear-end collision is low because the car tends to leave. Therefore, the warning inter-vehicle distance Dw under the actual traveling condition is determined in real time in consideration of the own vehicle speed Vf and the relative speed Vr based on the equation (2).

【0075】警報発令判定部3hでは、警報距離演算部
3gから入力される警報車間距離Dwと車間距離演算部
3cから入力される測距値(現車間距離)Dとを比較
し、現車間距離Dが警報車間距離Dwよりも小さければ
先行車に近づきすぎていると判断して警報発令指令を警
報ブザー5に出力し、車間距離警報を発報させて運転者
の注意を促す。
In the warning issuing determination unit 3h, the warning inter-vehicle distance Dw input from the warning distance calculation unit 3g and the distance measurement value (current inter-vehicle distance) D input from the inter-vehicle distance calculation unit 3c are compared to determine the current inter-vehicle distance. If D is smaller than the warning inter-vehicle distance Dw, it is determined that the vehicle is too close to the preceding vehicle, an alarm issuance command is output to the alarm buzzer 5, and an inter-vehicle distance alarm is issued to alert the driver.

【0076】以上の一連の測距動作における相対速度演
算処理を図2及び図3のフローチャートに基づいて詳し
く説明する。以下の処理では、前方車両が存在し、それ
を自車両が追従走行している状況を起点として説明す
る。
The relative velocity calculation processing in the series of distance measuring operations described above will be described in detail with reference to the flowcharts of FIGS. In the following processing, a situation in which a vehicle ahead is present and the vehicle is following and traveling will be described as a starting point.

【0077】前回測距動作と新たに実行される今回測距
動作とで受信増幅率の変更が無い場合、受信増幅率変更
フラグG_FLGの値は0(段階変化なし)であるの
で、メイン増幅率段階値GAINを変更しない(ステッ
プS1)。
When there is no change in the reception amplification factor between the last distance measurement operation and the newly executed current distance measurement operation, the value of the reception amplification factor change flag G_FLG is 0 (no step change). The step value GAIN is not changed (step S1).

【0078】受信回路の受信増幅率をメイン増幅率GA
INに制御する(ステップS2)。そして前回測距動作
から時間ΔT(この測距周期は例えば、50msecに設定
され、タイマ管理によってタイミング調整がなされる)
経過した後(ステップS3)、今回の測距動作を実行す
る(ステップS4)。
The reception gain of the receiving circuit is set to the main gain GA
Control to IN (step S2). The time ΔT from the last distance measurement operation (this distance measurement cycle is set to, for example, 50 msec, and the timing is adjusted by timer management)
After the lapse of time (step S3), the current distance measuring operation is executed (step S4).

【0079】今回の測距動作で得られた測距値(車間距
離)、加算ピーク値をそれぞれメモリD、メモリPKに
保存する(ステップS5,S6)。
The distance measurement value (inter-vehicle distance) and the added peak value obtained by the distance measurement operation this time are stored in the memory D and the memory PK, respectively (steps S5 and S6).

【0080】今の場合、メイン増幅率に変更がないの
で、得られた測距値Dと前回の測距値D_hold とから相
対速度VRをステップS11に示す式に基づいて演算
し、メモリVRに格納する(ステップS7,S9,S1
1)。
In this case, since the main amplification factor is not changed, the relative velocity VR is calculated based on the obtained distance measurement value D and the previous distance measurement value D_hold based on the formula shown in step S11, and stored in the memory VR. Store (steps S7, S9, S1
1).

【0081】続いて、次回の相対速度演算のために、今
回のメイン増幅率に対して1段階下げ、また上げた増幅
率それぞれで測距を行い、それらの測距値をメモリに保
存する(ステップS12〜S20)。
Then, for the next relative velocity calculation, the main amplification factor of this time is lowered by one step, and the distance measurement is performed at each of the increased amplification factors, and the distance measurement values are stored in the memory ( Steps S12 to S20).

【0082】そのためにまず、メモリDの内容をD_hol
d に保存し(ステップS12)、受信回路の受信増幅率
を1段階下げて増幅率GAIN−1に制御し(ステップ
S13)、ステップS4の前回測距動作から測距周期Δ
Tが経過するのを待って(ステップS14)、測距動作
を行い(ステップS15)、この受信増幅率を1段階下
げた状態での測距値をメモリD_down に保存する(ステ
ップS16)。
Therefore, first, the contents of the memory D are changed to D_hol.
It is stored in d (step S12), the reception amplification factor of the reception circuit is lowered by one step and controlled to the amplification factor GAIN-1 (step S13), and the distance measurement cycle Δ from the previous distance measurement operation of step S4.
After the elapse of T (step S14), the distance measurement operation is performed (step S15), and the distance measurement value with the reception amplification factor reduced by one step is stored in the memory D_down (step S16).

【0083】続いて、受信回路の増幅率をメイン増幅率
GAINから1段階上げた増幅率GAIN+1に制御し
(ステップS17)、同様にしてステップS15の前回
測距動作から測距周期ΔTが経過するのを待って(ステ
ップS18)、測距動作を行い(ステップS19)、こ
の受信増幅率を1段階上げた状態での測距値をメモリD
_up に保存する(ステップS20)。
Then, the amplification factor of the receiving circuit is controlled to the gain factor GAIN + 1, which is one step higher than the main amplification factor GAIN (step S17), and similarly, the distance measurement period ΔT elapses from the previous distance measurement operation of step S15. (Step S18), the distance measurement operation is performed (step S19), and the distance measurement value with the reception amplification factor increased by one step is stored in the memory D.
It is stored in _up (step S20).

【0084】次に加算ピーク値PKを所定範囲内に収め
るために、つまり、適正範囲下限値TH_L、適正範囲
上限値TH_Hとするときに、TH_L<PK<TH_
Hとなるようにメイン増幅率の変更制御を行う(ステッ
プS21〜S25)。
Next, in order to keep the added peak value PK within the predetermined range, that is, when the proper range lower limit value TH_L and the proper range upper limit value TH_H are set, TH_L <PK <TH_.
Change control of the main amplification factor is performed so that it becomes H (steps S21 to S25).

【0085】このためにまず、今回行った測距動作で得
られた加算ピーク値PKが適正範囲下限値TH_Lより
も小ならば、次回の相対速度算定のための測距動作でメ
イン増幅率を上げるためにG_FLGに値+1を格納す
る(ステップS21,S22)。逆に加算ピーク値PK
が適正範囲上限値TH_Hよりも大ならば、次回の相対
速度算定のための測距動作でメイン増幅率を下げるため
にG_FLGに値−1を格納する(ステップS21,S
23,S24)。そして、加算ピーク値PKが適正範囲
内であれば受信増幅率を変更する必要がないので、G_
FLGに値0を格納する(ステップS25)。
For this reason, first, if the added peak value PK obtained by the distance measuring operation performed this time is smaller than the proper range lower limit value TH_L, the main amplification factor is set in the distance measuring operation for the next relative speed calculation. The value +1 is stored in G_FLG to increase (steps S21 and S22). Conversely, the added peak value PK
Is larger than the appropriate range upper limit value TH_H, the value -1 is stored in G_FLG in order to lower the main amplification factor in the distance measuring operation for the next relative speed calculation (steps S21, S).
23, S24). If the added peak value PK is within the proper range, it is not necessary to change the reception amplification factor.
The value 0 is stored in FLG (step S25).

【0086】ここまで相対速度算出のための1周期とし
て、再びステップS1に戻り、新たな相対速度算定のた
めの測距動作を開始する。
Up to this point, one cycle for calculating the relative speed is returned to step S1 again, and the distance measuring operation for calculating a new relative speed is started.

【0087】今、先行車に対する接近あるいは離脱に伴
い、受信増幅率の段階変化があった場合、前回測距周期
において加算ピーク値から判断された受信増幅率変更フ
ラグG_FLGの値に応じてメイン増幅率の段階値が格
納されているメモリGAINの値を変更し(ステップS
1)、受信回路の増幅率をこのメイン増幅率GAINに
制御する(ステップS2)。
Now, when there is a step change in the reception amplification factor due to the approach or departure from the preceding vehicle, the main amplification is performed according to the value of the reception amplification factor change flag G_FLG determined from the added peak value in the previous distance measurement cycle. The value of the memory GAIN in which the step value of the rate is stored is changed (step S
1) The gain of the receiving circuit is controlled to the main gain GAIN (step S2).

【0088】前回測距動作から時間ΔTが経過した後
(ステップS3)、新たな測距動作を行い(ステップS
4)、得られた測距値、加算ピーク値をそれぞれメモリ
D、メモリPKに格納する(ステップS5,S6)。
After the time ΔT has passed since the last distance measuring operation (step S3), a new distance measuring operation is performed (step S3).
4) The obtained distance measurement value and added peak value are stored in the memory D and the memory PK, respectively (steps S5 and S6).

【0089】ここでメイン増幅率が前回よりも1段階下
げられていれば、つまり受信増幅率変更フラグG_FL
G=−1であれば、今回測距値Dと前回周期に今回と同
じ増幅率で測距されたメモリD_down の値とを用いて、
ステップS8に示した演算式に基づいて相対速度を算出
し、メモリVRに格納する(ステップS7,S8)。逆
に、メイン増幅率が前回よりも1段階上げられていれ
ば、つまり受信増幅率変更フラグG_FLG=+1であ
れば、今回測距値Dと前回周期に今回と同じ増幅率で測
距されたメモリD_up の値とを用いて、ステップS10
に示した演算式に基づいて相対速度を算出し、メモリV
Rに格納する(ステップS9,S10)。
Here, if the main amplification factor is lowered by one step from the previous time, that is, the reception amplification factor change flag G_FL.
If G = -1, then the distance measurement value D of this time and the value of the memory D_down measured in the previous cycle with the same amplification factor as this time are used,
The relative speed is calculated based on the arithmetic expression shown in step S8 and stored in the memory VR (steps S7 and S8). On the contrary, if the main amplification factor is increased by one step from the previous time, that is, if the reception amplification factor change flag G_FLG = + 1, the distance measurement is performed this time in the current distance measurement value D and the previous amplification period. Using the value of the memory D_up, step S10
The relative speed is calculated based on the arithmetic expression shown in
Store in R (steps S9 and S10).

【0090】続いて、さらに次回周期の相対速度演算の
ためにメイン増幅率による測距値と共に、メイン増幅率
より1段階下げ、また上げた各増幅率での測距値を求
め、それぞれメモリD_hold 、メモリD_down 、メモリ
D_up に格納する(ステップS12〜S20)。そし
て、加算ピーク値の適正を判断し、不適正であれば再度
受信増幅率を変更し、適正であれば受信増幅率をそのま
まとする手当を行い、ステップS1に戻って次回周期の
測距を行うことになる(ステップS21〜S25)。
Subsequently, the distance measurement value by the main amplification factor is further calculated for the relative speed calculation in the next cycle, and the distance measurement value at each amplification factor which is lowered by one step from the main amplification factor and increased is obtained, and each is stored in the memory D_hold. , Memory D_down, and memory D_up (steps S12 to S20). Then, the adequacy of the added peak value is judged, if it is improper, the reception amplification factor is changed again, and if it is adequate, an allowance is made to leave the reception amplification factor as it is. It will be performed (steps S21 to S25).

【0091】こうして、先行車の車間距離が走行中に変
化し、受信回路の増幅率を自動変更する必要が生じ、受
信増幅率の変更前後でその受信増幅率による測距値に誤
差が生じることがあっても、受信増幅率の変更後も前回
の相対速度演算周期に変更後の受信増幅率と同じ受信増
幅率で測距した値が得られているので、同じ受信増幅率
での前回測距値と今回測距値を用いて相対速度を演算す
ることができるようになり、正確な相対速度が得られ、
したがってこれに基づいて演算される警報距離も精度の
高いものとなり、車間距離警報の信頼性を高くすること
できる。
In this way, the inter-vehicle distance of the preceding vehicle changes during traveling, it becomes necessary to automatically change the amplification factor of the receiving circuit, and an error occurs in the distance measurement value due to the reception amplification factor before and after the change of the reception amplification factor. However, even after the reception amplification factor is changed, the value obtained by measuring the distance with the same reception amplification factor as that after the change in the previous relative speed calculation cycle is obtained, so the previous measurement with the same reception amplification factor was obtained. It becomes possible to calculate the relative speed using the distance value and the distance measurement value this time, and an accurate relative speed can be obtained.
Therefore, the warning distance calculated on the basis of this also becomes highly accurate, and the reliability of the inter-vehicle distance warning can be increased.

【0092】次に、請求項2の発明の一実施例を図4〜
図6に基づいて説明する。この実施例の車間距離監視装
置は、受光信号の信号増幅率を増減制御し、その増幅率
変更前後で得られた測距値を用いて相対速度を算出する
際にも正確な値を得るために、車間距離が接近傾向にあ
るときにはメイン増幅率での測距時にそれよりも1段階
小さくした増幅率でも測距し、逆に車間距離が離脱傾向
にあるときにはメイン増幅率での測距時にそれよりも1
段階大きくした増幅率でも測距して保存しておき、次回
の増幅率変更後の測距動作で相対速度を算出するときに
は、今回の増幅率と同じ増幅率の前回の測距値を用いて
演算することを特徴とするものである。
Next, an embodiment of the invention of claim 2 will be described with reference to FIGS.
It will be described with reference to FIG. The inter-vehicle distance monitoring device of this embodiment controls the signal amplification factor of the received light signal to increase or decrease, and obtains an accurate value even when calculating the relative speed using the distance measurement values obtained before and after the amplification factor is changed. On the other hand, when the inter-vehicle distance tends to approach, the distance is measured with the amplification factor which is one step smaller than that when the distance is measured with the main amplification factor. Conversely, when the inter-vehicle distance tends to be separated, the distance is measured with the main amplification factor. Than that 1
When the relative speed is calculated in the next distance measurement operation after the amplification rate is changed, the previous distance measurement value with the same amplification rate as this time is used. It is characterized by being calculated.

【0093】この実施例の車間距離監視装置は図4に示
す構成であり、大部分は図1に示した第1の実施例と共
通し、その共通する部分には同一の符号を付して示して
あるが、車間距離演算部3の内部構成に若干の変更があ
る。つまり、測距処理順序を統括して各部に制御信号を
与える測距順序制御部3aがメイン増幅率での測距動作
の後に増幅率制御回路1eに車間距離の接近傾向、離脱
傾向を判定して受信増幅率を1段階下、又は上に変更さ
せて測距動作を行う機能を有している。そして、各種の
測距データを保存するメモリ3eはメイン増幅率での測
距値を保存するメモリD_main と受信増幅率を1段階
上、または下いずれかに1段階変更して測距して得た測
距値を保存するメモリD_subとを有している。
The inter-vehicle distance monitoring apparatus of this embodiment has the structure shown in FIG. 4, and most of it is common to the first embodiment shown in FIG. 1, and the common parts are designated by the same reference numerals. Although shown, there is a slight change in the internal configuration of the inter-vehicle distance calculation unit 3. That is, the distance measurement order control unit 3a, which controls the distance measurement processing sequence and gives a control signal to each unit, determines to the amplification factor control circuit 1e the approach tendency and the departure tendency of the inter-vehicle distance after the distance measurement operation at the main amplification factor. It has a function of performing the distance measuring operation by changing the reception amplification factor one step down or up. The memory 3e for storing various distance measurement data is obtained by changing the memory D_main for storing the distance measurement value at the main amplification rate and the reception amplification rate by one step up or down one step. And a memory D_sub for storing the measured distance value.

