JPH0822615A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPH0822615A JPH0822615A JP15403794A JP15403794A JPH0822615A JP H0822615 A JPH0822615 A JP H0822615A JP 15403794 A JP15403794 A JP 15403794A JP 15403794 A JP15403794 A JP 15403794A JP H0822615 A JPH0822615 A JP H0822615A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- recording medium
- magnetic recording
- atomic
- magnetic layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、固定磁気ディスク装
置などに用いられる磁気記録媒体に関し、詳しくはMR
ヘッドに好適な磁気記録媒体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium used in a fixed magnetic disk device or the like, and more specifically in MR.
The present invention relates to a magnetic recording medium suitable for a head.
【0002】[0002]
【従来の技術】コンピュータなどの情報処理装置の外部
記憶装置として用いられる固定磁気ディスク装置には、
従来、電磁誘導現象を利用して情報の記録・再生を行う
インダクティブ型の磁気ヘッドが用いられてきた。この
インダクティブ型磁気ヘッドを用いた固定磁気ディスク
装置に搭載される磁気記録媒体の磁気特性には、保持力
Hcが大きいことと共に、残留磁束密度Brと磁性層膜
厚δとの積Br・δが大きいことが要求される。これ
は、磁気記録媒体から発生する漏洩磁束を増加させるこ
とで、電磁誘導により磁気ヘッドに誘起される再生電圧
を大きくし再生特性を高めるために必要である。このよ
うな要求を充たすために、磁性層の材料としては、保磁
力Hcが2000Oe以上と大きく、かつ、飽和磁束密
度Bsが約7500Gauss以上と比較的大きな材
料,例えば,Co86Cr12Ta2 やCo 62.5Ni30Cr
7.5 などが一般に用いられてきた。2. Description of the Related Art External information processing devices such as computers
The fixed magnetic disk device used as a storage device,
Conventionally, information is recorded / reproduced using the electromagnetic induction phenomenon.
Inductive magnetic heads have been used. this
Fixed magnetic disk using inductive magnetic head
The magnetic characteristics of the magnetic recording medium installed in the device are
In addition to having a large Hc, the residual magnetic flux density Br and the magnetic layer film
The product Br · δ with the thickness δ is required to be large. this
Increase the leakage flux generated from the magnetic recording medium.
And the reproducing voltage induced in the magnetic head by electromagnetic induction.
Is necessary to improve the reproduction characteristics. This
In order to meet these requirements, the magnetic layer material must be a coercive
The force Hc is as large as 2000 Oe or more and the saturation magnetic flux density is high.
Relatively large material with degree Bs of about 7500 Gauss or more
Fee, eg Co86Cr12Ta2And Co 62.5Ni30Cr
7.5Have been commonly used.
【0003】最近、情報の再生に磁気抵抗効果(MR効
果)を用いたMR方式のヘッドが開発され、インダクテ
ィブ型磁気ヘッドに代わって、情報の記録はインダクテ
ィブ方式のヘッドで行い、情報の再生はこのMR方式の
ヘッドで行う,MRヘッドを用いた固定磁気ディスク装
置が実用化されてきている。MR方式のヘッドは磁束に
対する感度が非常に良いため、磁気記録媒体に情報の再
生特性を高めるために要求されていた従来のような大き
いBr・δが必要とされず、逆に、強い磁場に晒される
とMR方式のヘッド自体が損傷を受けるという問題が生
じるため、磁気記録媒体のBr・δを小さくしなければ
ならなくなっている。具体的には、インダクティブ型磁
気ヘッド用の磁気記録媒体のBr・δは250Gaus
s・μm〜450Gauss・μmとされていたが、M
Rヘッド用の磁気記録媒体のBr・δは100Gaus
s・μm〜200Gauss・μm,さらにはそれ以下
とされることが必要である。Recently, an MR system head using the magnetoresistive effect (MR effect) for reproducing information has been developed. Instead of the inductive magnetic head, the information recording is performed by the inductive system head and the information is reproduced. A fixed magnetic disk device using the MR head, which is performed by the MR head, has been put to practical use. Since the MR type head has a very good sensitivity to magnetic flux, it does not require a large Br · δ, which has been required in the magnetic recording medium to improve the information reproducing characteristics, and, conversely, a strong magnetic field. When exposed, a problem arises in that the MR system head itself is damaged, so Br.delta. Of the magnetic recording medium must be reduced. Specifically, the magnetic recording medium for an inductive magnetic head has a Br · δ of 250 Gaus.
s · μm to 450 Gauss · μm, but M
Br · δ of the magnetic recording medium for the R head is 100 Gaus
s · μm to 200 Gauss · μm, and even lower.
