JPH08226840A - Coriolis mass flowmeter - Google Patents

Coriolis mass flowmeter

Info

Publication number
JPH08226840A
JPH08226840A JP3325495A JP3325495A JPH08226840A JP H08226840 A JPH08226840 A JP H08226840A JP 3325495 A JP3325495 A JP 3325495A JP 3325495 A JP3325495 A JP 3325495A JP H08226840 A JPH08226840 A JP H08226840A
Authority
JP
Japan
Prior art keywords
measuring
fluid
vibration
tube
measuring tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3325495A
Other languages
Japanese (ja)
Inventor
Norikazu Osawa
紀和 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP3325495A priority Critical patent/JPH08226840A/en
Publication of JPH08226840A publication Critical patent/JPH08226840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To provide a Coriolis mass flowmeter in which the stay, the clogging and the pressure loss of a fluid to be measured can be reduced by a method wherein one end of one measuring tube out of a pair of measuring tubes is made to communicate with one end of the other measuring tube. CONSTITUTION: A connecting tube 11 makes one end of one measuring tube 12 communicate with one end of the other measuring tube 13, and a fluid (f) to be measured flows into from the other end of one measuring tube 12 so as to flow out from the other end of the other measuring tube 13. A vibration is applied to the measuring tubes 12, 13 by a vibrator 3. When the fluid (f) to be measured flows at this time, Coriolis' force is generated, and the measuring tubes 12, 13 are vibrated in a form in which vibration patterns are superposed. When their vibration is measured by vibration detection sensors 4, 5, a mass flow rate can be found. Since no branch or no juncture exists in the flow passage of the fluid (f) to be measured, there is no fear that the fluid (f) to be measured is stayed or clogged in a branch part or a juncture part and that a pressure loss is increased. Consequently, it is possible to obtain a Coriolis mass flowmeter which even a high-viscosity fluid or a fluid which is easy to corrode or clog such as a food or the like can be measured stably at a low pressure loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、測定流体の滞流、詰ま
り、圧力損失が少ないコリオリ質量流量計に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Coriolis mass flowmeter which has less stagnant flow, clogging and pressure loss of a measuring fluid.

【0002】[0002]

【従来の技術】図10は、従来より一般に使用されてい
る従来例の平行2本U字管型コリオリ質量流量計の構成
説明図で、例えば、米国特許4,491,025号、発
明の名称「PARALLEL PATH CORIOLIS MASS FLOW RATE ME
TER 」1982年11月3日出願、1985年1月1日
特許に示されている。図11,図12は、図10の動作
説明図である。
2. Description of the Related Art FIG. 10 is a structural explanatory view of a conventional parallel two U-tube type Coriolis mass flowmeter which is generally used in the past. For example, US Pat. No. 4,491,025, title of the invention. "PARALLEL PATH CORIOLIS MASS FLOW RATE ME
TER "filed on Nov. 3, 1982, patent on Jan. 1, 1985. 11 and 12 are operation explanatory diagrams of FIG. 10.

【0003】図において、1は固定体2に、両端が取付
けられたU字形の測定管で、流量計入口で2つに分岐し
出口で再び合流する。従って、測定流体fは、流量計入
口より流入し、流量計出口より流出する。
In the figure, reference numeral 1 is a U-shaped measuring tube having both ends attached to a fixed body 2, which branches into two at the inlet of the flowmeter and joins again at the outlet. Therefore, the measurement fluid f flows in from the flow meter inlet and flows out from the flow meter outlet.

【0004】2は管路Aへの測定管1の取付け固定体で
ある。3はU字形をなす測定管1の中央部分に設けられ
た加振器で、測定管1をU字形の測定管1が存在する平
面に対し垂直方向に加振する。4,5は、測定管1の固
定端と中央部との間にそれぞれ設けられた振動検出セン
サである。この場合は、電磁コイル(速度センサ)が使
用されている。
Reference numeral 2 is a fixed body for mounting the measuring pipe 1 on the pipe line A. Reference numeral 3 denotes an exciter provided in the central portion of the U-shaped measuring tube 1, which vibrates the measuring tube 1 in a direction perpendicular to the plane in which the U-shaped measuring tube 1 is present. Reference numerals 4 and 5 are vibration detection sensors respectively provided between the fixed end and the central portion of the measuring tube 1. In this case, an electromagnetic coil (speed sensor) is used.