【0094】次に、この第2の実施例の車間距離監視装
置の動作について説明する。車間距離演算部3の測距順
序制御部3aの指令に基づき、信号処理制御部3bから
信号処理部2に測距指令が与えられ、信号処理部2は距
離センサヘッド1の駆動回路1bを制御して1回の測距
動作中に所定回数N回、所定周期で一定パルス幅の駆動
信号を送光部1aに与え、送光部1aから前方に所定回
数N回、所定周期で一定パルス幅の光信号が送出され
る。
Next, the operation of the inter-vehicle distance monitor of the second embodiment will be described. The signal processing control unit 3b gives a distance measurement command to the signal processing unit 2 based on the command of the distance measurement order control unit 3a of the inter-vehicle distance calculation unit 3, and the signal processing unit 2 controls the drive circuit 1b of the distance sensor head 1. Then, a drive signal having a constant pulse width is given to the light transmitting section 1a a predetermined number of times N times during one distance measuring operation, and a predetermined number of times N times forward of the light transmitting section 1a is given a constant pulse width at a predetermined period. Is transmitted.

【0095】一方、受光部1cは連続的に前方からの光
信号を受光し、電気信号に変換して信号増幅回路1dに
出力し、あらかじめ設定された増幅率で増幅して信号処
理部2に出力する。
On the other hand, the light receiving section 1c continuously receives an optical signal from the front, converts it into an electric signal and outputs it to the signal amplifying circuit 1d, and amplifies it at a preset amplification factor to the signal processing section 2. Output.

【0096】図14に基づいて従来例で説明したよう
に、信号処理部2では受光増幅信号を2値化処理し、同
期加算処理する。得られた加算値データは車間距離演算
部3cに出力され、加算ピーク値を示すサンプリング点
を求め、その加算ピーク値を示すサンプリング点の周囲
4点の加算値データv1,v2,v3,v4から従来例
と同じようにピーク点Aを求め、それに対応する距離点
Bを割出し、現受信増幅率、つまりメイン増幅率での測
距値(車間距離)として一時的にメモリ3eのメモリD
_main に保存する。これと共に、その測距値は相対速度
演算部3fにも出力される。なお、メモリD_main はシ
フトレジスタのように少なくとも2回分のデータが保存
でき、新たなデータの書込みがあれば、直前に書込まれ
たデータが前回分のデータとしてシフトされるものとす
る。後述するメモリD_subについても同様である。
As described in the conventional example with reference to FIG. 14, the signal processing unit 2 binarizes the received light amplified signal and performs the synchronous addition process. The obtained added value data is output to the inter-vehicle distance calculation unit 3c, the sampling point indicating the added peak value is obtained, and the added value data v1, v2, v3, v4 of four points around the sampling point indicating the added peak value are calculated. As in the conventional example, the peak point A is obtained, the corresponding distance point B is indexed, and the current reception amplification factor, that is, the distance measurement value (inter-vehicle distance) at the main amplification factor is temporarily stored in the memory D of the memory 3e.
Save it in _main. At the same time, the measured distance value is also output to the relative speed calculation unit 3f. Note that the memory D_main can store data for at least two times like a shift register, and if new data is written, the data written immediately before is shifted as the data for the previous time. The same applies to the memory D_sub described later.

【0097】あるメイン増幅率Gnでの測距動作が終了
したタイミングで、測距順序制御部3aは前回の測距と
今回の測距とでメイン増幅率に変更が生じていないかど
うか判断し、前回の測距と同一のメイン増幅率で今回の
測距増幅率が実行されている場合には、相対速度演算部
3fに相対速度演算を実行させる。しかしながら、前回
の測距のメイン増幅率と今回の測距のメイン増幅率との
間で段階変化があれば、今回の測距値と今回のメイン増
幅率と同じ増幅率で前回測距された測距値を用いて相対
速度演算を実行させる。そして得られる相対速度の符号
から、それが+又は0ならば離脱傾向にある(相対速度
が0の場合にも離脱傾向にあるとする)ので増幅率を1
段階上げる指令を増幅率制御回路1eに与え、逆に前回
の相対速度の符号が−ならば接近傾向にあるので増幅率
を1段階下げる指令を増幅率制御回路1eに与えて増幅
率の変更を行い、その変更後の増幅率で測距動作を実行
させ、その測距値をメモリ3eのメモリD_subに保存さ
せる。
At the timing when the distance measuring operation at a certain main amplification factor Gn is completed, the distance measurement order control unit 3a determines whether the main amplification factor has changed between the last distance measurement and the current distance measurement. If the distance measurement amplification factor of this time is executed with the same main amplification factor as the distance measurement of the previous time, the relative velocity calculation unit 3f is caused to perform relative velocity calculation. However, if there is a step change between the main amplification factor of the previous distance measurement and the main amplification factor of this distance measurement, the distance measurement was performed last time with the same amplification factor as the current distance measurement value and this time main amplification factor. The relative velocity calculation is executed using the distance measurement value. Then, from the sign of the relative velocity obtained, if it is + or 0, there is a tendency to leave (even if the relative velocity is 0, there is a tendency to leave), so the amplification factor is
If a command to increase the amplification rate is given to the amplification factor control circuit 1e and conversely if the sign of the previous relative speed is −, there is an approaching tendency, so a command to decrease the amplification factor by one step is given to the amplification factor control circuit 1e to change the amplification factor. Then, the distance measurement operation is executed with the changed amplification factor, and the distance measurement value is stored in the memory D_sub of the memory 3e.

【0098】こうして、メイン増幅率Gnでの測距とそ
れよりも1段階下又は上の増幅率での測距との2回の測
距動作が相対速度算定のための1組の測距動作として繰
返し実行される。
Thus, two distance measuring operations, that is, the distance measuring with the main amplification factor Gn and the distance measuring with the amplification factor one step lower or higher than that, constitute one set of distance measuring operations for relative velocity calculation. Is repeatedly executed as.

【0099】車間距離演算部3cが求めたメイン増幅率
Gnでの加算値データのピーク値は受信増幅率変更判断
部3dにも出力され、ここで加算ピーク値を適正範囲と
比較し、適正範囲を超えていれば加算値データが飽和し
ているとして受信信号増幅率を1段階下げる指令を増幅
率制御回路1eに出力し、逆に適正範囲よりも低ければ
受信信号増幅率を1段階上げる指令を増幅率制御回路1
eに出力する。
The peak value of the added value data at the main amplification factor Gn obtained by the inter-vehicle distance calculation unit 3c is also output to the reception amplification factor change determination unit 3d, where the added peak value is compared with the proper range to determine the proper range. If it exceeds, it outputs a command to lower the received signal amplification factor by one step to the amplification factor control circuit 1e on the assumption that the added value data is saturated, and conversely, if it is lower than the proper range, increases the received signal amplification factor by one step. Gain control circuit 1
output to e.

【0100】相対速度演算部3fはメイン増幅率での新
たな測距値が入力されると、次の演算式(11)又は
(11)´によって相対速度を算出し、警報距離演算部
3gに出力する。
When a new distance measurement value with the main amplification factor is input, the relative speed calculation unit 3f calculates the relative speed according to the following calculation formula (11) or (11) ', and the alarm distance calculation unit 3g receives it. Output.

【0101】つまり、前回と今回とでメイン増幅率に変
更がない場合には、メモリD_mainに保存されている前
回の測距値D_main 、今回のメイン増幅率での測距値D
を用いて、現相対速度Vrを次の式(11)に基づいて
算出する。
That is, when there is no change in the main amplification factor between the previous time and this time, the previous distance measurement value D_main stored in the memory D_main, the distance measurement value D at the current main amplification factor D
The current relative velocity Vr is calculated using the following equation (11).

【0102】[0102]

【数5】 Vr=(D−D_main )/2・ΔT …(11) ここで、ΔTはある測距から次の測距までの時間、つま
り測距周期(例えば、50msecに設定される)であり、
前回のメイン増幅率での測距から今回のメイン増幅率で
の測距までに2回の測距が繰返されているので、2つの
測距値間の経過時間は2・ΔTとなる。
Vr = (DD−main) / 2 · ΔT (11) Here, ΔT is the time from one distance measurement to the next distance measurement, that is, the distance measurement cycle (for example, set to 50 msec). Yes,
Since the distance measurement is repeated twice from the last distance measurement with the main amplification rate to the current distance measurement with the main amplification rate, the elapsed time between the two distance measurement values is 2 · ΔT.

【0103】しかしながら、前回のメイン増幅率と今回
のメイン増幅率との間に変更があった場合には、メモリ
D_subに保存されている前回の測距値D_sub、今回のメ
イン増幅率での測距値Dを用いて、現相対速度Vrを次
の式(11)´に基づいて算出する。
However, when there is a change between the previous main amplification factor and the current main amplification factor, measurement with the previous distance measurement value D_sub stored in the memory D_sub and the current main amplification factor are performed. Using the distance value D, the current relative velocity Vr is calculated based on the following equation (11) '.

【0104】[0104]

【数6】 Vr=(D−D_sub)/ΔT …(11)´ ここで、前回のメイン増幅率から1段階変化させた増幅
率での測距から今回のメイン増幅率での測距までの経過
時間は測距動作の1周期であるので、ΔTである。
[Equation 6] Vr = (DD−sub) / ΔT (11) ′ Here, from the distance measurement with the amplification factor changed by one step from the previous main amplification factor to the distance measurement with the current main amplification factor. Since the elapsed time is one cycle of the distance measuring operation, it is ΔT.

【0105】相対速度演算部3fによって算出された相
対速度Vrは警報距離演算部3gに出力され、第1の実
施例と同じように式(2)に基づいて警報車間距離Dw
が算出され、警報発令判定部3hに与えられる。
The relative speed Vr calculated by the relative speed calculation unit 3f is output to the warning distance calculation unit 3g, and the warning inter-vehicle distance Dw is calculated based on the equation (2) as in the first embodiment.
Is calculated and given to the warning issuance determination unit 3h.

【0106】警報発令判定部3hでは、警報距離演算部
3gから入力される警報車間距離Dwと車間距離演算部
3cから入力される測距値(現車間距離)Dとを比較
し、現車間距離Dが警報車間距離Dwよりも小さければ
先行車に近づきすぎていると判断して警報発令指令を警
報ブザー5に出力し、車間距離警報を発報させて運転者
の注意を促す。
In the warning announcement determination unit 3h, the warning inter-vehicle distance Dw input from the warning distance calculation unit 3g is compared with the distance measurement value (current inter-vehicle distance) D input from the inter-vehicle distance calculation unit 3c, and the current inter-vehicle distance is compared. If D is smaller than the warning inter-vehicle distance Dw, it is determined that the vehicle is too close to the preceding vehicle, an alarm issuance command is output to the alarm buzzer 5, and an inter-vehicle distance alarm is issued to alert the driver.

【0107】以上の第2の実施例の一連の測距動作にお
ける相対速度演算処理を図5及び図6のフローチャート
に基づいて詳しく説明する。以下の処理では、前方車両
が存在し、それを自車両が追従走行している状況を起点
として説明する。
The relative velocity calculation process in the series of distance measuring operations of the above second embodiment will be described in detail with reference to the flowcharts of FIGS. 5 and 6. In the following processing, a situation in which a vehicle ahead is present and the vehicle is following and traveling will be described as a starting point.

【0108】前回測距動作と新たに実行される今回測距
動作とで受信増幅率の変更が無い場合、受信増幅率変更
フラグG_FLGの値は0(段階変化なし)であるの
で、メイン増幅率段階値GAINを変更しない(ステッ
プS31)。
When there is no change in the reception amplification factor between the previous distance measurement operation and the newly executed current distance measurement operation, the value of the reception amplification factor change flag G_FLG is 0 (no step change). The step value GAIN is not changed (step S31).

【0109】受信回路の受信増幅率をメイン増幅率GA
INに制御する(ステップS32)。そして前回測距動
作から時間ΔT(この測距周期は例えば、50msecに設
定され、タイマ管理によってタイミング調整がなされ
る)経過した後(ステップS33)、今回の測距動作を
実行する(ステップS34)。
The receiving gain of the receiving circuit is set to the main gain GA.
Control to IN (step S32). Then, after the time ΔT (the distance measuring cycle is set to, for example, 50 msec and the timing is adjusted by timer management) from the last distance measuring operation (step S33), the current distance measuring operation is executed (step S34). .

【0110】今回の測距動作で得られた測距値(車間距
離)、加算ピーク値をそれぞれメモリD、メモリPKに
保存する(ステップS35,S36)。
The distance measurement value (vehicle distance) and the added peak value obtained by the current distance measurement operation are stored in the memory D and the memory PK, respectively (steps S35 and S36).

【0111】今の場合、メイン増幅率に変更がないの
で、得られた測距値Dと前回の測距値D_main とから相
対速度VRをステップS39に示す式に基づいて演算
し、メモリVRに格納する(ステップS37,S3
9)。
In this case, since the main amplification factor is not changed, the relative velocity VR is calculated from the obtained distance measurement value D and the previous distance measurement value D_main based on the formula shown in step S39, and stored in the memory VR. Store (steps S37, S3
9).

【0112】続いて、得られた相対速度から車間距離が
接近傾向にあるか離脱傾向にあるかを判断し、接近傾向
にあればメイン増幅率に対して1段階下げた増幅率で測
距を行い、逆に離脱傾向にあればメイン増幅率に対して
1段階上げた増幅率で測距を行い、その測距値をメモリ
に保存する(ステップS40〜S45)。
Next, it is judged from the obtained relative speeds whether the inter-vehicle distance tends to approach or depart, and if there is an approach tendency, distance measurement is performed with an amplification factor that is one step lower than the main amplification factor. On the contrary, if there is a tendency to leave, distance measurement is performed with an amplification factor that is one step higher than the main amplification factor, and the distance measurement value is stored in memory (steps S40 to S45).

【0113】そのためにまず、メモリDの内容をD_mai
n に保存し(ステップS40)、相対速度VRの正負を
判定し(ステップS41)、離脱傾向にあるために相対
速度VRが+又は0であれば(相対速度が0の場合にも
離脱傾向にあるとする)増幅率を1段階上げるためにG
AIN+1に制御し(ステップS42)、逆に接近傾向
にあるために相対速度VRが−であれば増幅率を1段階
下げるためにGAIN−1に制御し(ステップS4
3)、ステップS34の前回測距動作から測距周期ΔT
が経過するのを待って(ステップS44)、測距動作を
行い(ステップS45)、この1段階受信増幅率を変化
させた状態での測距値をメモリD_subに保存する(ステ
ップS46)。
Therefore, first, the contents of the memory D are changed to D_mai.
It is stored in n (step S40), whether the relative speed VR is positive or negative is determined (step S41), and if the relative speed VR is + or 0 because there is a tendency to leave (even if the relative speed is 0, there is a tendency to leave. G) to increase the amplification rate by one step
AIN + 1 is controlled (step S42), and conversely, if the relative speed VR is-because of the approaching tendency, GAIN-1 is controlled to lower the amplification factor by one step (step S4).
3), distance measuring cycle ΔT from the last distance measuring operation in step S34
Is waited for (step S44), the distance measurement operation is performed (step S45), and the distance measurement value with the one-step reception amplification factor changed is stored in the memory D_sub (step S46).

【0114】次に加算ピーク値PKを所定範囲内に収め
るために、つまり、適正範囲下限値TH_L、適正範囲
上限値TH_Hとするときに、TH_L<PK<TH_
Hとなるようにメイン増幅率の変更制御を行う(ステッ
プS47〜S51)。
Next, in order to keep the added peak value PK within the predetermined range, that is, when the proper range lower limit value TH_L and the proper range upper limit value TH_H are set, TH_L <PK <TH_.
Change control of the main amplification factor is performed so that it becomes H (steps S47 to S51).