【0004】従来、このようなMRヘッド用の磁気記録
媒体は、従来のインダクティブ型磁気ヘッド用の磁気記
録媒体と同じ磁性材料を用い、磁性層の膜厚を薄くする
ことによりBr・δを小さくする方法で製造されてい
た。Conventionally, such a magnetic recording medium for an MR head uses the same magnetic material as the magnetic recording medium for a conventional inductive magnetic head, and Br.delta. Is reduced by thinning the thickness of the magnetic layer. Was manufactured by the method.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、磁性層
の膜厚を薄くしてBr・δを小さくする従来の技術で
は、磁性層の膜厚が極端に薄くなるので、磁化反応の急
峻さを示すパラメータである保磁力角型比S* が極端に
小さくなってしまうという欠点がある。そのため、この
ような磁気記録媒体を用いて情報の記録・再生を行う
と、線記録密度を表すD50が低下し高密度記録に不利と
なるほか、再生信号の半値幅PW50も増加するという問
題があった。However, in the conventional technique in which the thickness of the magnetic layer is reduced to reduce Br · δ, the thickness of the magnetic layer is extremely reduced, and thus the steepness of the magnetization reaction is exhibited. There is a drawback that the coercive force squareness ratio S *, which is a parameter, becomes extremely small. Therefore, when information is recorded / reproduced using such a magnetic recording medium, D 50, which represents the linear recording density, is disadvantageous for high-density recording, and the full width at half maximum PW 50 of the reproduced signal is also increased. There was a problem.
【0006】この発明は、上述の点に鑑みてなされたも
のであって、保磁力Hcが大きく、Br・δが小さく、
かつ、保磁力角型比S* が大きい磁気特性を有し、MR
ヘッドを用いた固定磁気ディスク装置に好適な磁気記録
媒体を提供することを目的とする。The present invention has been made in view of the above points, and has a large coercive force Hc and a small Br · δ,
In addition, it has magnetic characteristics with a large coercive force squareness ratio S * ,
An object of the present invention is to provide a magnetic recording medium suitable for a fixed magnetic disk device using a head.
【0007】[0007]
【課題を解決するための手段】上記の課題は、この発明
によれば、非磁性基体上に非磁性金属下地層,磁性層,
保護膜,潤滑層がこの順に形成されてなる磁気記録媒体
において、前記磁性層を10原子%ないし16原子%の
Cr,3原子%ないし6原子%のTaおよび4原子%以
下のPtを少なくとも含むCo合金で形成し、飽和磁束
密度Bsが7000Gauss(0.70Tesla)
以下である磁気記録媒体とすることによって解決され
る。なかでも、保磁力Hcが2000Oe以上,残留磁
束密度Brと磁性層膜厚δとの積Br・δが100Ga
uss・μm程度,保磁力角型比S * が0.9以上であ
る磁気記録媒体が好適である。SUMMARY OF THE INVENTION The above-mentioned object is achieved by the present invention.
According to the non-magnetic substrate, a non-magnetic metal underlayer, a magnetic layer,
Magnetic recording medium in which a protective film and a lubricating layer are formed in this order
In the magnetic layer, the magnetic layer of 10 atomic% to 16 atomic%
Cr, 3 atomic% to 6 atomic% Ta and 4 atomic% or less
It is formed of a Co alloy containing at least Pt below and has a saturation magnetic flux.
Density Bs is 7,000 Gauss (0.70 Tesla)
It is solved by the following magnetic recording medium
It Among them, the coercive force Hc is 2000 Oe or more,
The product Br · δ of the flux density Br and the magnetic layer thickness δ is 100 Ga.
Uss / μm, coercive force squareness ratio S *Is 0.9 or more
A magnetic recording medium according to the present invention is suitable.