【0005】以上の構成において、測定管1に測定流体
を流した状態で、中央部に設置した加振器3から振動を
与えると、図11に示す如く、M1,M3に示すように
中央部が振動の腹となる1次モード形状で測定管1が振
動する。
In the above-described structure, when a vibration is applied from the vibrator 3 installed in the central portion while the measuring fluid is flowing in the measuring pipe 1, as shown in FIG. The measurement tube 1 vibrates in a first-order mode shape in which is an antinode of vibration.

【0006】この振動は測定管1の上流側と下流側に付
いて考えると、各々固定端付近を中心とする回転運動を
していると見なし得るので、加振器3の振動方向の角速
度『ω』、測定流体の流速『V』(以下『』で囲まれた
記号はベクトル量を表す。)とすると、 Fc=―2m『ω』×『V』 のコリオリ力が働く。
Considering these vibrations on the upstream side and the downstream side of the measuring pipe 1, it can be considered that they are rotating around the fixed end, respectively. Therefore, the angular velocity of the vibration exciter 3 in the vibration direction " Letting “ω” be the flow velocity of the measured fluid be “V” (the symbol surrounded by “” represents a vector quantity), the Coriolis force of Fc = −2 m “ω” × “V” works.

【0007】このコリオリ力により、図12に示す如
く、測定管1の中央点に対して、上流部分と下流部分で
はその撓み振動が対称になる振動モードM4,M6が発
生する。なお、実際には、この2種類の振動パターンが
重畳された形でパイプ1は振動する。この変形を振動検
出手段(通常は変位センサ)4,5で測定することによ
り質量流量Qを知ることができる。
Due to this Coriolis force, as shown in FIG. 12, vibration modes M4 and M6 in which the flexural vibrations are symmetrical in the upstream portion and the downstream portion with respect to the center point of the measuring tube 1 are generated. In addition, actually, the pipe 1 vibrates in a form in which these two types of vibration patterns are superimposed. The mass flow rate Q can be known by measuring this deformation with the vibration detecting means (usually a displacement sensor) 4, 5.

【0008】通常は振動検出手段4と5での振動振幅
や、振動検出手段4と5での位相差を求め、振動周波数
や温度による補正を行い、質量流量を求める。
Usually, the vibration amplitude in the vibration detecting means 4 and 5 and the phase difference in the vibration detecting means 4 and 5 are obtained, correction is made by the vibration frequency and temperature, and the mass flow rate is obtained.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この様
な装置においては、測定流体を2本の測定管1に分岐す
るので、分岐部、合流部で流体の滞流や詰まりが生じた
り、圧力損失が増大する等の欠点が存在する。
However, in such an apparatus, since the measuring fluid is branched into two measuring pipes 1, fluid stagnation or clogging occurs at the branching portion and the merging portion, and pressure loss occurs. There are drawbacks such as increase in

【0010】本発明は、この問題点を解決するものであ
る。本発明の目的は、測定流体の滞流、詰まり、圧力損
失が少ないコリオリ質量流量計を提供するにある。
The present invention solves this problem. An object of the present invention is to provide a Coriolis mass flowmeter which has less stagnant flow, clogging, and pressure loss of a measurement fluid.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に、本発明は、互いに平行に配置された測定管の振動す
る測定管内に測定流体を流し、測定流体の流れと測定管
の角振動によって生じるコリオリ力により、測定管を変
形振動させ、振動の変化を振動検出センサで測定し、質
量流量や密度を求めるコリオリ質量流量計において、同
一形状をなし両端が固定され互いに平行に配置された2
個の測定管と、該測定管の一方の測定管の一端と他方の
測定管の一端とを連通し一方の測定管の他端から測定流
体が流入し他方の測定管の他端から流出出来るようにさ
れた連通管とを具備したことを特徴とするコリオリ質量
流量計を構成したものである。
In order to achieve this object, the invention is based on the fact that the measuring fluid is caused to flow in the vibrating measuring tubes of the measuring tubes arranged parallel to each other, and the flow of the measuring fluid and the angular vibration of the measuring tube. Coriolis mass flowmeter that deforms and vibrates the measuring pipe by the Coriolis force and measures the change in vibration with a vibration detection sensor to determine the mass flow rate and density. Two
One measuring pipe is connected to one measuring pipe and the other measuring pipe is connected to one measuring pipe, and the measuring fluid can flow in from the other measuring pipe and flow out from the other measuring pipe. The Coriolis mass flowmeter is characterized in that it is provided with a communication tube configured as described above.