【0115】このためにまず、今回行った測距動作で得
られた加算ピーク値PKが適正範囲下限値TH_Lより
も小ならば、次回の相対速度算定のための測距動作でメ
イン増幅率を上げるためにG_FLGに値+1を格納す
る(ステップS47,S48)。逆に加算ピーク値PK
が適正範囲上限値TH_Hよりも大ならば、次回の相対
速度算定のための測距動作でメイン増幅率を下げるため
にG_FLGに値−1を格納する(ステップS47,S
49,S50)。そして、加算ピーク値PKが適正範囲
内であれば受信増幅率を変更する必要がないので、G_
FLGに値0を格納する(ステップS51)。
For this reason, first, if the added peak value PK obtained by the distance measuring operation performed this time is smaller than the proper range lower limit value TH_L, the main amplification factor is set in the distance measuring operation for the next relative speed calculation. The value +1 is stored in G_FLG to increase (steps S47 and S48). Conversely, the added peak value PK
Is larger than the appropriate range upper limit value TH_H, the value -1 is stored in G_FLG in order to lower the main amplification factor in the distance measuring operation for the next relative speed calculation (steps S47, S).
49, S50). If the added peak value PK is within the proper range, it is not necessary to change the reception amplification factor.
The value 0 is stored in FLG (step S51).

【0116】ここまで相対速度算出のための1周期とし
て、再びステップS31に戻り、新たな相対速度算定の
ための測距動作を開始する。
Up to this point, one cycle for calculating the relative speed is returned to step S31, and the distance measuring operation for calculating a new relative speed is started.

【0117】今、先行車に対する接近あるいは離脱に伴
い、受信増幅率の段階変化があった場合、前回測距周期
において加算ピーク値から判断された受信増幅率変更フ
ラグG_FLGの値に応じてメイン増幅率の段階値が格
納されているメモリGAINの値を変更し(ステップS
31)、受信回路の増幅率をこのメイン増幅率GAIN
に制御する(ステップS32)。
Now, if there is a step change in the reception amplification factor due to the approach or departure from the preceding vehicle, the main amplification is performed according to the value of the reception amplification factor change flag G_FLG determined from the added peak value in the previous distance measurement cycle. The value of the memory GAIN in which the step value of the rate is stored is changed (step S
31), the gain of the receiving circuit is set to the main gain GAIN
Control (step S32).

【0118】前回測距動作から時間ΔTが経過した後
(ステップS33)、新たな測距動作を行い(ステップ
S34)、得られた測距値、加算ピーク値をそれぞれメ
モリD、メモリPKに格納する(ステップS35,S3
6)。
After the time ΔT has passed since the last distance measuring operation (step S33), a new distance measuring operation is performed (step S34), and the obtained distance measuring value and added peak value are stored in the memory D and the memory PK, respectively. (Steps S35, S3
6).

【0119】ここでメイン増幅率が前回から1段階変更
されていれば、つまり受信増幅率変更フラグG_FLG
=0でなければ、今回測距値Dと前回周期に今回と同じ
増幅率で測距されたメモリD_subの値とを用いて、ステ
ップS38に示した演算式に基づいて相対速度VRを算
出し、メモリVRに格納する(ステップS37,S3
8)。
Here, if the main amplification factor is changed by one step from the previous time, that is, the reception amplification factor change flag G_FLG.
If it is not = 0, the relative velocity VR is calculated based on the arithmetic expression shown in step S38 using the current distance measurement value D and the value of the memory D_sub measured at the same amplification factor as the current cycle in the previous cycle. , Memory VR (steps S37, S3)
8).

【0120】続いて、さらに次回周期の相対速度演算の
ためにメイン増幅率による測距値と共に、相対速度の正
負に応じてメイン増幅率より1段階上あるいは下の増幅
率での測距値を求め、メモリD_subに格納する(ステッ
プS40〜S46)。そして、加算ピーク値の適正を判
断し、不適正であれば再度受信増幅率を変更し、適正で
あれば受信増幅率をそのままとする手当を行い、ステッ
プS31に戻って次回周期の測距を行うことになる(ス
テップS47〜S51)。
Then, the distance measurement value based on the main amplification factor is calculated for the relative speed calculation in the next cycle, and the distance measurement value at the amplification ratio one step higher or lower than the main amplification factor according to whether the relative speed is positive or negative. It is obtained and stored in the memory D_sub (steps S40 to S46). Then, the adequacy of the added peak value is judged, and if it is improper, the reception amplification factor is changed again, and if it is adequate, an allowance is made to leave the reception amplification factor as it is. It will be performed (steps S47 to S51).

【0121】こうして、第2の実施例によれば、先行車
の車間距離が走行中に変化し、受信回路の増幅率を自動
変更する必要が生じ、受信増幅率の変更前後でその受信
増幅率による測距値に誤差が生じることがあっても、受
信増幅率の変更後も前回の相対速度演算周期に変更後の
受信増幅率と同じ受信増幅率で測距した値が得られてい
るので、同じ受信増幅率での前回測距値と今回測距値を
用いて相対速度を演算することができるようになり、正
確な相対速度が得られ、したがってこれに基づいて演算
される警報距離も精度の高いものとなり、車間距離警報
の信頼性を高くすることできる。
As described above, according to the second embodiment, the inter-vehicle distance of the preceding vehicle changes while the vehicle is running, and it is necessary to automatically change the amplification factor of the reception circuit. The reception amplification factor before and after the reception amplification factor is changed. Even if there is an error in the distance measurement value due to, even if the reception amplification rate is changed, the value obtained with the same reception amplification rate as the reception amplification rate after the change to the previous relative speed calculation cycle is obtained. , It becomes possible to calculate the relative speed by using the previous distance measurement value and the current distance measurement value with the same reception amplification rate, and the accurate relative speed can be obtained. Therefore, the alarm distance calculated based on this can also be calculated. The accuracy becomes high and the reliability of the inter-vehicle distance warning can be increased.

【0122】しかもこの第2の実施例の場合には、1回
の相対速度の算出のためにメイン増幅率とそれよりも1
段階上あるいは下に変化させた増幅率とで2回ずつ測距
すればよいので、第1の実施例のように3回ずつ測距す
る場合の応答時間よりも短くすることができる。
In addition, in the case of the second embodiment, the main amplification factor and 1 are used to calculate the relative speed once.
Since it suffices to measure the distance twice each with the amplification factor changed up or down, the response time can be made shorter than the response time when the distance is measured three times as in the first embodiment.

【0123】次に、請求項3の発明の一実施例を図7〜
図9に基づいて説明する。図1に示した第1の実施例で
は適正受信増幅率の変更時のその前後でも同じ増幅率の
測距値を用いて相対速度が算出できるように毎回の相対
速度測定周期ごとにメイン増幅率での測距と共にその上
下1段階ずつ変更した増幅率での測距との合計3回の測
距を行うようにしていたのを、この第3の実施例では、
信号出力レベルを可変調整する機能を備えた送光回路に
おいて、適正信号出力レベルを変更してもその変更前後
でも同じ信号出力レベルでの測距値を用いて相対速度が
算出できるように毎回の相対速度測定周期ごとに適正出
力レベルでの測距と共にそれよりも1段階下げ、また上
げた出力レベルでの測距との合計3回の測距を行うこと
を特徴とする。
Next, one embodiment of the invention of claim 3 will be described with reference to FIGS.
This will be described with reference to FIG. In the first embodiment shown in FIG. 1, the main amplification factor is calculated every relative velocity measurement cycle so that the relative velocity can be calculated using the distance measurement value of the same amplification factor before and after the change of the proper reception amplification factor. In the third embodiment, the distance measurement is performed at a total of three times together with the distance measurement with the amplification factor changed by one step above and below.
In the light transmission circuit with the function of variably adjusting the signal output level, the relative speed can be calculated each time using the distance measurement value at the same signal output level before and after changing the appropriate signal output level. It is characterized by performing the distance measurement at the proper output level for each relative speed measurement cycle, lowering it by one step, and measuring the distance at the increased output level for a total of three times.

【0124】したがって、回路構成の大部分は図1に示
した第1の実施例と共通し、その共通する部分には同一
の符号を付して示してあるが、距離センサヘッド1と車
間距離演算部3の内部構成に若干の変更がある。つまり
距離センサヘッド1は、LEDまたはレーザ発光ダイオ
ードで構成され、光信号を前方に送出する送光部1a
と、この送光部1aを一定周期ごとに一定パルス幅ずつ
発光させ、かつその発光出力レベルを段階的に可変調整
できる出力調整機能付の駆動回路1b´と、光信号を受
信して電気信号に変換して出力するフォトダイオードで
構成され、送光部1aからの光信号が前方の物標に反射
して返って来る方向からの光信号を連続的に受光する受
光部1cと、この受光部1cの信号を増幅する信号増幅
回路1d´と、前記駆動回路1b´の出力調整のために
駆動電流の段階的制御を行う駆動電流制御回路1fから
構成されている。
Therefore, most of the circuit structure is common to that of the first embodiment shown in FIG. 1, and the common parts are designated by the same reference numerals. There is a slight change in the internal configuration of the calculation unit 3. That is, the distance sensor head 1 is composed of an LED or a laser light emitting diode, and is a light transmitting unit 1a that forwards an optical signal.
And a drive circuit 1b 'with an output adjusting function capable of causing the light transmitting section 1a to emit light with a constant pulse width at a constant cycle and variably adjusting the light emission output level in a stepwise manner, and receiving an optical signal to receive an electrical signal. A light receiving section 1c which is composed of a photodiode which converts the light into a light and outputs the light signal from the light transmitting section 1a, which continuously receives the light signal from the direction in which the light signal is reflected and returned to the target in front, and the light receiving section 1c It is composed of a signal amplifier circuit 1d 'for amplifying the signal of the section 1c and a drive current control circuit 1f for stepwise controlling the drive current for adjusting the output of the drive circuit 1b'.

【0125】また車間距離演算部3はコンピュータで構
成されるが、演算処理ごとに機能分解して示すと、測距
処理順序を統括して各部に制御信号を与える測距順序制
御部3aと、光信号の送出タイミング制御、受光信号の
処理タイミングを制御する信号処理制御部3bと、車間
距離演算を行う車間距離演算部3cと、送光信号の信号
出力レベルの変更の必要性を判断する駆動電流変更判断
部3jと、各種の測距データを保存するメモリ3eと、
相対速度を演算する相対速度演算部3fと、車速センサ
4からの車速、相対速度演算部3fからの相対速度に基
づいて警報距離を演算する警報距離演算部3gと、この
警報距離演算部3gが求める警報距離と車間距離演算部
3cが求める現車間距離とを比較して警報発令の必要性
を判定し、警報ブザー5の発報を制御する警報発令判定
部3hから構成されている。
The inter-vehicle distance calculation unit 3 is composed of a computer. When the functions of each calculation process are decomposed and shown, the distance measurement order control unit 3a which controls the distance measurement process sequence and gives a control signal to each unit, A signal processing control unit 3b that controls the timing of transmitting an optical signal and a processing timing of a received light signal, an inter-vehicle distance calculating unit 3c that performs an inter-vehicle distance calculation, and a drive that determines the necessity of changing the signal output level of the light transmission signal. A current change determination unit 3j, a memory 3e for storing various ranging data,
The relative speed calculator 3f for calculating the relative speed, the alarm distance calculator 3g for calculating the alarm distance based on the vehicle speed from the vehicle speed sensor 4 and the relative speed from the relative speed calculator 3f, and the alarm distance calculator 3g. An alarm issue determination unit 3h is configured to compare the required alarm distance with the current inter-vehicle distance determined by the inter-vehicle distance calculation unit 3c to determine the necessity of issuing an alarm and control the alarm buzzer 5 to issue an alarm.

【0126】なお、信号処理部2と車速センサ4、警報
ブザー5の部分は第1、第2の実施例と同じである。
The signal processing unit 2, the vehicle speed sensor 4, and the alarm buzzer 5 are the same as those in the first and second embodiments.

【0127】次に、上記構成の第3の実施例の車間距離
監視装置の動作について説明する。車間距離演算部3の
測距順序制御部3aの指令に基づき、信号処理制御部3
bから信号処理部2に測距指令が与えられ、信号処理部
2は距離センサヘッド1の駆動回路1b´を起動して1
回の測距動作中に所定回数N回、所定周期で一定パルス
幅の駆動信号を送光部1aに与え、送光部1aから前方
に所定回数N回、所定周期で一定パルス幅の光信号が送
出される。このとき駆動回路1b´による送光部1aの
駆動電流は駆動電流制御回路1fによって適正な値に制
御される。
Next, the operation of the inter-vehicle distance monitoring system of the third embodiment having the above construction will be described. Based on a command from the ranging order control unit 3a of the inter-vehicle distance calculation unit 3, the signal processing control unit 3
A distance measurement command is given to the signal processing unit 2 from b, and the signal processing unit 2 activates the drive circuit 1b ′ of the distance sensor head 1 to
A drive signal having a constant pulse width is given to the light transmitting section 1a a predetermined number of times N times during the distance measurement operation, and an optical signal having a constant pulse width is given a predetermined number of times N times forward from the light transmitting section 1a. Is sent. At this time, the drive current of the light transmitting unit 1a by the drive circuit 1b 'is controlled to an appropriate value by the drive current control circuit 1f.

【0128】一方、受光部1cは連続的に前方からの光
信号を受光している。そしてその受光信号に前方の物標
である先行車からの反射信号が含まれていない場合、つ
まり前方に車両がない場合には、ノイズレベルの光信号
を受光し、電気信号に変換して信号増幅回路1d´に出
力し、ここで増幅されて信号処理部2に出力される。し
かしながら、この場合、受光信号はノイズレベルである
ので、信号処理部2で2値化される信号は“0”と
“1”がほぼ同じ確率で現れる信号であり、その2値化
信号を送光タイミングと同期して所定回数N回だけ各サ
ンプリング点ごとに加算処理しても各サンプリング点の
加算値はほぼN/2のノイズレベルとなり、車間距離は
得られない。
On the other hand, the light receiving section 1c continuously receives optical signals from the front. When the received light signal does not include the reflected signal from the preceding vehicle, which is the target in the front, that is, when there is no vehicle ahead, the optical signal at the noise level is received and converted into an electric signal. The signal is output to the amplifier circuit 1d ′, amplified here and output to the signal processing unit 2. However, in this case, since the received light signal has a noise level, the signal binarized by the signal processing unit 2 is a signal in which “0” and “1” appear at almost the same probability, and the binarized signal is transmitted. Even if the addition processing is performed for each sampling point N times a predetermined number of times in synchronization with the optical timing, the added value at each sampling point becomes a noise level of approximately N / 2, and the inter-vehicle distance cannot be obtained.

【0129】しかしながら、前方に車両が存在し、送光
信号がその先行車に反射して返って来る光信号が受光部
1cで受光される場合、信号処理部2で2値化処理し、
同期加算処理して得られる加算値レベル特性は、図14
のb4のようなものとなる。
However, when there is a vehicle ahead and the light signal reflected by the preceding vehicle and returned is received by the light receiving section 1c, the signal processing section 2 performs binarization processing,
The added value level characteristic obtained by the synchronous addition processing is shown in FIG.
B4.