【0008】[0008]
【作用】CoCrTaPt系合金を用いて磁性層を形成
し、飽和磁束密度Bsが7000Gauss(0.70
Tesla)以下である磁気記録媒体とすることによ
り、保磁力Hcが大きく、Br・δが小さく、かつ、保
持力角型比S* が大きい磁気特性を有し、MRヘッドに
好適な磁気記録媒体が得られる。A magnetic layer is formed using a CoCrTaPt-based alloy, and the saturation magnetic flux density Bs is 7,000 Gauss (0.70).
The magnetic recording medium having a magnetic coercive force Hc, a small Br · δ and a large coercive force squareness ratio S * is suitable for an MR head by using a magnetic recording medium having a magnetic field density of less than Tesla). Is obtained.
【0009】Bsが7000Gaussを超えるような
磁気特性の場合には、Br・δをMRヘッドに適するよ
うに小さくする,例えば100Gauss・μm程度と
小さくすると、S* の値が0.85あるいはそれ以下と
なってしまい、MRヘッドを用いた場合の記録・再生特
性が低下する。これはBr・δを小さくしようとすると
磁性層の膜厚δが150Å以下となり、それに伴って磁
性層を構成する結晶の粒子径が150Å以下と極端に小
さくなり、結晶粒間の磁気的な相互作用が相対的に大き
く低下することが原因と考えられる。In the case of magnetic characteristics such that Bs exceeds 7,000 Gauss, Br * δ is made small so as to be suitable for an MR head, for example, when it is made as small as 100 Gauss * μm, the value of S * is 0.85 or less. Therefore, the recording / reproducing characteristics are deteriorated when the MR head is used. This is because when the Br · δ is reduced, the film thickness δ of the magnetic layer becomes 150 Å or less, and accordingly, the grain size of the crystal forming the magnetic layer becomes extremely small, 150 Å or less, and the magnetic mutual relation between the crystal grains becomes large. It is considered that the action is relatively greatly reduced.
【0010】また、Bsが7000Gauss以下であ
っても、例えば良く知られているCoCrTa系材料を
磁性材料として用いた場合、2000Oeを超えるよう
な大きなHcを得ることが困難であり、また、S* 値も
低下してしまうため、磁気記録媒体としては不適であ
る。一方、CoNiCr系のNiを多く含む材料を磁性
材料として用いた場合、再生時の媒体のノイズが顕著に
増加するためやはり適当でない。Even when Bs is 7,000 Gauss or less, it is difficult to obtain a large Hc exceeding 2000 Oe when using, for example, a well-known CoCrTa-based material as a magnetic material, and S * Since the value also decreases, it is not suitable as a magnetic recording medium. On the other hand, when a CoNiCr-based material containing a large amount of Ni is used as the magnetic material, noise of the medium during reproduction remarkably increases, which is also unsuitable.
【0011】上述のCoCrTaPt系合金の組成とし
ては、Crが10原子%以上16原子%以下,Taが3
原子%以上6原子%以下,Ptが4原子%以下の範囲内
でそれぞれ含有されていることが望ましい。Crの含有
量が10原子%未満と少ないとHc値が低下してしまう
ので不適であり、16原子%を超えて多くなると磁性層
のスパッタ成膜時にCrが結晶粒界に多く偏析し、結晶
粒間の磁気的な相互作用を低下させてしまうため、S*
値の低下を招くので不適当である。また、Taの含有量
が3原子%未満であるとCrの含有量16原子%以下の
範囲でBs値を7000Gauss以下に下げることが
困難であり、Taの含有量が6原子%を超えて多くなる
とHc値が低下してしまうため不適当である。また、P
tが含まれていないと所要の磁気特性を得ることが困難
であり、含有量が4原子%を超えて多くなると媒体ノイ
ズが大きくなり、かつ、高価なPtを多く用いることで
コストも高くなるので不適当である。The composition of the above CoCrTaPt-based alloy is such that Cr is 10 atomic% or more and 16 atomic% or less and Ta is 3 or less.