【0012】[0012]

【作用】以上の構成において、測定管に測定流体が流さ
れ、加振器が駆動されると、コリオリ力が働く、このコ
リオリ力に比例した振動の振幅を測定すれば、質量流量
が測定出来る。以下、実施例に基づき詳細に説明する。
In the above structure, when the measuring fluid is flown into the measuring tube and the vibrator is driven, the Coriolis force acts. By measuring the amplitude of vibration proportional to this Coriolis force, the mass flow rate can be measured. . Hereinafter, detailed description will be given based on examples.

【0013】[0013]

【実施例】図1は、本発明の一実施例の要部構成説明図
である。図において、図10と同一記号の構成は同一機
能を表わす。以下、図10と相違部分のみ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the essential structure of an embodiment of the present invention. In the figure, the same symbols as those in FIG. 10 represent the same functions. Only parts different from FIG. 10 will be described below.

【0014】11は、測定管の一方の測定管12の一端
と他方の測定管13の一端とを連通し、一方の測定管1
2の他端から測定流体fが流入し、他方の測定管13の
他端から流出出来るようにされた連通管である。
Reference numeral 11 connects one end of one measurement pipe 12 of the measurement pipes and one end of the other measurement pipe 13 to connect one measurement pipe 1 to the other.
It is a communication tube that allows the measurement fluid f to flow in from the other end of the second tube 2 and to flow out from the other end of the other measurement tube 13.

【0015】以上の構成において、測定管12,13
は、加振器3により、図2のM11,M12,M13に
示すような振動を行う。このとき図1に示したような方
向に測定流体fが流れると、コリオリ力が生じ、図3の
M14,M15,M16に示すような形状に変形する。
In the above structure, the measuring tubes 12, 13
Causes the vibrator 3 to vibrate as indicated by M11, M12, and M13 in FIG. At this time, when the measurement fluid f flows in the direction as shown in FIG. 1, Coriolis force is generated and deformed into the shapes shown by M14, M15, M16 in FIG.

【0016】なお実際には図2と図3の2種類の振動パ
ターンが重畳した形で測定管12,13は振動する。
Actually, the measuring tubes 12 and 13 vibrate in such a manner that the two types of vibration patterns shown in FIGS. 2 and 3 are superposed.

【0017】この結果、測定流体fの流路に分岐や合流
はないので、分岐部、合流部で測定流体fの滞留や詰ま
りが生じたり、圧力損失が増大する等の心配がない。高
粘度流体や食品等の腐りやすく詰まりやすい流体でも安
定して、低圧損で測定することができるコリオリ質量流
量計が得られる。
As a result, since there is no branching or merging in the flow path of the measuring fluid f, there is no concern that the measuring fluid f will be retained or clogged at the branching or merging portion, or the pressure loss will increase. It is possible to obtain a Coriolis mass flowmeter that can stably measure even a high-viscosity fluid or a fluid such as food that easily rots or clogs, and can measure with low pressure loss.

【0018】図4は、本発明の他の実施例の要部構成説
明図である。本実施例において、21は、測定管の一方
の測定管22の一端と他方の測定管23の一端とを連通
し、一方の測定管22の他端から測定流体fが流入し、
他方の測定管23の他端から流出出来るようにされた連
通管である。
FIG. 4 is an explanatory view of the essential structure of another embodiment of the present invention. In this embodiment, 21 connects one end of one measurement pipe 22 of the measurement pipes and one end of the other measurement pipe 23, and the measurement fluid f flows from the other end of the one measurement pipe 22,
It is a communication tube that can flow out from the other end of the other measuring tube 23.

【0019】24,25は、測定管22,23の固定端
と中央部との間の中央部寄りに互いに対称に設けられた
振動検出センサである。26,27,28,29は測定
管22,23の固定端と中央部との間に、26と27、
28と29とは互いに対向し、26,27と28,29
は互いに対称に設けられた加振器で、コリオリ質量流量
計本体(図示せず)に一端が固定されている。
Reference numerals 24 and 25 are vibration detection sensors symmetrically provided near the central portion between the fixed ends of the measuring tubes 22 and 23 and the central portions. 26, 27, 28 and 29 are 26 and 27 between the fixed ends of the measuring pipes 22 and 23 and the central part.
28 and 29 face each other, and 26, 27 and 28, 29
Are symmetrically provided vibrators, one end of which is fixed to a Coriolis mass flowmeter main body (not shown).