【0130】そしてこの加算値データは車間距離演算部
3cに出力され、図14に基づいて従来例で説明したよ
うに、加算ピーク値を示すサンプリング点を求め、その
加算ピーク値を示すサンプリング点の周囲4点の加算値
データv1,v2,v3,v4から従来例と同じように
ピーク点Aを求め、それに対応する距離点Bを割出し、
現送光信号出力レベルPn(以下、メイン出力レベルと
いう)での測距値(車間距離)として一時的にメモリ3
eのメモリD_hold に保存する。これと共に、その測距
値は相対速度演算部3fにも出力される。なお、メモリ
D_hold はシフトレジスタのように少なくとも2回分の
データが保存でき、新たなデータの書込みがあれば、直
前に書込まれたデータが前回分のデータとしてシフトさ
れるものとする。後述するメモリD_down 、メモリD_u
p についても同様である。
This added value data is output to the inter-vehicle distance calculation unit 3c, and as described in the conventional example based on FIG. 14, the sampling point indicating the added peak value is obtained, and the sampling point indicating the added peak value is calculated. The peak point A is obtained from the added value data v1, v2, v3, v4 of four surrounding points in the same manner as in the conventional example, and the distance point B corresponding to the peak point A is calculated.
The memory 3 is temporarily stored as the distance measurement value (inter-vehicle distance) at the current light transmission signal output level Pn (hereinafter referred to as the main output level).
It is stored in the memory D_hold of e. At the same time, the measured distance value is also output to the relative speed calculation unit 3f. It is assumed that the memory D_hold can store data for at least two times like a shift register, and if new data is written, the data written immediately before is shifted as the data for the previous time. Memory D_down and memory D_u described later
The same is true for p.

【0131】あるメイン出力レベルPnでの測距動作が
終了したタイミングで、測距順序制御部3aは駆動電流
制御回路1fにメイン出力レベルPnから1段階下げた
出力レベルPn-1 に変更する指令を与え、同時に信号処
理制御部3bに次の測距動作指令を与えることによって
次回の測距動作を実行し、メイン出力レベルPnから1
段階下げた出力レベルPn-1 での同期加算値データから
車間距離演算部3cが車間距離を求めてメモリ3eのメ
モリD_down に保存する。
At the timing when the distance measuring operation at a certain main output level Pn is completed, the distance measuring order control unit 3a instructs the drive current control circuit 1f to change the main output level Pn to the output level Pn-1 which is one step lower. And at the same time the next distance measuring operation command is given to the signal processing control unit 3b, the next distance measuring operation is executed, and the main output level Pn becomes 1
The inter-vehicle distance calculation unit 3c obtains the inter-vehicle distance from the synchronous added value data at the step-down output level Pn-1 and stores it in the memory D_down of the memory 3e.

【0132】測距順序制御部3aは次に、駆動電流制御
回路1fにメイン出力レベルPnから1段階上げた出力
レベルPn+1 に変更する指令を与え、同時に信号処理制
御部3bに次の測距動作指令を与えることによって次々
回の測距動作を実行し、メイン出力レベルPnから1段
階上げた出力レベルPn+1 での同期加算値データから車
間距離演算部3cが車間距離を求めてメモリ3eのメモ
リD_up に保存する。
The distance measurement sequence control section 3a then gives a command to the drive current control circuit 1f to change from the main output level Pn to the output level Pn + 1 increased by one step, and at the same time, the signal processing control section 3b receives the next measurement. A distance measurement operation is executed one after another by giving a distance operation command, and the vehicle distance calculation unit 3c obtains the vehicle distance from the synchronous addition value data at the output level Pn + 1 which is one step higher than the main output level Pn, and the memory 3e is obtained. Save to memory D_up of.

【0133】以上のメイン出力レベルPnでの測距動作
とそれよりも1段階下の出力レベルPn-1 、1段階上の
出力レベルPn+1 それぞれでの測距動作との合計3回の
測距動作が1回の相対速度算定のために繰返し実行され
る。
The distance measurement operation at the main output level Pn and the output level Pn-1 which is one step lower than that, and the distance measurement operation at the output level Pn + 1 which is one step lower than that are performed three times in total. The distance operation is repeatedly executed for one relative velocity calculation.

【0134】1回の相対速度演算のための合計3回の測
距動作において、車間距離演算部3cが求めたメイン出
力レベルPnでの加算値データのピーク値は駆動電流変
更判断部3jにも出力され、ここで加算ピーク値を適正
範囲と比較し、適正範囲を超えていれば加算値データが
飽和しているとして信号出力レベルを1段階下げる指令
を駆動電流制御回路1fに出力し、逆に適正範囲よりも
低ければ信号出力レベルを1段階上げる指令を駆動電流
制御回路1fに出力する。
In a total of three distance measuring operations for one relative speed calculation, the peak value of the additional value data at the main output level Pn obtained by the inter-vehicle distance calculating section 3c is also supplied to the drive current change judging section 3j. The output peak value is compared with the appropriate range, and if it exceeds the appropriate range, it is determined that the additional value data is saturated, and a command to decrease the signal output level by one step is output to the drive current control circuit 1f, and the reverse operation is performed. If it is lower than the proper range, a command to increase the signal output level by one step is output to the drive current control circuit 1f.

【0135】そしてメイン出力レベルが適正範囲であっ
て変更が必要でないと判断された場合には、新たな1組
3回の測距動作が開始されたとき、車間距離演算部3c
は現出力レベルPnでの新たな測距値(車間距離)Dを
メモリD_hold に保存すると共に、相対速度演算部3f
にも出力する。
When it is determined that the main output level is within the proper range and does not need to be changed, when a new set of three distance measuring operations is started, the following distance calculation unit 3c is started.
Stores a new distance measurement value (inter-vehicle distance) D at the current output level Pn in the memory D_hold, and at the same time, the relative speed calculation unit 3f
Also output.

【0136】相対速度演算部3fは新たに測距値が入力
されると、メモリ3e内のメモリD_hold に保存されて
いる前回の測距値を呼出し、今回の測距値との差から前
方の物標(先行車)との間の相対速度を算出して警報距
離演算部3gに出力する。
When a new distance measurement value is input, the relative speed calculation unit 3f calls the previous distance measurement value stored in the memory D_hold in the memory 3e, and detects the difference from the current distance measurement value to the front. The relative speed with respect to the target (preceding vehicle) is calculated and output to the alarm distance calculation unit 3g.

【0137】この相対速度演算部3fにおける相対速度
演算式は、第1の実施例において示した式(1)が用い
られる。
As the relative speed calculation formula in the relative speed calculation unit 3f, the formula (1) shown in the first embodiment is used.

【0138】しかしながら、ある測距動作で得られた同
期加算ピーク値が適正範囲から逸脱していて、駆動電流
変更判断部3jがメイン出力レベルを1段階下げ、ある
いは上げる指令を駆動電流制御回路1fに出力したとき
には、その出力レベル変更指令は相対速度演算部3fに
も与えられる。
However, the synchronous addition peak value obtained by a certain distance measuring operation deviates from the proper range, and the drive current change judging section 3j issues a command to lower or raise the main output level by one step. When the output is output to, the output level change command is also given to the relative speed calculator 3f.

【0139】そして出力レベルの変更指令が出力された
ときには、駆動電流制御回路1fがその変更指令に基づ
いて駆動回路1b´の信号出力レベルを1段階下げ、あ
るいは上げる制御を行う。そして新たに上記の1組3回
の測距動作が開始され、その測距結果はメモリ3e内の
メモリD_hold ,D_down ,D_up それぞれに新たな測
距値として保存される。
When the output level change command is output, the drive current control circuit 1f performs control to lower or increase the signal output level of the drive circuit 1b 'by one step based on the change command. Then, the above-mentioned one set of three distance measuring operations are newly started, and the distance measuring results are stored as new distance measuring values in the memories D_hold, D_down, and D_up in the memory 3e.

【0140】この出力レベル変更後の1組3回の測距動
作が終了すれば、相対速度演算部3fは車間距離演算部
3cが求める新たなメイン出力レベルでの測距値Dと、
そのメイン出力レベルが前回より1段階下げられたもの
であればメモリD_down に保存されている前回の測距値
とを用いて、前述の式(1)´に基づいて相対速度が算
出される。逆に今回の測距でメイン出力レベルが前回よ
り1段階上げられたものであれば、新たなメイン出力レ
ベルでの測距値と、メモリD_up に保存されている前回
の測距値とを用いて、前述の式(1)″に基づき、相対
速度を算出する。
When the one set of three distance measuring operations after the output level change is completed, the relative speed calculation unit 3f calculates the distance measurement value D at the new main output level obtained by the inter-vehicle distance calculation unit 3c,
If the main output level is one step lower than the previous one, the relative speed is calculated based on the above equation (1) 'using the previous distance measurement value stored in the memory D_down. On the contrary, if the main output level is one step higher than the previous one in the current distance measurement, the distance measurement value at the new main output level and the previous distance measurement value stored in the memory D_up are used. Then, the relative speed is calculated based on the above-mentioned formula (1) ″.

【0141】こうして相対速度演算部3fによって算出
された相対速度は警報距離演算部3gに出力され、ここ
で前述の式(2)に基づく警報車間距離Dwが算出さ
れ、警報発令判定部3hに与えられる。
The relative speed thus calculated by the relative speed calculation unit 3f is output to the warning distance calculation unit 3g, where the warning inter-vehicle distance Dw is calculated based on the above equation (2) and given to the warning issuance determination unit 3h. To be

【0142】警報発令判定部3hでは、警報距離演算部
3gから入力される警報車間距離Dwと車間距離演算部
3cから入力される測距値(現車間距離)Dとを比較
し、現車間距離Dが警報車間距離Dwよりも小さければ
先行車に近づきすぎていると判断して警報発令指令を警
報ブザー5に出力し、車間距離警報を発報させて運転者
の注意を促す。
In the warning issuing determination unit 3h, the warning inter-vehicle distance Dw input from the warning distance calculation unit 3g and the distance measurement value (current inter-vehicle distance) D input from the inter-vehicle distance calculation unit 3c are compared to determine the current inter-vehicle distance. If D is smaller than the warning inter-vehicle distance Dw, it is determined that the vehicle is too close to the preceding vehicle, an alarm issuance command is output to the alarm buzzer 5, and an inter-vehicle distance alarm is issued to alert the driver.

【0143】以上の一連の測距動作における相対速度演
算処理を図8及び図9のフローチャートに基づいて詳し
く説明する。以下の処理では、前方車両が存在し、それ
を自車両が追従走行している状況を起点として説明す
る。
The relative velocity calculation processing in the series of distance measuring operations described above will be described in detail with reference to the flowcharts of FIGS. 8 and 9. In the following processing, a situation in which a vehicle ahead is present and the vehicle is following and traveling will be described as a starting point.

【0144】前回測距動作と新たに実行される今回測距
動作とで出力レベルの変更が無い場合、出力レベル変更
フラグL_FLGの値は0(段階変化なし)であるの
で、メイン出力レベル段階値LEVELを変更しない
(ステップS61)。
When there is no change in the output level between the previous distance measuring operation and the newly executed current distance measuring operation, the value of the output level change flag L_FLG is 0 (no step change), so the main output level step value LEVEL is not changed (step S61).

【0145】送光回路の出力レベルをメイン出力レベル
LEVELに制御する(ステップS62)。そして前回
測距動作から時間ΔT(この測距周期は例えば、50ms
ecに設定され、タイマ管理によってタイミング調整がな
される)経過した後(ステップS63)、今回の測距動
作を実行する(ステップS64)。
The output level of the light transmitting circuit is controlled to the main output level LEVEL (step S62). The time ΔT from the last distance measurement operation (this distance measurement cycle is, for example, 50 ms
After ec is set and the timing is adjusted by timer management (step S63), the current distance measuring operation is executed (step S64).

【0146】今回の測距動作で得られた測距値(車間距
離)、加算ピーク値をそれぞれメモリD、メモリPKに
保存する(ステップS65,S66)。
The distance measurement value (vehicle distance) and the added peak value obtained by the distance measurement operation this time are stored in the memory D and the memory PK, respectively (steps S65 and S66).

【0147】今の場合、メイン出力レベルに変更がない
ので、得られた測距値Dと前回の測距値D_hold とから
相対速度VRをステップS71に示す式に基づいて演算
し、メモリVRに格納する(ステップS67,S69,
S71)。
In this case, since the main output level is not changed, the relative speed VR is calculated from the obtained distance measurement value D and the previous distance measurement value D_hold based on the formula shown in step S71, and stored in the memory VR. Store (steps S67, S69,
S71).

【0148】続いて、次回の相対速度演算のために、今
回のメイン出力レベルに対して1段階下げ、また上げた
出力レベルそれぞれで測距を行い、それらの測距値をメ
モリに保存する(ステップS72〜S80)。
Then, for the next relative velocity calculation, the distance is measured at each of the output levels raised or lowered by one step with respect to the main output level of this time, and the distance measurement values are stored in the memory ( Steps S72 to S80).

【0149】そのためにまず、メモリDの内容をD_hol
d に保存し(ステップS72)、送光回路の出力レベル
を1段階下げて出力レベルLEVEL−1に制御し(ス
テップS73)、ステップS64の前回測距動作から測
距周期ΔTが経過するのを待って(ステップS74)、
測距動作を行い(ステップS75)、この1段階出力レ
ベルを下げた状態での測距値をメモリD_down に保存す
る(ステップS76)。
For that purpose, first, the contents of the memory D are changed to D_hol.
The value is stored in d (step S72), the output level of the light transmitting circuit is lowered by one step to control the output level LEVEL-1 (step S73), and the distance measurement period ΔT elapses from the previous distance measurement operation of step S64. Wait (step S74),
A distance measurement operation is performed (step S75), and the distance measurement value with the one-step output level lowered is stored in the memory D_down (step S76).

【0150】続いて、送光回路の出力レベルをメイン出
力レベルLEVELから1段階上げた出力レベルLEV
EL+1に制御し(ステップS77)、同様にしてステ
ップS75の前回測距動作から測距周期ΔTが経過する
のを待って(ステップS78)、測距動作を行い(ステ
ップS79)、この1段階出力レベルを上げた状態での
測距値をメモリD_up に保存する(ステップS80)。
Subsequently, the output level LEV obtained by raising the output level of the light transmitting circuit by one step from the main output level LEVEL.
EL + 1 is controlled (step S77), and similarly, waiting for the distance measurement period ΔT to elapse from the previous distance measurement operation of step S75 (step S78), the distance measurement operation is performed (step S79), and this one-stage output is performed. The distance measurement value with the level raised is stored in the memory D_up (step S80).

【0151】次に加算ピーク値PKを所定範囲内に納め
るために、つまり、適正範囲下限値TH_L、適正範囲
上限値TH_Hとするときに、TH_L<PK<TH_
Hとなるようにメイン出力レベルの変更制御を行う(ス
テップS81〜S85)。
Next, in order to keep the added peak value PK within the predetermined range, that is, when the proper range lower limit value TH_L and the proper range upper limit value TH_H are set, TH_L <PK <TH_.
The main output level is controlled to be changed to H (steps S81 to S85).

【0152】このためにまず、今回行った測距動作で得
られた加算ピーク値PKが適正範囲下限値TH_Lより
も小ならば、次回の相対速度算定のための測距動作でメ
イン出力レベルを上げるためにL_FLGに値+1を格
納する(ステップS81,S82)。逆に加算ピーク値
PKが適正範囲上限値TH_Hよりも大ならば、次回の
相対速度算定のための測距動作でメイン出力レベルを下
げるためにL_FLGに値−1を格納する(ステップS
81,S83,S84)。そして、加算ピーク値PKが
適正範囲内であれば出力レベルを変更する必要がないの
で、L_FLGに値0を格納する(ステップS85)。
For this reason, first, if the added peak value PK obtained by the distance measuring operation performed this time is smaller than the proper range lower limit value TH_L, the main output level is set in the distance measuring operation for the next relative speed calculation. The value +1 is stored in L_FLG to increase (steps S81 and S82). On the contrary, if the added peak value PK is larger than the appropriate range upper limit value TH_H, the value -1 is stored in L_FLG in order to lower the main output level in the distance measuring operation for the next relative speed calculation (step S).
81, S83, S84). If the added peak value PK is within the proper range, it is not necessary to change the output level, so the value 0 is stored in L_FLG (step S85).