It is desirable that the content of Pt be 4 atomic% or less and the content of Pt be 4 atomic% or less. When the content of Cr is less than 10 atomic%, the Hc value is lowered, which is not suitable, and when it exceeds 16 atomic%, Cr is segregated to a large amount at the crystal grain boundaries during the sputtering deposition of the magnetic layer, resulting in a crystal. Since it reduces the magnetic interaction between grains, S *
This is unsuitable because it causes a decrease in the value. Further, when the Ta content is less than 3 atomic%, it is difficult to reduce the Bs value to 7,000 Gauss or less in the Cr content range of 16 atomic% or less, and the Ta content exceeds 6 atomic% and is large. If this happens, the Hc value will decrease, which is unsuitable. Also, P
If t is not contained, it is difficult to obtain the required magnetic characteristics, and if the content exceeds 4 atomic%, the medium noise becomes large, and the cost becomes high by using a large amount of expensive Pt. So inappropriate.
【0012】[0012]
【実施例】以下、この発明の実施例について説明する。
図3に、この発明に係わる磁気記録媒体の構成を模式的
に示す。非磁性基体1上に、非磁性金属下地層2,磁性
層3,保護膜4を順次スパッタ成膜し、その上に液体潤
滑剤を塗布して潤滑層5が形成されて構成されている。Embodiments of the present invention will be described below.
FIG. 3 schematically shows the structure of the magnetic recording medium according to the present invention. The non-magnetic metal underlayer 2, the magnetic layer 3, and the protective film 4 are sequentially sputtered on the non-magnetic substrate 1, and a liquid lubricant is applied thereon to form a lubricating layer 5.
【0013】実施例1 Ni−P無電解めっきを施したディスク状のAl合金基
板の表面に、平均砥粒径2μmの白色アルミナの付着し
たテクスチャー加工用研磨テープをゴムローラにより押
しつけながら基板を回転させて第一のテクスチャー加工
を行い、さらに平均砥粒径1μmの白色アルミナを含む
スラリーをゴムローラによって基板表面に押しつけられ
た植毛テープに滴下しながら基板を回転させて第二のテ
クスチャー加工を行い非磁性基体とする。この基体上
に、搬送式のDCマグネトロンスパッタ法でチャンバー
内の圧力5mTorrのArガス雰囲気中で、非磁性金
属下地層として膜厚750ÅのCr下地層,磁性層とし
てCo80Cr14Pt2 Ta4合金層を連続して成膜し
た。その上に、搬送式のDCマグネトロンスパッタ法
で、チャンバー内にArにCH4 を30%モル濃度で混
合した混合ガスを流量20SCCMで流しながら圧力5
mTorrに保った雰囲気中でカーボンをスパッタ成膜
して膜厚150Åの保護膜を形成した。このカーボン保
護膜上にパーフルオロポリエーテル系潤滑剤を塗布して
膜厚18Å〜22Åの潤滑層を形成し、図3に示した構
成の磁気記録媒体を作製した。なお、磁性層の膜厚は媒
体のBr・δが約100Gauss・μm(G・μm)
となるようにする。Example 1 A disk-shaped Al alloy substrate plated with Ni-P electroless plating was pressed against a surface of a disk-shaped Al alloy substrate with white alumina having an average abrasive grain size of 2 μm by a rubber roller to rotate the substrate. The first texture processing is performed, and then the slurry containing white alumina having an average abrasive grain size of 1 μm is dropped onto the flocking tape pressed against the surface of the substrate by the rubber roller, and the substrate is rotated to perform the second texture processing. Use as a base. On this substrate, a non-magnetic metal underlayer having a thickness of 750 Å Cr underlayer and a magnetic layer of Co 80 Cr 14 Pt 2 Ta 4 were formed by a transfer type DC magnetron sputtering method in an Ar gas atmosphere at a pressure of 5 mTorr in a chamber. The alloy layer was continuously formed. On top of that, by a transfer type DC magnetron sputtering method, a mixed gas in which Ar is mixed with CH 4 at a 30% molar concentration is flown in the chamber at a flow rate of 20 SCCM and the pressure is 5
Carbon was sputter-deposited in an atmosphere kept at mTorr to form a protective film having a film thickness of 150Å. A perfluoropolyether-based lubricant was applied on the carbon protective film to form a lubricating layer having a film thickness of 18Å to 22Å, and the magnetic recording medium having the structure shown in FIG. 3 was produced. The thickness of the magnetic layer is such that the medium Br · δ is about 100 Gauss · μm (G · μm).