【0020】以上のような構成において、測定管22,
23は、加振器25,26により、図5のM21,M2
2,M23に示すような振動を行う。このとき図4に示
したような方向に測定流体fが流れると、コリオリ力が
生じ、図6のM24,M25,M26に示すような形状
に変形する。なお、実際には図5と図6の2種類の振動
パターンが重畳した形で測定管は振動する。
In the above structure, the measuring tubes 22,
23 is controlled by the vibrators 25 and 26 to move to M21 and M2 of FIG.
2, M23 vibrates. At this time, when the measurement fluid f flows in the direction as shown in FIG. 4, Coriolis force is generated and it is deformed into a shape as shown by M24, M25, M26 in FIG. In addition, actually, the measuring pipe vibrates in a form in which the two types of vibration patterns shown in FIGS.

【0021】図7は、本発明の他の実施例の要部構成説
明図である。本実施例において、31は、測定管の一方
の直管状の測定管32の一端と他方の直管状の測定管3
3の一端とを連通し、一方の測定管32の他端から測定
流体fが流入し、他方の測定管33の他端から流出出来
るようにされた連通管である。
FIG. 7 is an explanatory view of a main part configuration of another embodiment of the present invention. In this embodiment, 31 is one straight tube-shaped measuring tube 32 of one of the measuring tubes and the other straight tube-shaped measuring tube 3 of the measuring tube 32.
3 is a communication tube that communicates with one end of the measurement tube 32 and allows the measurement fluid f to flow in from the other end of the one measurement tube 32 and flow out from the other end of the other measurement tube 33.

【0022】34,35は、測定管32,33との間に
設けられた加振器である。36,37は、測定管32と
装置本体(図示せず)との間に設けられた振動検出セン
サである。38,39は、測定管33と装置本体(図示
せず)との間に設けられた振動検出センサである。
34 and 35 are vibrators provided between the measuring tubes 32 and 33. Reference numerals 36 and 37 denote vibration detection sensors provided between the measuring tube 32 and the apparatus main body (not shown). Reference numerals 38 and 39 are vibration detection sensors provided between the measuring tube 33 and the apparatus main body (not shown).

【0023】以上のような構成において、測定管32,
33は、加振器34,35により、図8のM31,M3
2,M33に示すような振動を行う。このとき図7に示
したような方向に測定流体fが流れると、コリオリ力が
生じ、図9のM34,M35,M36に示すような形状
に変形する。
In the above structure, the measuring pipes 32,
33 is driven by the vibrators 34 and 35, so that M31 and M3 of FIG.
2, M33 is vibrated. At this time, when the measurement fluid f flows in the direction as shown in FIG. 7, Coriolis force is generated and deformed into the shapes as shown by M34, M35, M36 in FIG.

【0024】なお実際には図8と図9の2種類の振動パ
ターンが重畳した形で測定管は振動する。なお、前述の
実施例においては、測定管がU字形或いは直管状と説明
したが、これに限ることはなく、例えば、S字管状、Ω
字形状等の曲がり管形状であってもよい。
Actually, the measuring tube vibrates in a form in which the two kinds of vibration patterns of FIGS. 8 and 9 are superposed. In addition, in the above-described embodiment, the measuring tube is described as a U-shaped or a straight tube, but the invention is not limited to this, and for example, an S-shaped tube, Ω.
It may be a bent tube shape such as a letter shape.

【0025】また、前述の実施例においては、振動検出
センサとして電磁コイル(速度センサ)の場合を示して
説明したが、これに限ることはなく、例えば、変位セン
サ、応力センサ、歪センサでも良い。要するに、測定管
の振動検出が出来るものであればよい。また、振動モー
ドは、実施例に限定するものではなく、実施例以外の振
動モードで励振させても良いことは勿論である。
Further, in the above-described embodiment, the case where the electromagnetic coil (speed sensor) is used as the vibration detection sensor has been described, but the present invention is not limited to this, and may be, for example, a displacement sensor, a stress sensor, or a strain sensor. . In short, it is sufficient if the vibration of the measuring tube can be detected. Further, the vibration mode is not limited to the example, and it goes without saying that the vibration mode may be excited in a vibration mode other than the example.