【0153】ここまでを相対速度算出のための1周期と
して、再びステップS61に戻り、新たな相対速度算定
のための測距動作を開始する。
The processing up to this point is regarded as one cycle for calculating the relative speed, and the process returns to step S61 again to start the distance measuring operation for calculating the new relative speed.

【0154】今、先行車に対する接近あるいは離脱に伴
い、出力レベルの段階変化があった場合、前回測距周期
において加算ピーク値から判断された出力レベル変更フ
ラグL_FLGの値に応じてメイン出力レベルの段階値
が格納されているメモリLEVELの値を変更し(ステ
ップS61)、送光回路の出力レベルをこのメイン出力
レベルLEVELに制御する(ステップS62)。
If there is a step change in the output level due to the approaching or leaving of the preceding vehicle, the main output level of the main output level is changed according to the value of the output level change flag L_FLG determined from the added peak value in the previous distance measurement cycle. The value of the memory LEVEL in which the step value is stored is changed (step S61), and the output level of the light transmitting circuit is controlled to this main output level LEVEL (step S62).

【0155】前回測距動作から時間ΔTが経過した後
(ステップS63)、新たな測距動作を行い(ステップ
S64)、得られた測距値、加算ピーク値をそれぞれメ
モリD、メモリPKに格納する(ステップS65,S6
6)。
After the time ΔT has elapsed from the last distance measuring operation (step S63), a new distance measuring operation is performed (step S64), and the obtained distance measuring value and added peak value are stored in the memory D and the memory PK, respectively. (Steps S65, S6
6).

【0156】ここでメイン出力レベルが前回よりも1段
階下げられていれば、つまり出力レベル変更フラグL_
FLG=−1であれば、今回測距値Dと前回周期に今回
と同じ出力レベルで測距されたメモリD_down の値とを
用いて、ステップS68に示した演算式に基づいて相対
速度を算出し、メモリVRに格納する(ステップS6
7,S68)。逆に、メイン出力レベルが前回よりも1
段階上げられていれば、つまり出力レベル変更フラグL
_FLG=+1であれば、今回測距値Dと前回周期に今
回と同じ出力レベルで測距されたメモリD_up の値とを
用いて、ステップS70に示した演算式に基づいて相対
速度を算出し、メモリVRに格納する(ステップS6
9,S70)。
If the main output level is lowered by one step from the previous time, that is, the output level change flag L_
If FLG = -1, the relative speed is calculated based on the arithmetic expression shown in step S68 using the current distance measurement value D and the value of the memory D_down measured at the same output level as this time in the previous cycle. And stores it in the memory VR (step S6).
7, S68). Conversely, the main output level is 1 more than the previous time
If it is stepped up, that is, the output level change flag L
If _FLG = + 1, the relative speed is calculated based on the calculation formula shown in step S70 using the current distance measurement value D and the value of the memory D_up measured at the same output level as this time in the previous cycle. , Memory VR (step S6)
9, S70).

【0157】続いて、さらに次回周期の相対速度演算の
ためにメイン出力レベルによる測距値と共に、メイン出
力レベルより1段階下げ、また上げた各出力レベルでの
測距値を求め、それぞれメモリD_hold 、メモリD_dow
n 、メモリD_up に格納する(ステップS72〜S8
0)。そして、加算ピーク値の適正を判断し、不適正で
あれば再度出力レベルを変更し、適正であれば出力レベ
ルをそのままとする手当を行い、ステップS61に戻っ
て次回周期の測距を行うことになる(ステップS81〜
S85)。
Then, the distance measurement value at the main output level is lowered by one step and the distance measurement value at each output level raised for the relative speed calculation in the next cycle is calculated, and the distance measurement value at each output level is calculated. , Memory D_dow
n, stored in the memory D_up (steps S72 to S8)
0). Then, the adequacy of the added peak value is judged, if it is improper, the output level is changed again, and if it is adequate, an allowance is made to leave the output level as it is, and the process returns to step S61 to perform distance measurement in the next cycle. (Steps S81-
S85).

【0158】こうして、第3の実施例によれば、先行車
の車間距離が走行中に変化し、送光回路の出力レベルを
自動変更する必要が生じ、出力レベルの変更前後でその
出力レベルによる測距値に誤差が生じることがあって
も、出力レベルの変更後も前回の相対速度演算周期に変
更後の出力レベルと同じ出力レベルで測距した値が得ら
れているので、同じ出力レベルでの前回測距値と今回測
距値を用いて相対速度を演算することができるようにな
り、正確な相対速度が得られ、したがってこれに基づい
て演算される警報距離も精度の高いものとなり、車間距
離警報の信頼性を高くすることできる。
Thus, according to the third embodiment, the inter-vehicle distance of the preceding vehicle changes during traveling, and it becomes necessary to automatically change the output level of the light transmitting circuit. Even if there is an error in the distance measurement value, the value measured at the same output level as the output level after the change to the previous relative speed calculation cycle is obtained even after the output level is changed. It is now possible to calculate the relative speed using the previous distance measurement value and the current distance measurement value, and the accurate relative speed can be obtained. Therefore, the alarm distance calculated based on this can be highly accurate. The reliability of the inter-vehicle distance warning can be increased.

【0159】次に、請求項4の発明の一実施例を図10
〜図12に基づいて説明する。この実施例の車間距離監
視装置は、送光信号の信号出力レベルを増減制御し、そ
の出力レベル変更前後で得られた測距値を用いて相対速
度を算出する際にも正確な値を得るために、車間距離が
接近傾向にあるときにはメイン出力レベルでの測距時に
それよりも1段階小さくした出力レベルでも測距し、逆
に車間距離が離脱傾向にあるときにはメイン出力レベル
での測距時にそれよりも1段階大きくした出力レベルで
も測距して保存しておき、次回の出力レベル変更後の測
距動作で相対速度を算出するときには、今回の出力レベ
ルと同じ出力レベルの前回の測距値を用いて演算するこ
とを特徴とするものである。
Next, an embodiment of the invention of claim 4 is shown in FIG.
~ It demonstrates based on FIG. The inter-vehicle distance monitoring apparatus of this embodiment controls the signal output level of the light transmission signal to increase or decrease, and obtains an accurate value even when calculating the relative speed using the distance measurement values obtained before and after the output level change. Therefore, when the inter-vehicle distance tends to approach, the distance is measured at the main output level even when the output level is one step smaller than that at the main output level, and conversely when the inter-vehicle distance tends to leave, the distance is measured at the main output level. Sometimes, even if the output level is increased by one step, the distance is measured and saved, and when calculating the relative speed in the distance measurement operation after the next output level change, the previous measurement of the same output level as the current output level is performed. The feature is that calculation is performed using a distance value.

【0160】この実施例の車間距離監視装置は図10に
示す構成であり、大部分は図7に示した第3の実施例と
共通し、その共通する部分には同一の符号を付して示し
てあるが、車間距離演算部3の内部構成に若干の変更が
ある。つまり、測距処理順序を統括して各部に制御信号
を与える測距順序制御部3aがメイン出力レベルでの測
距動作の後に駆動電流制御回路1fに車間距離の接近傾
向、離脱傾向を判定して出力レベルを1段階下、又は上
に変更させて測距動作を行う機能を有している。そし
て、各種の測距データを保存するメモリ3eはメイン出
力レベルでの測距値を保存するメモリD_main と出力レ
ベルを1段階上、または下いずれかに1段階変更して測
距して得た測距値を保存するメモリD_subとを有してい
る。
The inter-vehicle distance monitoring system of this embodiment has the structure shown in FIG. 10, and most of it is common to the third embodiment shown in FIG. 7, and the common parts are designated by the same reference numerals. Although shown, there is a slight change in the internal configuration of the inter-vehicle distance calculation unit 3. That is, the distance measurement order control unit 3a, which controls the distance measurement processing sequence and gives a control signal to each unit, determines to the driving current control circuit 1f whether the inter-vehicle distance is approaching or leaving after the distance measuring operation at the main output level. It has a function of changing the output level by one step or up to perform the distance measuring operation. The memory 3e for storing various distance measurement data is obtained by changing the memory D_main for storing the distance measurement value at the main output level and the output level by one step up or down. It has a memory D_sub for storing distance measurement values.

【0161】次に、この第4の実施例の車間距離監視装
置の動作について説明する。車間距離演算部3の測距順
序制御部3aの指令に基づき、信号処理制御部3bから
信号処理部2に測距指令が与えられ、信号処理部2は距
離センサヘッド1の駆動回路1b´を制御して1回の測
距動作中に所定回数N回、所定周期で一定パルス幅の駆
動信号を送光部1aに与え、送光部1aから前方に所定
回数N回、所定周期で一定パルス幅の光信号が送出され
る。
Next, the operation of the inter-vehicle distance monitoring system of the fourth embodiment will be described. Based on the command from the distance measurement order control unit 3a of the inter-vehicle distance calculation unit 3, the signal processing control unit 3b gives a distance measurement command to the signal processing unit 2, and the signal processing unit 2 drives the drive circuit 1b ′ of the distance sensor head 1. A driving signal having a constant pulse width is given to the light transmitting section 1a a predetermined number of times N times during one distance measuring operation by controlling, and a predetermined number of times N times of constant pulses are transmitted forward from the light transmitting section 1a at a predetermined period. The width of the optical signal is transmitted.

【0162】一方、受光部1cは連続的に前方からの光
信号を受光し、電気信号に変換して信号増幅回路1d´
に出力し、ここで増幅して信号処理部2に出力する。
On the other hand, the light receiving section 1c continuously receives an optical signal from the front, converts it into an electrical signal, and a signal amplifier circuit 1d '.
To the signal processing unit 2.

【0163】図14に基づいて従来例で説明したよう
に、信号処理部2では受光増幅信号を2値化処理し、同
期加算処理する。得られた加算値データは車間距離演算
部3cに出力され、加算ピーク値を示すサンプリング点
を求め、その加算ピーク値を示すサンプリング点の周囲
4点の加算値データv1,v2,v3,v4から従来例
と同じようにピーク点Aを求め、それに対応する距離点
Bを割出し、現出力レベル、つまりメイン出力レベルで
の測距値(車間距離)として一時的にメモリ3eのメモ
リD_main に保存する。これと共に、その測距値は相対
速度演算部3fにも出力される。なお、メモリD_main
はシフトレジスタのように少なくとも2回分のデータが
保存でき、新たなデータの書込みがあれば、直前に書込
まれたデータが前回分のデータとしてシフトされるもの
とする。後述するメモリD_subについても同様である。
As described in the conventional example with reference to FIG. 14, the signal processing unit 2 binarizes the received light amplified signal and performs the synchronous addition process. The obtained added value data is output to the inter-vehicle distance calculation unit 3c, the sampling point indicating the added peak value is obtained, and the added value data v1, v2, v3, v4 of four points around the sampling point indicating the added peak value are calculated. As in the conventional example, the peak point A is obtained, the distance point B corresponding to the peak point A is determined, and the distance measurement value (inter-vehicle distance) at the current output level, that is, the main output level is temporarily stored in the memory D_main of the memory 3e. To do. At the same time, the measured distance value is also output to the relative speed calculation unit 3f. The memory D_main
Like a shift register, the data can be stored at least twice, and when new data is written, the data written immediately before is shifted as the data for the previous time. The same applies to the memory D_sub described later.

【0164】あるメイン出力レベルPnでの測距動作が
終了したタイミングで、測距順序制御部3aは前回の測
距と今回の測距とでメイン出力レベルに変更が生じてい
ないかどうか判断し、前回の測距と同一のメイン出力レ
ベルで今回の測距出力レベルが実行されている場合に
は、相対速度演算部3fに相対速度演算を実行させる。
しかしながら、前回の測距のメイン出力レベルと今回の
測距のメイン出力レベルとの間で段階変化があれば、今
回の測距値と今回のメイン出力レベルと同じ出力レベル
で前回測距された測距値を用いて相対速度演算を実行さ
せる。そして得られる相対速度の符号から、それが+又
は0ならば離脱傾向にある(相対速度が0の場合にも離
脱傾向にあるとする)ので出力レベルを1段階上げる指
令を駆動電流制御回路1fに与え、逆に前回の相対速度
の符号が−ならば接近傾向にあるので出力レベルを1段
階下げる指令を駆動電流制御回路1fに与えて出力レベ
ルの変更を行い、その変更後の出力レベルで測距動作を
実行させ、その測距値をメモリ3eのメモリD_subに保
存させる。
At the timing when the distance measuring operation at a certain main output level Pn is completed, the distance measuring order control unit 3a determines whether or not the main output level is changed between the last distance measuring and the current distance measuring. If the current distance measurement output level is being executed at the same main output level as the previous distance measurement, the relative speed calculation unit 3f is caused to execute the relative speed calculation.
However, if there is a step change between the main output level of the previous distance measurement and the main output level of the current distance measurement, the previous distance measurement was performed at the same output level as this measurement value and this main output level. The relative velocity calculation is executed using the distance measurement value. From the sign of the relative speed obtained, if it is + or 0, there is a tendency to leave (even if the relative speed is 0, there is a tendency to leave). Therefore, an instruction to increase the output level by one step is issued to the drive current control circuit 1f. On the contrary, if the sign of the previous relative speed is −, there is a tendency to approach, so a command to lower the output level by one step is given to the drive current control circuit 1f to change the output level, and the output level after the change is applied. The distance measurement operation is executed, and the distance measurement value is stored in the memory D_sub of the memory 3e.

【0165】こうして、メイン出力レベルPnでの測距
とそれよりも1段階下又は上の出力レベルでの測距との
2回の測距動作が相対速度算定のための1組の測距動作
として繰返し実行される。
Thus, two distance measuring operations, that is, the distance measuring at the main output level Pn and the distance measuring at the output level one step lower or higher than that, constitute one set of distance measuring operations for relative velocity calculation. Is repeatedly executed as.

【0166】車間距離演算部3cが求めたメイン出力レ
ベルPnでの加算値データのピーク値は駆動電流変更判
断部3jにも出力され、ここで加算ピーク値を適正範囲
と比較し、適正範囲を超えていれば加算値データが飽和
しているとして信号出力レベルを1段階下げる指令を駆
動電流制御回路1fに出力し、逆に適正範囲よりも低け
れば信号出力レベルを1段階上げる指令を駆動電流制御
回路1fに出力する。
The peak value of the added value data at the main output level Pn obtained by the inter-vehicle distance calculation section 3c is also output to the drive current change determination section 3j, where the added peak value is compared with the appropriate range to determine the appropriate range. If it exceeds, it is considered that the added value data is saturated and a command to decrease the signal output level by one step is output to the drive current control circuit 1f. Conversely, if it is lower than the appropriate range, a command to increase the signal output level by one step is issued. Output to the control circuit 1f.

【0167】相対速度演算部3fはメイン出力レベルで
の新たな測距値が入力されると、第2の実施例で用いた
演算式(11)又は(11)´によって相対速度を算出
し、警報距離演算部3gに出力する。
When a new distance measurement value at the main output level is input, the relative speed calculator 3f calculates the relative speed by the calculation formula (11) or (11) 'used in the second embodiment, Output to the alarm distance calculation unit 3g.

【0168】つまり、前回と今回とでメイン出力レベル
に変更がない場合には、メモリD_main に保存されてい
る前回の測距値D_main 、今回のメイン出力レベルでの
測距値Dを用いて、現相対速度Vrを式(11)に基づ
いて算出し、前回のメイン出力レベルと今回のメイン出
力レベルとの間に変更があった場合には、メモリD_sub
に保存されている前回の測距値D_sub、今回のメイン出
力レベルでの測距値Dを用いて、現相対速度Vrを式
(11)´に基づいて算出するのである。
That is, when there is no change in the main output level between the previous time and this time, the previous distance measurement value D_main stored in the memory D_main and the distance measurement value D at the current main output level are used. The current relative speed Vr is calculated based on the equation (11), and if there is a change between the previous main output level and the current main output level, the memory D_sub
Using the previous distance measurement value D_sub and the current distance measurement value D at the main output level, the current relative velocity Vr is calculated based on the equation (11) '.