So that
【0014】このようにして作製された実施例1の磁気
記録媒体の磁気特性および記録・再生特性を評価した。
磁気特性は試料振動形磁力計(VSM)で測定し、記録
・再生特性は表1に示した条件で測定した。磁気特性の
測定結果を表2に、記録・再生特性の測定結果を表3に
示す。なお、表2には各磁気記録媒体の磁性層組成も併
せて示してある。The magnetic characteristics and the recording / reproducing characteristics of the magnetic recording medium of Example 1 thus manufactured were evaluated.
The magnetic characteristics were measured with a sample vibrating magnetometer (VSM), and the recording / reproducing characteristics were measured under the conditions shown in Table 1. Table 2 shows the measurement results of the magnetic characteristics, and Table 3 shows the measurement results of the recording / reproducing characteristics. Table 2 also shows the composition of the magnetic layer of each magnetic recording medium.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】[0017]
【表3】 [Table 3]
【0018】表2,表3に見られるように、この実施例
1の媒体はBr・δが約100G・μmであっても保磁
力Hcは2200Oe,保磁力角型比S* 値は0.91
3と良好であり、記録・再生特性も良好である。上記の
製造方法で、磁性層を形成するためのスパッタリングタ
ーゲットとして種々の合金組成のターゲットを用いて磁
性層をスパッタ成膜し、磁性層の合金組成の異なる各種
磁気記録媒体を作製し、媒体の磁気特性と合金組成との
関連を調べた。磁性層の合金組成はICP発光分光分析
で測定した。図1に保磁力Hcと合金組成との関係を、
また、図2に保磁力角型比S* と組成との関係を示す。
合金組成については、各図の横軸にCo中のCr量をa
t%(原子%)で示し、Co中のTa量およびPt量は
パラメータとして2at%Taおよび3at%Pt,4
at%Taおよび3at%Pt,7at%Taおよび3
at%Pt,4at%Taおよび5at%Ptの4通り
に変えてある。As can be seen from Tables 2 and 3, the medium of Example 1 has a coercive force Hc of 2200 Oe and a coercive force squareness ratio S * value of 0. 0 even when Br · δ is about 100 G · μm. 91
3 was good, and the recording / reproducing characteristics were also good. In the above-mentioned manufacturing method, the magnetic layer is sputter-deposited using a target having various alloy compositions as a sputtering target for forming the magnetic layer, and various magnetic recording media having different alloy compositions of the magnetic layer are produced. The relationship between magnetic properties and alloy composition was investigated. The alloy composition of the magnetic layer was measured by ICP emission spectroscopy. Figure 1 shows the relationship between coercive force Hc and alloy composition.
Further, FIG. 2 shows the relationship between the coercive force squareness ratio S * and the composition.
Regarding the alloy composition, the abscissa of each figure shows the amount of Cr in Co as a
The amount of Ta and the amount of Pt in Co are 2 at% Ta and 3 at% Pt, 4 as parameters.
at% Ta and 3 at% Pt, 7 at% Ta and 3
At% Pt, 4 at% Ta, and 5 at% Pt are changed in four ways.
【0019】図1および図2より、Cr量が10at%
〜16at%,Ta量が3at%〜6at%の範囲内で
高いHcとともに高いS* が得られていることが判る。
また記録・再生特性について評価したところ、高いH
c,S* が得られた組成範囲内で、さらに4at%以下
のPtが含まれている組成範囲内で良好な特性が得られ
たが、Ptの量が4at%を超える組成では媒体ノイズ
が大きくなり良好な記録・再生特性は得られなかった。From FIGS. 1 and 2, the Cr content is 10 at%.
It can be seen that a high S * is obtained together with a high Hc in the range of -16 at% and Ta amount within the range of 3 at% to 6 at%.
When the recording / reproducing characteristics were evaluated, high H
Good characteristics were obtained within the composition range in which c, S * was obtained and further containing 4 at% or less of Pt. It became large and good recording / reproducing characteristics could not be obtained.
【0020】比較例1 実施例1において、磁性層の合金組成をCo86Cr12T
a2 と変えたこと以外は実施例1と同様にして磁気記録
媒体を作製し、磁気特性および記録・再生特性を評価し
た。その結果を実施例1の媒体に併せて表2,表3に示
す。表2,表3に見られるように、飽和磁束密度Bsは
7700Gaussであり、保磁力角型比S* が0.8
3と低く、記録・再生特性も悪い。Comparative Example 1 In Example 1, the alloy composition of the magnetic layer was changed to Co 86 Cr 12 T.