【0026】[0026]

【発明の効果】以上説明したように、本発明は、互いに
平行に配置された測定管の振動する測定管内に測定流体
を流し、測定流体の流れと測定管の角振動によって生じ
るコリオリ力により、測定管を変形振動させ、振動の変
化を振動検出センサで測定し、質量流量や密度を求める
コリオリ質量流量計において、同一形状をなし両端が固
定され互いに平行に配置された2個の測定管と、該測定
管の一方の測定管の一端と他方の測定管の一端とを連通
し一方の測定管の他端から測定流体が流入し他方の測定
管の他端から流出出来るようにされた連通管とを具備し
たことを特徴とするコリオリ質量流量計を構成した。
As described above, according to the present invention, the measuring fluid is caused to flow in the vibrating measuring tubes of the measuring tubes arranged parallel to each other, and by the flow of the measuring fluid and the Coriolis force generated by the angular vibration of the measuring tube, In a Coriolis mass flowmeter that deforms and vibrates the measuring tube and measures the change in vibration with a vibration detection sensor to determine the mass flow rate and density, two measuring tubes that have the same shape and both ends are fixed and are arranged in parallel with each other. , One end of one of the measuring pipes communicates with one end of the other measuring pipe so that the measuring fluid can flow in from the other end of the one measuring pipe and flow out from the other end of the other measuring pipe A Coriolis mass flowmeter was constructed which was equipped with a tube.

【0027】この結果、測定流体fの流路に分岐や合流
はないので、分岐部、合流部で測定流体fの滞留や詰ま
りが生じたり、圧力損失が増大する等の心配がない。高
粘度流体や食品等の腐りやすく詰まりやすい流体でも安
定して、低圧損で測定することができるコリオリ質量流
量計が得られる。
As a result, since there is no branching or merging in the flow path of the measurement fluid f, there is no concern that retention or clogging of the measurement fluid f will occur at the branching and merging points, or pressure loss will increase. It is possible to obtain a Coriolis mass flowmeter that can stably measure even a high-viscosity fluid or a fluid such as food that easily rots or clogs, and can measure with low pressure loss.

【0028】従って、本発明によれば、測定流体の滞
流、詰まり、圧力損失が少ないコリオリ質量流量計を実
現することが出来る。
Therefore, according to the present invention, it is possible to realize a Coriolis mass flowmeter which causes less stagnant flow, clogging, and pressure loss of the measurement fluid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】図1の動作説明図である。FIG. 2 is an operation explanatory diagram of FIG. 1;

【図3】図1の動作説明図である。FIG. 3 is an operation explanatory diagram of FIG. 1.

【図4】本発明の他の実施例の要部構成説明図である。FIG. 4 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図5】図4の動作説明図である。5 is an operation explanatory diagram of FIG. 4;

【図6】図4の動作説明図である。FIG. 6 is an operation explanatory diagram of FIG. 4;

【図7】本発明の他の実施例の要部構成説明図である。FIG. 7 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図8】図7の動作説明図である。FIG. 8 is an operation explanatory diagram of FIG. 7;

【図9】図7の動作説明図である。9 is an operation explanatory diagram of FIG. 7. FIG.

【図10】従来より一般に使用されている他の従来例の
構成説明図である。
FIG. 10 is a structural explanatory view of another conventional example that is generally used in the past.

【図11】図10の動作説明図である。11 is an operation explanatory diagram of FIG. 10;

【図12】図10の動作説明図である。12 is an operation explanatory diagram of FIG. 10. FIG.

【符号の説明】[Explanation of symbols]