【0169】相対速度演算部3fによって算出された相
対速度Vrは警報距離演算部3gに出力され、第1の実
施例と同じように式(2)に基づいて警報車間距離Dw
が算出され、警報発令判定部3hに与えられる。
The relative speed Vr calculated by the relative speed calculation unit 3f is output to the warning distance calculation unit 3g, and the warning inter-vehicle distance Dw is calculated based on the equation (2) as in the first embodiment.
Is calculated and given to the warning issuance determination unit 3h.

【0170】警報発令判定部3hでは、警報距離演算部
3gから入力される警報車間距離Dwと車間距離演算部
3cから入力される測距値(現車間距離)Dとを比較
し、現車間距離Dが警報車間距離Dwよりも小さければ
先行車に近づきすぎていると判断して警報発令指令を警
報ブザー5に出力し、車間距離警報を発報させて運転者
の注意を促す。
In the warning issuing determination section 3h, the warning inter-vehicle distance Dw input from the warning distance calculation section 3g and the distance measurement value (current inter-vehicle distance) D input from the inter-vehicle distance calculation section 3c are compared to determine the current inter-vehicle distance. If D is smaller than the warning inter-vehicle distance Dw, it is determined that the vehicle is too close to the preceding vehicle, an alarm issuance command is output to the alarm buzzer 5, and an inter-vehicle distance alarm is issued to alert the driver.

【0171】以上の第4の実施例の一連の測距動作にお
ける相対速度演算処理を図11及び図12のフローチャ
ートに基づいて詳しく説明する。以下の処理では、前方
車両が存在し、それを自車両が追従走行している状況を
起点として説明する。
The relative velocity calculation processing in the series of distance measuring operations of the above fourth embodiment will be described in detail with reference to the flowcharts of FIGS. 11 and 12. In the following processing, a situation in which a vehicle ahead is present and the vehicle is following and traveling will be described as a starting point.

【0172】前回測距動作と新たに実行される今回測距
動作とで出力レベルの変更が無い場合、出力レベル変更
フラグL_FLGの値は0(段階変化なし)であるの
で、メイン出力レベル段階値LEVELを変更しない
(ステップS91)。
When there is no change in the output level between the previous distance measurement operation and the newly executed current distance measurement operation, the value of the output level change flag L_FLG is 0 (no step change), so the main output level step value LEVEL is not changed (step S91).

【0173】送光回路の出力レベルを適正なメイン出力
レベルLEVELに制御する(ステップS92)。そし
て前回測距動作から時間ΔT(この測距周期は例えば、
50msecに設定され、タイマ管理によってタイミング調
整がなされる)経過した後(ステップS93)、今回の
測距動作を実行する(ステップS94)。
The output level of the light transmitting circuit is controlled to an appropriate main output level LEVEL (step S92). The time ΔT from the last distance measurement operation (this distance measurement cycle is, for example,
After the time is set to 50 msec and the timing is adjusted by the timer management) (step S93), the current distance measuring operation is executed (step S94).

【0174】今回の測距動作で得られた測距値(車間距
離)、加算ピーク値をそれぞれメモリD、メモリPKに
保存する(ステップS95,S96)。
The distance measurement value (vehicle distance) and the added peak value obtained by the distance measurement operation this time are stored in the memory D and the memory PK, respectively (steps S95 and S96).

【0175】今の場合、メイン出力レベルに変更がない
ので、得られた測距値Dと前回の測距値D_main とから
相対速度VRをステップS99に示す式に基づいて演算
し、メモリVRに格納する(ステップS97,S9
9)。
In this case, since the main output level is not changed, the relative speed VR is calculated from the obtained distance measurement value D and the previous distance measurement value D_main based on the formula shown in step S99, and stored in the memory VR. Store (steps S97, S9
9).

【0176】続いて、得られた相対速度から車間距離が
接近傾向にあるか離脱傾向にあるかを判断し、接近傾向
にあればメイン出力レベルに対して1段階下げた出力レ
ベルで測距を行い、逆に離脱傾向にあればメイン出力レ
ベルに対して1段階上げた出力レベルで測距を行い、そ
の測距値をメモリに保存する(ステップS100〜S1
05)。
Subsequently, it is judged from the obtained relative speeds whether the inter-vehicle distance tends to approach or leave, and if there is an approach tendency, distance measurement is performed at an output level that is one step lower than the main output level. Conversely, if there is a tendency to leave, distance measurement is performed at an output level that is one step higher than the main output level, and the measured distance value is stored in memory (steps S100 to S1).
05).

【0177】そのためにまず、メモリDの内容をD_mai
n に保存し(ステップS100)、相対速度VRの正負
を判定し(ステップS101)、離脱傾向にあるために
相対速度VRが+又は0であれば(相対速度が0の場合
にも離脱傾向にあるとする)出力レベルを1段階上げる
ためにLEVEL+1に制御し(ステップS102)、
逆に接近傾向にあるために相対速度VRが−であれば出
力レベルを1段階下げるためにLEVEL−1に制御し
(ステップS103)、ステップS104の前回測距動
作から測距周期ΔTが経過するのを待って(ステップS
104)、測距動作を行い(ステップS105)、この
1段階出力レベルを変化させた状態での測距値をメモリ
D_subに保存する(ステップS106)。
Therefore, first, the contents of the memory D are changed to D_mai.
The value is stored in n (step S100), and whether the relative speed VR is positive or negative is determined (step S101). If the relative speed VR is + or 0 because the vehicle has a tendency to leave (even if the relative speed is 0, the tendency to leave is detected. LEVEL + 1 to raise the output level by one level (assuming that there is) (step S102),
On the contrary, if the relative velocity VR is negative due to the approaching tendency, the output level is controlled to LEVEL-1 to decrease by one step (step S103), and the distance measuring cycle ΔT elapses from the previous distance measuring operation of step S104. Wait for (step S
104), the distance measurement operation is performed (step S105), and the distance measurement value in the state in which the one-step output level is changed is stored in the memory D_sub (step S106).

【0178】次に加算ピーク値PKを所定範囲内に収め
るために、つまり、適正範囲下限値TH_L、適正範囲
上限値TH_Hとするときに、TH_L<PK<TH_
Hとなるようにメイン出力レベルの変更制御を行う(ス
テップS107〜S111)。
Next, in order to keep the added peak value PK within the predetermined range, that is, when the proper range lower limit value TH_L and the proper range upper limit value TH_H are set, TH_L <PK <TH_.
The main output level is controlled to change to H (steps S107 to S111).

【0179】このためにまず、今回行った測距動作で得
られた加算ピーク値PKが適正範囲下限値TH_Lより
も小ならば、次回の相対速度算定のための測距動作でメ
イン出力レベルを上げるためにL_FLGに値+1を格
納する(ステップS107,S108)。逆に加算ピー
ク値PKが適正範囲上限値TH_Hよりも大ならば、次
回の相対速度算定のための測距動作でメイン出力レベル
を下げるためにL_FLGに値−1を格納する(ステッ
プS107,S109,S110)。そして、加算ピー
ク値PKが適正範囲内であれば出力レベルを変更する必
要がないので、L_FLGに値0を格納する(ステップ
S111)。
For this reason, first, if the added peak value PK obtained in the distance measuring operation performed this time is smaller than the proper range lower limit value TH_L, the main output level is set in the distance measuring operation for the next relative speed calculation. The value +1 is stored in L_FLG to increase (steps S107 and S108). Conversely, if the added peak value PK is larger than the appropriate range upper limit value TH_H, the value -1 is stored in L_FLG in order to lower the main output level in the distance measurement operation for the next relative speed calculation (steps S107 and S109). , S110). Then, if the added peak value PK is within the proper range, there is no need to change the output level, so the value 0 is stored in L_FLG (step S111).

【0180】ここまでを相対速度算出のための1周期と
して、再びステップS91に戻り、新たな相対速度算定
のための測距動作を開始する。
The process up to this point is regarded as one cycle for calculating the relative speed, and the process returns to step S91 again to start the distance measuring operation for calculating the new relative speed.

【0181】今、先行車に対する接近あるいは離脱に伴
い、出力レベルの段階変化があった場合、前回測距周期
において加算ピーク値から判断された出力レベル変更フ
ラグL_FLGの値に応じてメイン出力レベルの段階値
が格納されているメモリLEVELの値を変更し(ステ
ップS91)、送光回路の出力レベルをこのメイン出力
レベルLEVELに制御する(ステップS92)。
If there is a step change in the output level due to the approaching or leaving of the preceding vehicle, the main output level of the main output level is changed according to the value of the output level change flag L_FLG determined from the added peak value in the previous distance measurement cycle. The value of the memory LEVEL in which the step value is stored is changed (step S91), and the output level of the light transmitting circuit is controlled to this main output level LEVEL (step S92).

【0182】前回測距動作から時間ΔTが経過した後
(ステップS93)、新たな測距動作を行い(ステップ
S94)、得られた測距値、加算ピーク値をそれぞれメ
モリD、メモリPKに格納する(ステップS95,S9
6)。
After the time ΔT has passed since the last distance measuring operation (step S93), a new distance measuring operation is performed (step S94), and the obtained distance measuring value and added peak value are stored in the memory D and the memory PK, respectively. (Steps S95, S9
6).

【0183】ここでメイン出力レベルが前回から1段階
変更されていれば、つまり出力レベル変更フラグL_F
LG=0でなければ、今回測距値Dと前回周期に今回と
同じ出力レベルで測距されたメモリD_subの値とを用い
て、ステップS98に示した演算式に基づいて相対速度
VRを算出し、メモリVRに格納する(ステップS9
7,S98)。
Here, if the main output level is changed by one step from the previous time, that is, the output level change flag L_F.
If LG = 0, the relative velocity VR is calculated based on the arithmetic expression shown in step S98 using the current distance measurement value D and the value of the memory D_sub measured at the same output level as this time in the previous cycle. And stores it in the memory VR (step S9).
7, S98).

【0184】続いて、さらに次回周期の相対速度演算の
ためにメイン出力レベルによる測距値と共に、相対速度
の正負に応じてメイン出力レベルより1段階上あるいは
下の出力レベルでの測距値を求め、メモリD_subに格納
する(ステップS100〜S106)。そして、加算ピ
ーク値の適正を判断し、不適正であれば再度出力レベル
を変更し、適正であれば出力レベルをそのままとする手
当を行い、ステップS91に戻って次回周期の測距を行
うことになる(ステップS107〜S111)。
Subsequently, the distance measurement value based on the main output level for the calculation of the relative speed in the next cycle, and the distance measurement value at the output level one step above or below the main output level depending on whether the relative speed is positive or negative. It is obtained and stored in the memory D_sub (steps S100 to S106). Then, the adequacy of the added peak value is judged, if it is improper, the output level is changed again, and if it is adequate, the output level is kept as it is, and the process returns to step S91 to perform the distance measurement in the next cycle. (Steps S107 to S111).

【0185】こうして、この第4の実施例によれば、先
行車の車間距離が走行中に変化し、送光回路の出力レベ
ルを自動変更する必要が生じ、出力レベルの変更前後で
その出力レベルによる測距値に誤差が生じることがあっ
ても、出力レベルの変更後も前回の相対速度演算周期に
変更後の出力レベルと同じ出力レベルで測距した値が得
られているので、同じ出力レベルでの前回測距値と今回
測距値を用いて相対速度を演算することができるように
なり、正確な相対速度が得られ、したがってこれに基づ
いて演算される警報距離も精度の高いものとなり、車間
距離警報の信頼性を高くすることできるようになるので
ある。
As described above, according to the fourth embodiment, the inter-vehicle distance of the preceding vehicle changes during traveling, and it becomes necessary to automatically change the output level of the light transmitting circuit. The output level before and after the output level is changed. Even if there is an error in the distance measurement value due to, even if the output level is changed, the value is measured at the same output level as the output level after the change to the previous relative speed calculation cycle, so the same output The relative speed can now be calculated using the previous distance measurement value and the current distance measurement value at the level, and the accurate relative speed can be obtained. Therefore, the alarm distance calculated based on this can be highly accurate. Therefore, it becomes possible to increase the reliability of the inter-vehicle distance warning.

【0186】しかもこの第4の実施例の場合には、1回
の相対速度の算出のためにメイン出力レベルとそれより
も1段階上あるいは下に変化させた出力レベルとで2回
ずつ測距すればよいので、第3の実施例のように3回ず
つ測距する場合よりも応答時間を速くすることができ
る。
In addition, in the case of the fourth embodiment, the distance is measured twice each with the main output level and the output level changed one step above or below for calculating the relative speed once. Therefore, the response time can be made faster than in the case where the distance measurement is performed three times as in the third embodiment.

【0187】[0187]

【発明の効果】以上のように請求項1の発明の車間距離
監視装置では、各回の相対速度算出のために適正受信増
幅率で受信信号を増幅し、2値化した後同期加算する測
距動作と共に、適正受信増幅率よりも1段階上げ、また
下げた増幅率に変更して同じように受信信号を増幅し、
2値化した後同期加算する測距動作との合計3回の測距
動作それぞれで得た車間距離を保存しておき、相対速度
算出に当って、前回の1組3回の相対速度算出のための
測距動作時と今回の1組3回の測距動作時とで適正受信
増幅率が変更されている場合には、今回の適正受信増幅
率で測距して得た車間距離と前回の同じ受信増幅率で測
距して得た車間距離とを用いて相対速度演算を行うよう
にしているので、適正受信増幅率が変更調整されても、
その調整前後で同一の受信増幅率で測距して得た車間距
離を用いて相対速度を算出することができ、精度の良い
相対速度の算出が行え、車間距離警報の信頼性を向上さ
せることができる。
As described above, in the inter-vehicle distance monitoring apparatus according to the first aspect of the present invention, the distance measurement for amplifying the received signal at the proper reception amplification factor for each relative speed calculation, binarizing it, and then synchronously adding it. Along with the operation, it is increased by one step from the proper reception amplification rate, and it is changed to the lowered amplification rate and the reception signal is amplified in the same way.
The inter-vehicle distance obtained in each of the three distance measuring operations including the binarizing and the synchronous addition operation is stored, and the relative speed is calculated by calculating the relative speed of one set of three times. If the proper reception amplification factor has been changed between the distance measurement operation for this purpose and this time of one set of three times the distance measurement operation, the inter-vehicle distance obtained by distance measurement with the current proper reception amplification factor and the previous time Since the relative speed calculation is performed using the inter-vehicle distance obtained by distance measurement with the same reception amplification factor of, even if the proper reception amplification factor is changed and adjusted,
The relative speed can be calculated using the inter-vehicle distance obtained by measuring the distance with the same reception amplification factor before and after the adjustment, and the relative speed can be calculated with high accuracy, improving the reliability of the inter-vehicle distance warning. You can

【0188】請求項2の発明の車間距離監視装置では、
各回の相対速度算出のために適正受信増幅率で受信信号
を増幅し、2値化した後同期加算する測距動作と共に、
車間距離が接近傾向にあれば適正受信増幅率よりも1段
階下げ、逆に車間距離が離脱傾向にあれば適正受信増幅
率よりも1段階上げた増幅率に変更して同じように受信
信号を増幅し、2値化した後同期加算する測距動作との
合計2回の測距動作を繰返し、それぞれで得た車間距離
を保存しておき、相対速度算出に当って、前回の1組2
回の相対速度算出のための測距動作時と今回の1組2回
の測距動作時とで適正受信増幅率が変更されている場合
には、今回の適正受信増幅率で測距して得た車間距離と
前回の適正増幅率を1段階変更して測距したときの車間
距離とを用いて相対速度演算を行うようにしているの
で、適正受信増幅率が変更調整されても、その調整前後
で同一の受信増幅率で測距して得た車間距離を用いて相
対速度を算出することができ、精度の良い相対速度の算
出が行え、車間距離警報の信頼性を向上させることがで
きる。
According to the inter-vehicle distance monitoring system of the invention of claim 2,
Along with the distance measurement operation that amplifies the received signal with an appropriate reception amplification factor for each relative speed calculation, binarizes it, and then synchronously adds,
If the inter-vehicle distance tends to approach, the level is lowered by one step from the proper reception amplification rate. Conversely, if the inter-vehicle distance tends to leave, the level is increased by one step from the proper reception amplification rate. A total of two distance-measuring operations including a distance-measuring operation of amplifying, binarizing, and then synchronously adding are repeated, and the inter-vehicle distances obtained in each are stored, and in calculating the relative speed, one set of 2
If the proper reception amplification factor is changed between the distance measurement operation for calculating the relative speed of one time and the distance measurement operation of this set of two times, the distance is measured with the current proper reception amplification ratio. Since the relative speed calculation is performed using the obtained inter-vehicle distance and the inter-vehicle distance obtained by changing the previous proper amplification factor by one step, even if the proper reception amplification factor is changed and adjusted, The relative speed can be calculated using the inter-vehicle distance obtained by distance measurement with the same reception amplification factor before and after the adjustment, and the relative speed can be calculated with high accuracy, and the reliability of the inter-vehicle distance warning can be improved. it can.