Other than changing the a 2 is A magnetic recording medium was manufactured in the same manner as in Example 1 to evaluate the magnetic properties and the recording and reproducing characteristics. The results are shown in Tables 2 and 3 together with the medium of Example 1. As seen in Tables 2 and 3, the saturation magnetic flux density Bs is 7700 Gauss, and the coercive force squareness ratio S * is 0.8.
It is as low as 3, and the recording / playback characteristics are poor.
【0021】比較例2 実施例1において、磁性層の合金組成をCo82Cr14T
a4 と変えたこと以外は実施例1と同様にして磁気記録
媒体を作製し、磁気特性および記録・再生特性を評価し
た。その結果を同様に表2,表3に示す。表2,表3に
見られるように、飽和磁束密度Bsは6700Gaus
sであるが、Ptを含んでいないために保磁力Hcが低
く、従って記録・再生特性も悪い。Comparative Example 2 In Example 1, the alloy composition of the magnetic layer was changed to Co 82 Cr 14 T 2.
Other than changing the a 4 will produce a magnetic recording medium in the same manner as in Example 1 to evaluate the magnetic properties and the recording and reproducing characteristics. The results are also shown in Tables 2 and 3. As can be seen from Tables 2 and 3, the saturation magnetic flux density Bs is 6700 Gaus.
However, since it does not contain Pt, the coercive force Hc is low and therefore the recording / reproducing characteristics are also poor.
【0022】比較例3 実施例1において、磁性層の合金組成をCo59Ni25C
r12Ta4 と変えたこと以外は実施例1と同様にして磁
気記録媒体を作製し、磁気特性および記録・再生特性を
評価した。その結果を同様に表2,表3に示す。表2,
表3に見られるように、飽和磁束密度Bsは6800G
aussであり、磁気特性も良好であるが、表3に見ら
れるように記録・再生時のノイズが大きくて好ましくな
い。Comparative Example 3 In Example 1, the alloy composition of the magnetic layer was changed to Co 59 Ni 25 C.
A magnetic recording medium was produced in the same manner as in Example 1 except that the magnetic recording medium was changed to r 12 Ta 4, and the magnetic characteristics and the recording / reproducing characteristics were evaluated. The results are also shown in Tables 2 and 3. Table 2,
As shown in Table 3, the saturation magnetic flux density Bs is 6800G.
However, as shown in Table 3, noise during recording / reproduction is large, which is not preferable.
【0023】[0023]
【発明の効果】この発明によれば、非磁性基体上に非磁
性金属下地層,磁性層,保護膜,潤滑層がこの順に形成
されてなる磁気記録媒体において、前記磁性層が10原
子%ないし16原子%のCrと3原子%ないし6原子%
のTaと4原子%以下のPtとを少なくとも含むCo合
金からなり、飽和磁束密度Bsが7000Gauss
(0.70Tesla)以下である磁気記録媒体とす
る。このような磁気記録媒体は、Br・δが100G・
μm程度と非常に小さい場合でも、従来得ることができ
なかった高保磁力Hcと高保磁力角型比S* を同時に実
現することができ、特にMRヘッドを使用する固定磁気
ディスク装置に好適である。According to the present invention, in a magnetic recording medium in which a nonmagnetic metal underlayer, a magnetic layer, a protective film, and a lubricating layer are formed in this order on a nonmagnetic substrate, the magnetic layer is 10 atomic% or more. 16 atom% Cr and 3 atom% to 6 atom%
Of Co and at least 4 atomic% of Pt and having a saturation magnetic flux density Bs of 7,000 Gauss
The magnetic recording medium is (0.70 Tesla) or less. Such a magnetic recording medium has a Br · δ of 100 G ·
Even when it is as small as about μm, a high coercive force Hc and a high coercive force squareness ratio S * which could not be obtained in the past can be realized at the same time, and it is particularly suitable for a fixed magnetic disk device using an MR head.
【図1】この発明に係わる磁気記録媒体の保磁力Hcと
磁性層の合金組成との関係を示す線図FIG. 1 is a diagram showing a relationship between a coercive force Hc of a magnetic recording medium according to the present invention and an alloy composition of a magnetic layer.