2 固定体 3 加振器 4 振動検出センサ 5 振動検出センサ 11 接続管 12 測定管 13 測定管 21 接続管 22 測定管 23 測定管 24 振動検出センサ 25 振動検出センサ 26 加振器 27 加振器 28 加振器 29 加振器 31 接続管 32 測定管 33 測定管 34 加振器 35 加振器 36 振動検出センサ 37 振動検出センサ 38 振動検出センサ 39 振動検出センサ 2 Fixed body 3 Exciter 4 Vibration detection sensor 5 Vibration detection sensor 11 Connection pipe 12 Measurement pipe 13 Measurement pipe 21 Connection pipe 22 Measurement pipe 23 Measurement pipe 24 Vibration detection sensor 25 Vibration detection sensor 26 Exciter 27 Exciter 28 Exciter 29 Exciter 31 Connection tube 32 Measuring tube 33 Measuring tube 34 Exciter 35 Exciter 36 Vibration detection sensor 37 Vibration detection sensor 38 Vibration detection sensor 39 Vibration detection sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】互いに平行に配置された測定管の振動する
測定管内に測定流体を流し、測定流体の流れと測定管の
角振動によって生じるコリオリ力により、測定管を変形
振動させ、振動の変化を振動検出センサで測定し、質量
流量や密度を求めるコリオリ質量流量計において、 同一形状をなし両端が固定され互いに平行に配置された
2個の測定管と、 該測定管の一方の測定管の一端と他方の測定管の一端と
を連通し一方の測定管の他端から測定流体が流入し他方
の測定管の他端から流出出来るようにされた連通管とを
具備したことを特徴とするコリオリ質量流量計。
1. A measuring fluid is caused to flow in an oscillating measuring tube of measuring tubes arranged parallel to each other, and the Coriolis force generated by the flow of the measuring fluid and the angular vibration of the measuring tube causes the measuring tube to deform and vibrate, thereby changing the vibration. In a Coriolis mass flowmeter for measuring mass flow rate and density by measuring with a vibration detection sensor, two measuring tubes of the same shape and fixed at both ends and arranged parallel to each other, and one of the measuring tubes It is characterized by further comprising: a communication pipe that communicates one end with one end of the other measurement pipe and allows the measurement fluid to flow in from the other end of the one measurement pipe and to flow out from the other end of the other measurement pipe. Coriolis mass flow meter.
JP3325495A 1995-02-22 1995-02-22 Coriolis mass flowmeter Pending JPH08226840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3325495A JPH08226840A (en) 1995-02-22 1995-02-22 Coriolis mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3325495A JPH08226840A (en) 1995-02-22 1995-02-22 Coriolis mass flowmeter

Publications (1)

Publication Number Publication Date
JPH08226840A true JPH08226840A (en) 1996-09-03

Family

ID=12381374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3325495A Pending JPH08226840A (en) 1995-02-22 1995-02-22 Coriolis mass flowmeter

Country Status (1)

Country Link
JP (1) JPH08226840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425399A (en) * 2017-08-25 2019-03-05 罗凡 Coriolis mass flowmeters and its sensor module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425399A (en) * 2017-08-25 2019-03-05 罗凡 Coriolis mass flowmeters and its sensor module
CN109425399B (en) * 2017-08-25 2024-02-20 罗凡 Coriolis mass flowmeter and sensor assembly therefor

Similar Documents

Publication Publication Date Title
US5497666A (en) Increased sensitivity coriolis effect flowmeter using nodal-proximate sensors
JP5674675B2 (en) Coriolis flowmeter with improved vibration mode separation
AU593907B2 (en) Single tube parallel flow coriolis mass flow sensor
CA2378004C (en) Type identification for drive control of a coriolis flowmeter
JP2001514757A (en) Double loop Coriolis effect mass flowmeter
JPH03134521A (en) Mass flowmeter
CN104813147A (en) Improvement detection of change in cross-sectional area of fluid tube in vibrating meter
JP2023159372A (en) manifold
US11499857B2 (en) Correcting a measured flow rate for viscosity effects
KR101807666B1 (en) Vibrating sensor assembly with a one-piece conduit mount
JPH04291119A (en) Colioris mass flowmeter
JPH08226840A (en) Coriolis mass flowmeter
JPH11211529A (en) Coriolis flowmeter
JP5439592B2 (en) Flow meter with a balanced reference member
JPH0341319A (en) Coriolis mass flowmeter
JPH11230804A (en) Corioli's flowmeter
US20010045133A1 (en) Coriolis flowmeter
JPH06331405A (en) Vibration type measuring instrument
JPH0682061B2 (en) Mass flow meter
JPH08313321A (en) Coriolis mass flow meter
JPH0783721A (en) Vibration type measuring apparatus
JPH05215584A (en) Vibration type measuring device
JPH04130224A (en) Mass flowmeter
JPH0499918A (en) Mass flowmeter
JPH08219840A (en) Coriolis mass flow meter