【0189】しかも請求項2の発明の場合、各測距動作
において適正受信増幅率と1段階上あるいは1段階下い
ずれかに1段階変化させた受信増幅率との1組2回の受
信増幅率での測距動作それぞれによって得た車間距離を
用いて相対速度を算出するので応答速度を速めることが
できる。
Further, in the case of the invention of claim 2, in each distance measuring operation, one set of the proper reception amplification rate and the reception amplification rate which is changed by one step up or down by one step are used to set the reception amplification rate twice. Since the relative speed is calculated by using the inter-vehicle distance obtained by each of the distance measurement operations in step 1, the response speed can be increased.

【0190】請求項3の発明の車間距離監視装置では、
各回の相対速度算出のために適正出力レベルで信号送出
し、物標からの反射信号を受信して増幅した信号を2値
化した後同期加算する測距動作と共に、適正出力レベル
よりも1段階上げ、また下げた出力レベルに変更して同
じように信号送出し、物標からの反射信号を受信して同
期加算する測距動作との合計3回の測距動作それぞれで
得た車間距離を保存しておき、相対速度算出に当って、
前回の1組3回の相対速度算出のための測距動作時と今
回の1組3回の測距動作時とで適正出力レベルが変更さ
れている場合には、今回の適正出力レベルで測距して得
た車間距離と前回の同じ出力レベルで測距して得た車間
距離とを用いて相対速度演算を行うようにしているの
で、適正出力レベルが変更調整されても、その調整前後
で同一の出力レベルで測距して得た車間距離を用いて相
対速度を算出することができ、精度の良い相対速度の算
出が行え、車間距離警報の信頼性を向上させることがで
きる。
According to the inter-vehicle distance monitoring device of the invention of claim 3,
It outputs a signal at an appropriate output level for each relative speed calculation, receives the reflected signal from the target, binarizes the amplified signal, and then adds the signals synchronously with the distance measurement operation, and one step higher than the appropriate output level. Change the output level to raised or lowered, send out the same signal, receive the reflected signal from the target, and add the distance synchronously. Save it and calculate the relative speed.
If the proper output level is changed between the previous distance measurement operation for calculating the relative speed of one set and three times and the current distance measurement operation of one set of three times, the measurement is performed at the appropriate output level of this time. Since the relative speed is calculated using the inter-vehicle distance obtained by distance measurement and the inter-vehicle distance obtained by distance measurement at the same output level of the previous time, even if the appropriate output level is changed and adjusted, before and after the adjustment. The relative speed can be calculated using the inter-vehicle distance obtained by distance measurement at the same output level, and the relative speed can be calculated with high accuracy, and the reliability of the inter-vehicle distance warning can be improved.

【0191】請求項4の発明の車間距離監視装置では、
各回の相対速度算出のために適正出力レベルで信号送出
し、物標からの反射信号を受信して増幅した信号を2値
化した後同期加算する測距動作と共に、車間距離が接近
傾向にあれば適正出力レベルよりも1段階下げ、逆に車
間距離が離脱傾向にあれば適正出力レベルよりも1段階
上げた出力レベルに変更して同じように信号送出し、物
標からの反射信号を受信して同期加算する測距動作との
合計2回の測距動作を繰返し、それぞれで得た車間距離
を保存しておき、相対速度算出に当って、前回の1組2
回の相対速度算出のための測距動作時と今回の1組2回
の測距動作時とで適正出力レベルが変更されている場合
には、今回の適正出力レベルで測距して得た車間距離と
前回の適正出力レベルを1段階変更して測距したときの
車間距離とを用いて相対速度演算を行うようにしている
ので、適正出力レベルが変更調整されても、その調整前
後で同一の出力レベルで測距して得た車間距離を用いて
相対速度を算出することができ、精度の良い相対速度の
算出が行え、車間距離警報の信頼性を向上させることが
できる。
According to the inter-vehicle distance monitoring apparatus of the invention of claim 4,
A signal is sent at an appropriate output level for each relative speed calculation, the reflected signal from the target is received, and the amplified signal is binarized and then added synchronously. For example, if the inter-vehicle distance tends to deviate from the proper output level by one step, and conversely, the output level is raised by one step from the proper output level and the same signal is sent, and the reflected signal from the target is received. Then, a total of two distance measurement operations including the distance measurement operation of synchronously adding and repeating are performed, and the inter-vehicle distances obtained in each are stored, and the previous one set 2
If the proper output level is changed between the distance measurement operation for calculating the relative speed of one time and the distance measurement operation of one set and two times this time, the distance measurement is performed at the appropriate output level this time. Since the relative speed calculation is performed using the inter-vehicle distance and the inter-vehicle distance when the distance is measured by changing the previous appropriate output level by one step, even if the appropriate output level is changed and adjusted, before and after the adjustment. The relative speed can be calculated using the inter-vehicle distance obtained by distance measurement at the same output level, the relative speed can be calculated with high accuracy, and the reliability of the inter-vehicle distance warning can be improved.

【0192】しかも請求項4の発明の場合、各測距動作
において適正出力レベルと1段階上あるいは1段階下い
ずれかに1段階変化させた出力レベルとの1組2回の出
力レベルでの測距動作それぞれによって得た車間距離を
用いて相対速度を算出するので応答速度を速めることが
できる。
Further, in the case of the invention of claim 4, in each distance measuring operation, a set of the proper output level and the output level which is changed by one step up or down by one step is measured by two sets of output levels. Since the relative speed is calculated using the inter-vehicle distance obtained by each distance operation, the response speed can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例の回路ブロック図。FIG. 1 is a circuit block diagram of a first embodiment of the present invention.

【図2】上記第1の実施例の相対速度演算処理の前半の
フローチャート。
FIG. 2 is a first half flowchart of a relative speed calculation process according to the first embodiment.

【図3】上記第1の実施例の相対速度演算処理の後半の
フローチャート。
FIG. 3 is a flowchart of the latter half of the relative speed calculation process of the first embodiment.

【図4】この発明の第2の実施例の回路ブロック図。FIG. 4 is a circuit block diagram of a second embodiment of the present invention.

【図5】上記第2の実施例の相対速度演算処理の前半の
フローチャート。
FIG. 5 is a flowchart of the first half of the relative velocity calculation process of the second embodiment.

【図6】上記第2の実施例の相対速度演算処理の後半の
フローチャート。
FIG. 6 is a flowchart of the latter half of the relative speed calculation process of the second embodiment.

【図7】この発明の第3の実施例の回路ブロック図。FIG. 7 is a circuit block diagram of a third embodiment of the present invention.

【図8】上記第3の実施例の相対速度演算処理の前半の
フローチャート。
FIG. 8 is a flowchart of the first half of the relative velocity calculation process of the third embodiment.

【図9】上記第3の実施例の相対速度演算処理の後半の
フローチャート。
FIG. 9 is a second half flow chart of the relative speed calculation process of the third embodiment.

【図10】この発明の第4の実施例の回路ブロック図。FIG. 10 is a circuit block diagram of a fourth embodiment of the present invention.

【図11】上記第4の実施例の相対速度演算処理の前半
のフローチャート。
FIG. 11 is a flowchart of the first half of the relative speed calculation process of the fourth embodiment.

【図12】上記第4の実施例の相対速度演算処理の後半
のフローチャート。
FIG. 12 is a flowchart of the latter half of the relative speed calculation process of the fourth embodiment.

【図13】従来例の回路ブロック図。FIG. 13 is a circuit block diagram of a conventional example.

【図14】従来例の信号処理動作を説明する波形図。FIG. 14 is a waveform diagram illustrating a signal processing operation of a conventional example.

【図15】従来例の受信増幅率変更判断処理動作を説明
する波形図。
FIG. 15 is a waveform diagram illustrating a reception amplification factor change determination processing operation of a conventional example.

【図16】従来例の受信増幅率変更前後の測距値精度の
変化を示す波形図。
FIG. 16 is a waveform chart showing a change in distance measurement accuracy before and after a reception amplification factor is changed in the conventional example.

【図17】従来例の受信増幅率変更後の補正処理によっ
ても生じる誤差を示す波形図。
FIG. 17 is a waveform diagram showing an error caused by a correction process after the reception amplification factor is changed in the conventional example.

【符号の説明】[Explanation of symbols]