【図2】この発明に係わる磁気記録媒体の保磁力角型比
S* と磁性層の合金組成との関係を示す線図FIG. 2 is a diagram showing the relationship between the coercive force squareness ratio S * of the magnetic recording medium according to the present invention and the alloy composition of the magnetic layer.
【図3】この発明に係わる磁気記録媒体の模式的断面図FIG. 3 is a schematic sectional view of a magnetic recording medium according to the present invention.
1 非磁性基体 2 非磁性金属下地層 3 磁性層 4 保護膜 5 潤滑層 1 Nonmagnetic Substrate 2 Nonmagnetic Metal Underlayer 3 Magnetic Layer 4 Protective Film 5 Lubrication Layer
Claims (2)
層,保護膜,潤滑層がこの順に形成されてなる磁気記録
媒体において、前記磁性層が10原子%ないし16原子
%のCr,3原子%ないし6原子%のTaおよび4原子
%以下のPtを少なくとも含むCo合金からなり、飽和
磁束密度Bsが7000Gauss(0.70Tesl
a)以下であることを特徴とする磁気記録媒体。1. A magnetic recording medium comprising a non-magnetic metal underlayer, a magnetic layer, a protective film and a lubricating layer formed in this order on a non-magnetic substrate, wherein the magnetic layer comprises 10 atomic% to 16 atomic% of Cr, It is made of a Co alloy containing at least 3 atomic% to 6 atomic% Ta and 4 atomic% or less Pt, and has a saturation magnetic flux density Bs of 7,000 Gauss (0.70 Tesl).
a) A magnetic recording medium characterized by being:
密度Brと磁性層膜厚δとの積Br・δが100Gau
ss・μm程度,保磁力角型比S* が0.9以上である
ことを特徴とする請求項1記載の磁気記録媒体。2. A coercive force Hc of 2000 Oe or more, and a product of the residual magnetic flux density Br and a magnetic layer thickness δ, Br · δ, is 100 Gau.
2. The magnetic recording medium according to claim 1, wherein the coercive force squareness ratio S * is 0.9 or more and about ss.μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15403794A JPH0822615A (en) | 1994-07-06 | 1994-07-06 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15403794A JPH0822615A (en) | 1994-07-06 | 1994-07-06 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0822615A true JPH0822615A (en) | 1996-01-23 |
Family
ID=15575540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15403794A Pending JPH0822615A (en) | 1994-07-06 | 1994-07-06 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0822615A (en) |
-
1994
- 1994-07-06 JP JP15403794A patent/JPH0822615A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yogi et al. | Dependence of magnetics, microstructures and recording properties on underlayer thickness in CoNiCr/Cr media | |
US6372367B1 (en) | Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same | |
JP2513893B2 (en) | Magnetic recording media | |
JPS63237210A (en) | Magnetic recording medium | |
JP3359706B2 (en) | Magnetic recording media | |
US5047297A (en) | Magnetic recording medium and manufacturing method thereof | |
US6090496A (en) | Magnetic recording medium and non-magnetic alloy film | |
JP3625865B2 (en) | Magnetic recording medium and magnetic recording / reproducing apparatus | |
US5560786A (en) | Magnetic thin film material for magnetic recording | |
JPH0822615A (en) | Magnetic recording medium | |
JP2004234718A (en) | Magnetic recording medium | |
JP2001093139A (en) | Magnetic recording medium and magnetic recording and reproducing device | |
JP2002324313A (en) | Manufacturing method of magnetic recording medium | |
JP2527616B2 (en) | Metal thin film magnetic recording medium | |
JPH0770037B2 (en) | Metal thin film magnetic recording medium for in-plane magnetization recording | |
JPH06215348A (en) | Magnetic recording medium | |
JP3013598B2 (en) | Magnetic recording media | |
JPH04134718A (en) | Magnetic recording medium | |
JPH0793738A (en) | Magnetic recording medium | |
JPH11250438A (en) | Magnetic recording medium, production of magnetic recording medium and magnetic recorder | |
JP2544205B2 (en) | Metal thin film magnetic recording medium for in-plane magnetization recording | |
JPH0312814A (en) | Thin metallic film type magnetic recording medium | |
JPH05101933A (en) | Magnetic recording medium | |
JP2001067636A (en) | Magnetic recording medium | |
JPH05189740A (en) | Magnetic recording medium |