1 距離センサヘッド 1a 送光部 1b 駆動回路 1b´ 駆動回路 1c 受光部 1d 信号増幅回路 1d´ 信号増幅回路 1e 増幅率制御回路 1f 駆動電流制御回路 2 信号処理部 3 相対速度演算部 3a 測距順序制御部 3b 信号処理制御部 3c 車間距離演算部 3d 受信増幅率変更判断部 3e メモリ 3f 相対速度演算部 3g 警報距離演算部 3h 警報発令判定部 3j 駆動電流変更判断部 4 車速センサ 5 警報ブザー 1 distance sensor head 1a light transmitter 1b drive circuit 1b 'drive circuit 1c light receiver 1d signal amplification circuit 1d' signal amplification circuit 1e amplification factor control circuit 1f drive current control circuit 2 signal processing unit 3 relative speed calculation unit 3a distance measurement order Control unit 3b Signal processing control unit 3c Inter-vehicle distance calculation unit 3d Reception amplification rate change judgment unit 3e Memory 3f Relative speed calculation unit 3g Warning distance calculation unit 3h Warning announcement judgment unit 3j Driving current change judgment unit 4 Vehicle speed sensor 5 Warning buzzer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 自車両の速度を検出する速度検出手段
と、パルス状の信号を所定の送出周期ごとに外部へ送出
する信号送出手段と、前記信号送出手段が送出する信号
が物標に反射して返って来る方向からの信号を連続的に
受信する受信手段と、前記受信手段が受信した信号を2
値化し、前記信号送出手段の各送出周期における信号送
出タイミングからの経過時間を異ならせた複数のサンプ
リング点毎に所定の送出回数分ずつ加算する加算手段
と、前記加算手段の前記各サンプリング点の加算値のピ
ーク値を求めるピーク値検出手段と、前記ピーク値検出
手段が求めたピーク値を与えるサンプリング点に対応す
る距離を前方の物標までの車間距離として算出する車間
距離算定手段と、前記車間距離算定手段が算出する車間
距離を保存する測距値保存手段と、前記車間距離算定手
段が新たな車間距離を算出したときに前記測距値保存手
段に保存されている前回算出された車間距離を読出し、
これらの車間距離の差から自車両と前方の物標との間の
相対速度を算出する相対速度算出手段と、前記速度検出
手段が検出する自車両の速度と前記車間距離算定手段が
算出する車間距離と前記相対速度算出手段が算出する相
対速度とに基づいて現車間距離の適不適を判定する車間
距離判定手段と、前記車間距離判定手段が現車間距離を
不適と判定するときに運転者に対する警報を出力する警
報出力手段とを備えて成る車間距離監視装置において、 前記ピーク値検出手段が検出するピーク値が所定のレベ
ル内に収るように前記受信手段の適正受信増幅率を段階
的に制御する受信増幅率制御手段と、 前記受信手段の受信増幅率を、前記受信増幅率制御手段
が調整した適正受信増幅率に対して、それよりも1段階
上、1段階下それぞれの受信増幅率に変更して車間距離
を求めさせてこれらの車間距離を保存する参考車間距離
保存手段と、 前記受信増幅率制御手段が調整する適正受信増幅率が変
更され、新たな車間距離が求められたとき、当該新たな
適正受信増幅率と同じ受信増幅率で求められた前回の車
間距離を前記参考車間距離保存手段から読出して前記相
対速度算出手段に与える相対速度演算補助手段とを備え
て成る車間距離監視装置。
1. A speed detecting means for detecting the speed of the host vehicle, a signal sending means for sending a pulsed signal to the outside at a predetermined sending cycle, and a signal sent by the signal sending means reflected on a target. The receiving means for continuously receiving the signal from the returning direction and the signal received by the receiving means.
Addition means for digitizing and adding a predetermined number of times of transmission for each of a plurality of sampling points with different elapsed times from the signal transmission timing in each transmission cycle of the signal transmission means, and for each sampling point of the addition means A peak value detecting means for obtaining a peak value of the added value, an inter-vehicle distance calculating means for calculating a distance corresponding to a sampling point giving the peak value obtained by the peak value detecting means as an inter-vehicle distance to a target in front, Distance measurement value storage means for storing the inter-vehicle distance calculated by the inter-vehicle distance calculation means, and the previously calculated inter-vehicle distance stored in the distance measurement value storage means when the inter-vehicle distance calculation means calculates a new inter-vehicle distance Read the distance,
Relative speed calculating means for calculating the relative speed between the host vehicle and the target in front of the vehicle based on the difference in these inter-vehicle distances, the speed of the host vehicle detected by the speed detecting means, and the inter-vehicle distance calculated by the inter-vehicle distance calculating means. An inter-vehicle distance determining means for determining suitability of the current inter-vehicle distance based on the distance and the relative speed calculated by the relative speed calculating means, and for the driver when the inter-vehicle distance determining means determines that the current inter-vehicle distance is unsuitable. In an inter-vehicle distance monitoring device comprising an alarm output means for outputting an alarm, the proper reception amplification factor of the receiving means is stepwise so that the peak value detected by the peak value detecting means falls within a predetermined level. The reception amplification rate control means for controlling, and the reception amplification rate of the reception means, which is one step higher and one step lower than the proper reception amplification rate adjusted by the reception amplification rate control means. When a new inter-vehicle distance is obtained by changing the appropriate inter-vehicle distance and saving the inter-vehicle distance by reference inter-vehicle distance storage means, the proper reception amplification rate adjusted by the reception amplification rate control means is changed. An inter-vehicle distance including a relative speed calculation assisting means for reading out the previous inter-vehicle distance obtained with the same reception amplification factor as the new proper reception amplification factor from the reference inter-vehicle distance storage means and giving it to the relative speed calculation means. Monitoring equipment.
【請求項2】 自車両の速度を検出する速度検出手段
と、パルス状の信号を所定の送出周期ごとに外部へ送出
する信号送出手段と、前記信号送出手段が送出する信号
が物標に反射して返って来る方向からの信号を連続的に
受信する受信手段と、前記受信手段が受信した信号を2
値化し、前記信号送出手段の各送出周期における信号送
出タイミングからの経過時間を異ならせた複数のサンプ
リング点毎に所定の送出回数分ずつ加算する加算手段
と、前記加算手段の前記各サンプリング点の加算値のピ
ーク値を求めるピーク値検出手段と、前記ピーク値検出
手段が求めたピーク値を与えるサンプリング点に対応す
る距離を前方の物標までの車間距離として算出する車間
距離算定手段と、前記車間距離算定手段が算出する車間
距離を保存する測距値保存手段と、前記車間距離算定手
段が新たな車間距離を算出したときに前記測距値保存手
段に保存されている前回算出された車間距離を読出し、
これらの車間距離の差から自車両と前方の物標との間の
相対速度を算出する相対速度算出手段と、前記速度検出
手段が検出する自車両の速度と前記車間距離算定手段が
算出する車間距離と前記相対速度算出手段が算出する相
対速度とに基づいて現車間距離の適不適を判定する車間
距離判定手段と、前記車間距離判定手段が現車間距離を
不適と判定するときに運転者に対する警報を出力する警
報出力手段とを備えて成る車間距離監視装置において、 前記ピーク値検出手段が検出するピーク値が所定のレベ
ル内に収るように前記受信手段の適正受信増幅率を段階
的に制御する受信増幅率制御手段と、 前記相対速度算出手段が算出する相対速度から前方の物
標に対して自車両が接近しているときには前記受信手段
の適正受信増幅率よりも1段階下げた増幅率で、自車両
が離脱しているときには適正受信増幅率よりも1段階上
げた増幅率で車間距離を求めさせてその車間距離を保存
する参考車間距離保存手段と、 前記受信増幅率制御手段が調整する適正受信増幅率が変
更され、新たな車間距離が求められたとき、前回の車間
距離として前記参考車間距離保存手段に保存されている
車間距離を読出して前記相対速度算出手段に与える相対
速度演算補助手段とを備えて成る車間距離監視装置。
2. A speed detecting means for detecting the speed of the host vehicle, a signal sending means for sending a pulsed signal to the outside at a predetermined sending cycle, and a signal sent by the signal sending means reflected on a target. The receiving means for continuously receiving the signal from the returning direction and the signal received by the receiving means.
Addition means for digitizing and adding a predetermined number of times of transmission for each of a plurality of sampling points with different elapsed times from the signal transmission timing in each transmission cycle of the signal transmission means, and for each sampling point of the addition means A peak value detecting means for obtaining a peak value of the added value, an inter-vehicle distance calculating means for calculating a distance corresponding to a sampling point giving the peak value obtained by the peak value detecting means as an inter-vehicle distance to a target in front, Distance measurement value storage means for storing the inter-vehicle distance calculated by the inter-vehicle distance calculation means, and the previously calculated inter-vehicle distance stored in the distance measurement value storage means when the inter-vehicle distance calculation means calculates a new inter-vehicle distance Read the distance,
Relative speed calculating means for calculating the relative speed between the host vehicle and the target in front of the vehicle based on the difference in these inter-vehicle distances, the speed of the host vehicle detected by the speed detecting means, and the inter-vehicle distance calculated by the inter-vehicle distance calculating means. An inter-vehicle distance determining means for determining suitability of the current inter-vehicle distance based on the distance and the relative speed calculated by the relative speed calculating means, and for the driver when the inter-vehicle distance determining means determines that the current inter-vehicle distance is unsuitable. In an inter-vehicle distance monitoring device comprising an alarm output means for outputting an alarm, the proper reception amplification factor of the receiving means is stepwise so that the peak value detected by the peak value detecting means falls within a predetermined level. When the host vehicle is approaching the target ahead from the relative speed calculated by the relative speed calculating means and the relative speed calculating means for controlling, the proper receiving amplification rate of the receiving means is one step lower. With the amplification factor, when the own vehicle is leaving, a reference inter-vehicle distance storage unit that stores the inter-vehicle distance by obtaining the inter-vehicle distance with an amplification factor that is one step higher than the proper reception amplification factor, and the reception amplification factor control When the proper reception amplification factor adjusted by the means is changed and a new inter-vehicle distance is obtained, the inter-vehicle distance stored in the reference inter-vehicle distance storage means as the previous inter-vehicle distance is read and given to the relative speed calculation means. An inter-vehicle distance monitoring device comprising relative speed calculation assisting means.
【請求項3】 自車両の速度を検出する速度検出手段
と、パルス状の信号を所定の送出周期ごとに外部へ送出
する信号送出手段と、前記信号送出手段が送出する信号
が物標に反射して返って来る方向からの信号を連続的に
受信する受信手段と、前記受信手段が受信した信号を2
値化し、前記信号送出手段の各送出周期における信号送
出タイミングからの経過時間を異ならせた複数のサンプ
リング点毎に所定の送出回数分ずつ加算する加算手段
と、前記加算手段の前記各サンプリング点の加算値のピ
ーク値を求めるピーク値検出手段と、前記ピーク値検出
手段が求めたピーク値を与えるサンプリング点に対応す
る距離を前方の物標までの車間距離として算出する車間
距離算定手段と、前記車間距離算定手段が算出する車間
距離を保存する測距値保存手段と、前記車間距離算定手
段が新たな車間距離を算出したときに前記測距値保存手
段に保存されている前回算出された車間距離を読出し、
これらの車間距離の差から自車両と前方の物標との間の
相対速度を算出する相対速度算出手段と、前記速度検出
手段が検出する自車両の速度と前記車間距離算定手段が
算出する車間距離と前記相対速度算出手段が算出する相
対速度とに基づいて現車間距離の適不適を判定する車間
距離判定手段と、前記車間距離判定手段が現車間距離を
不適と判定するときに運転者に対する警報を出力する警
報出力手段とを備えて成る車間距離監視装置において、 前記ピーク値検出手段が検出するピーク値が所定のレベ
ル内に収るように前記信号送出手段の適正信号出力レベ
ルを段階的に制御する信号出力制御手段と、 前記信号送出手段の信号出力レベルを、前記信号出力制
御手段が調整した適正信号出力レベルに対して、それよ
りも1段階上、1段階下それぞれの信号出力レベルに変
更して車間距離を求めさせてこれらの車間距離を保存す
る参考車間距離保存手段と、 前記信号出力制御手段が調整する適正信号出力レベルが
変更され、新たな車間距離が求められたとき、当該新た
な適正信号出力レベルと同じ信号出力レベルで求められ
た前回の車間距離を前記参考車間距離保存手段から読出
して前記相対速度算出手段に与える相対速度演算補助手
段とを備えて成る車間距離監視装置。
3. A speed detecting means for detecting the speed of the host vehicle, a signal sending means for sending a pulsed signal to the outside at a predetermined sending cycle, and a signal sent by the signal sending means reflected on a target. The receiving means for continuously receiving the signal from the returning direction and the signal received by the receiving means.
Addition means for digitizing and adding a predetermined number of times of transmission for each of a plurality of sampling points with different elapsed times from the signal transmission timing in each transmission cycle of the signal transmission means, and for each sampling point of the addition means A peak value detecting means for obtaining a peak value of the added value, an inter-vehicle distance calculating means for calculating a distance corresponding to a sampling point giving the peak value obtained by the peak value detecting means as an inter-vehicle distance to a target in front, Distance measurement value storage means for storing the inter-vehicle distance calculated by the inter-vehicle distance calculation means, and the previously calculated inter-vehicle distance stored in the distance measurement value storage means when the inter-vehicle distance calculation means calculates a new inter-vehicle distance Read the distance,
Relative speed calculating means for calculating the relative speed between the host vehicle and the target in front of the vehicle based on the difference in these inter-vehicle distances, the speed of the host vehicle detected by the speed detecting means, and the inter-vehicle distance calculated by the inter-vehicle distance calculating means. An inter-vehicle distance determining means for determining suitability of the current inter-vehicle distance based on the distance and the relative speed calculated by the relative speed calculating means, and for the driver when the inter-vehicle distance determining means determines that the current inter-vehicle distance is unsuitable. In an inter-vehicle distance monitoring device comprising an alarm output means for outputting an alarm, the appropriate signal output level of the signal transmission means is stepwise so that the peak value detected by the peak value detection means falls within a predetermined level. The signal output control means for controlling the signal output control means and the signal output level of the signal sending means are one step above and one step below the proper signal output level adjusted by the signal output control means. Reference inter-vehicle distance storage means for changing these signal output levels to obtain inter-vehicle distances and storing these inter-vehicle distances, and the appropriate signal output level adjusted by the signal output control means are changed, and new inter-vehicle distances are changed. Is calculated, the relative speed calculation assisting means for reading out the previous inter-vehicle distance obtained at the same signal output level as the new appropriate signal output level from the reference inter-vehicle distance storing means and giving it to the relative speed calculating means. An inter-vehicle distance monitoring device provided.
【請求項4】 自車両の速度を検出する速度検出手段
と、パルス状の信号を所定の送出周期ごとに外部へ送出
する信号送出手段と、前記信号送出手段が送出する信号
が物標に反射して返って来る方向からの信号を連続的に
受信する受信手段と、前記受信手段が受信した信号を2
値化し、前記信号送出手段の各送出周期における信号送
出タイミングからの経過時間を異ならせた複数のサンプ
リング点毎に所定の送出回数分ずつ加算する加算手段
と、前記加算手段の前記各サンプリング点の加算値のピ
ーク値を求めるピーク値検出手段と、前記ピーク値検出
手段が求めたピーク値を与えるサンプリング点に対応す
る距離を前方の物標までの車間距離として算出する車間
距離算定手段と、前記車間距離算定手段が算出する車間
距離を保存する測距値保存手段と、前記車間距離算定手
段が新たな車間距離を算出したときに前記測距値保存手
段に保存されている前回算出された車間距離を読出し、
これらの車間距離の差から自車両と前方の物標との間の
相対速度を算出する相対速度算出手段と、前記速度検出
手段が検出する自車両の速度と前記車間距離算定手段が
算出する車間距離と前記相対速度算出手段が算出する相
対速度とに基づいて現車間距離の適不適を判定する車間
距離判定手段と、前記車間距離判定手段が現車間距離を
不適と判定するときに運転者に対する警報を出力する警
報出力手段とを備えて成る車間距離監視装置において、 前記ピーク値検出手段が検出するピーク値が所定のレベ
ル内に収るように前記信号送出手段の適正信号出力レベ
ルを段階的に制御する信号出力制御手段と、 前記相対速度算出手段が算出する相対速度から前方の物
標に対して自車両が接近しているときには前記信号送出
手段の適正信号出力レベルよりも1段階下げた出力レベ
ルで、自車両が離脱しているときには適正信号出力レベ
ルよりも1段階上げた出力レベルで車間距離を求めさせ
てその車間距離を保存する参考車間距離保存手段と、 前記信号出力制御手段が調整する適正信号出力レベルが
変更され、新たな車間距離が求められたとき、前回の車
間距離として前記参考車間距離保存手段に保存されてい
る車間距離を読出して前記相対速度算出手段に与える相
対速度演算補助手段とを備えて成る車間距離監視装置。
4. A speed detecting means for detecting the speed of the host vehicle, a signal sending means for sending a pulsed signal to the outside at a predetermined sending cycle, and a signal sent by the signal sending means reflected on a target. The receiving means for continuously receiving the signal from the returning direction and the signal received by the receiving means.
Addition means for digitizing and adding a predetermined number of times of transmission for each of a plurality of sampling points with different elapsed times from the signal transmission timing in each transmission cycle of the signal transmission means, and for each sampling point of the addition means A peak value detecting means for obtaining a peak value of the added value, an inter-vehicle distance calculating means for calculating a distance corresponding to a sampling point giving the peak value obtained by the peak value detecting means as an inter-vehicle distance to a target in front, Distance measurement value storage means for storing the inter-vehicle distance calculated by the inter-vehicle distance calculation means, and the previously calculated inter-vehicle distance stored in the distance measurement value storage means when the inter-vehicle distance calculation means calculates a new inter-vehicle distance Read the distance,
Relative speed calculating means for calculating the relative speed between the host vehicle and the target in front of the vehicle based on the difference in these inter-vehicle distances, the speed of the host vehicle detected by the speed detecting means, and the inter-vehicle distance calculated by the inter-vehicle distance calculating means. An inter-vehicle distance determining means for determining suitability of the current inter-vehicle distance based on the distance and the relative speed calculated by the relative speed calculating means, and for the driver when the inter-vehicle distance determining means determines that the current inter-vehicle distance is unsuitable. In an inter-vehicle distance monitoring device comprising an alarm output means for outputting an alarm, the appropriate signal output level of the signal transmission means is stepwise so that the peak value detected by the peak value detection means falls within a predetermined level. And a proper signal output level of the signal sending means when the own vehicle is approaching the target ahead from the relative speed calculated by the relative speed calculating means. A reference inter-vehicle distance storage means for saving the inter-vehicle distance by obtaining an inter-vehicle distance at an output level that is one step lower than the appropriate signal output level when the own vehicle is leaving with an output level that is one step lower When the appropriate signal output level adjusted by the signal output control means is changed and a new inter-vehicle distance is obtained, the inter-vehicle distance stored in the reference inter-vehicle distance storage means as the previous inter-vehicle distance is read to read the relative speed. An inter-vehicle distance monitoring device, comprising: relative speed calculation assisting means provided to calculating means.
JP7032399A 1995-02-21 1995-02-21 Monitor for distance-between-two vehicles Pending JPH08226964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7032399A JPH08226964A (en) 1995-02-21 1995-02-21 Monitor for distance-between-two vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7032399A JPH08226964A (en) 1995-02-21 1995-02-21 Monitor for distance-between-two vehicles

Publications (1)

Publication Number Publication Date
JPH08226964A true JPH08226964A (en) 1996-09-03

Family

ID=12357884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7032399A Pending JPH08226964A (en) 1995-02-21 1995-02-21 Monitor for distance-between-two vehicles

Country Status (1)

Country Link
JP (1) JPH08226964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098796A (en) * 2011-11-01 2013-05-20 Fujifilm Corp Radiation image detector and irradiation detection method used for radiation image detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098796A (en) * 2011-11-01 2013-05-20 Fujifilm Corp Radiation image detector and irradiation detection method used for radiation image detector

Similar Documents

Publication Publication Date Title
US5485155A (en) Radar system detecting plural obstacles and measuring distance based on full gain and automatic gain control
JP4595197B2 (en) Distance measuring device
US7142289B2 (en) Radar apparatus
JP2000075030A (en) Scanning laser radar
JP3635154B2 (en) Distance measuring device
JPH08226964A (en) Monitor for distance-between-two vehicles
JP3947905B2 (en) Ranging device for vehicles
JP2004184333A (en) Distance measuring apparatus
JP2001255371A (en) Distance measuring device for motor vehicle
JP3465374B2 (en) Radar equipment for vehicles
JPH1172561A (en) Alarming device for distance between vehicles
JP2002006040A (en) Object sensing device
JP2903746B2 (en) Inter-vehicle distance detection device
JPH0634320A (en) Measuring apparatus of inter-vehicle distance
JPH10239432A (en) Distance measuring device
JPH06109842A (en) Distance detection apparatus
JPH10239433A (en) Distance measuring device
CN113093200A (en) Ultrasonic object detection device, correction amount setting method, and medium
JPH0399957A (en) Forward vehicle detecting device
JPH1062532A (en) Radar for vehicle
JP3360434B2 (en) Inter-vehicle distance measuring device
JPH07301672A (en) Inter-vehicle distance radar device
JPH10260025A (en) Object shape detecting device and vehicle shape detecting device
JP2006248295A (en) Travel control device and travel control method for vehicle
JPH11166974A (en) Range finder

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050616

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070427

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Effective date: 20070808

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Effective date: 20070917

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101005

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5