JPH0822610A - Production of thin-film magnetic head - Google Patents

Production of thin-film magnetic head

Info

Publication number
JPH0822610A
JPH0822610A JP15336194A JP15336194A JPH0822610A JP H0822610 A JPH0822610 A JP H0822610A JP 15336194 A JP15336194 A JP 15336194A JP 15336194 A JP15336194 A JP 15336194A JP H0822610 A JPH0822610 A JP H0822610A
Authority
JP
Japan
Prior art keywords
electrode
resist
photolithography
electrodes
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15336194A
Other languages
Japanese (ja)
Inventor
Tomoo Ikeda
池田  智夫
Nobuhito Fukushima
信人 福島
Koji Fujii
浩司 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP15336194A priority Critical patent/JPH0822610A/en
Publication of JPH0822610A publication Critical patent/JPH0822610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To form a magneto-resistance(MR) type thin-film magnetic head dealing with a higher recording density by forming electrode patterns on a photosensitive material by photolithography and diagonally irradiating this material with ions, thereby ion trimming the material. CONSTITUTION:An MR element 2 is formed by photolithography and etching on a substrate 1 consisting of a nonmagnetic material. An electrode film 3 consisting of a conductive material is then formed on this element 2 and the electrode patterns are formed by photolithography on the resist 4 of the photosensitive material. The resist is ion trimmed by diagonal irradiation with the ions to form electrodes 10. The ion trimming is executed at the spacings narrower than the spacings between the electrode patterns by utilizing the shadows of the resist 4, by which the inter-electrode spacings are narrowed and the track width is narrowed regardless of the accuracy of a photomask. Consequently, the magneto-resistance effect type thin-film magnetic head dealing with the higher recording density is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高記録密度化に適した薄
膜磁気ヘッドの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film magnetic head suitable for high recording density.

【0002】[0002]

【従来の技術】図3は従来の磁気抵抗効果型薄膜ヘッド
の電極の製造工程を示す図である。まず基板1上に磁気
抵抗効果型素子(以下MR素子と称する)2を形成す
る。このMR素子2の形成は一般的にフォトリソグラフ
ィ技術とエッチング技術とで達成される。その後MR素
子2上に電極膜3を成膜し、その上から感光性材料であ
るレジスト4をコーティングする。次に、図3−(a)
に示す様にフォトリソグラフィ技術を利用してレジスト
4を電極パターンに形成し、その後イオンミリングを行
う。一般に電極パターン形状通りに電極膜はパターンニ
ングするため、イオンは基板に対して垂直方向から注が
れる。
2. Description of the Related Art FIG. 3 is a diagram showing a manufacturing process of electrodes of a conventional magnetoresistive thin film head. First, a magnetoresistive effect element (hereinafter referred to as MR element) 2 is formed on a substrate 1. The formation of the MR element 2 is generally achieved by a photolithography technique and an etching technique. After that, an electrode film 3 is formed on the MR element 2, and a resist 4 which is a photosensitive material is coated on the electrode film 3. Next, FIG. 3- (a)
As shown in FIG. 3, a resist 4 is formed into an electrode pattern by using a photolithography technique, and then ion milling is performed. Generally, the electrode film is patterned according to the shape of the electrode pattern, so that ions are poured from the direction perpendicular to the substrate.

【0003】イオンミリングによって電極膜3が除去さ
れ、MR素子2が現れた時点でイオンミリングは終了と
なり、図3−(b)に示す状態になる。
When the MR element 2 appears after the electrode film 3 is removed by ion milling, the ion milling ends and the state shown in FIG. 3- (b) is obtained.

【0004】最後に、レジスト4は取り除かれ、図3−
(c)に示す様にMR素子2上に電極膜3が電極パター
ンに形成される。
Finally, the resist 4 is removed and the process shown in FIG.
As shown in (c), the electrode film 3 is formed in an electrode pattern on the MR element 2.

【0005】[0005]

【発明が解決しようとする課題】高記録密度化方向に進
んでいる現在の磁気記録分野において磁気情報が記録さ
れている記録媒体のトラック幅を狭めることは重要な課
題となっている。それにともない、そこから情報を読み
取る磁気ヘッド側においても狭トラック化は必要とな
る。MR素子を用いた磁気抵抗効果型薄膜ヘッドではM
R素子の両端に配置された一対の電極の間隔で情報読み
取りのトラック幅は規制される。
In the current magnetic recording field in which the recording density is increasing, it is an important subject to reduce the track width of a recording medium on which magnetic information is recorded. Along with this, it is necessary to narrow the track on the magnetic head side that reads information from the magnetic head. In a magnetoresistive thin film head using an MR element, M
The track width for information reading is regulated by the distance between the pair of electrodes arranged at both ends of the R element.

【0006】一方トラック幅を規制する電極の形成は、
レジストの電極パターンを利用してイオンミリングによ
って行われる。そのレジストでできた電極パターンは電
極膜がイオンミリングされて無くなるまで、その形を残
しておかなくてはならず、レジストの厚みは最低でも1
μm以上は必要である。しかしながらレジストが厚くな
るほどそのレジストをフォトリソグラフィによって細く
パターンニングすることは難しくなる。一般に厚さ1μ
m以上のレジストを1μm以下の間隔の電極パターンに
形成することは難しく、電極パターン通りに電極が形成
される従来の電極形成方法では、トラック幅となる電極
間隔は1μm以下にする事は難しい。
On the other hand, the formation of the electrode for controlling the track width is
Ion milling is performed using the electrode pattern of the resist. The electrode pattern made of the resist must remain in its shape until the electrode film is ion milled and disappears, and the resist thickness is at least 1
At least μm is necessary. However, the thicker the resist, the more difficult it becomes to finely pattern the resist by photolithography. Generally 1μ thick
It is difficult to form a resist of m or more on the electrode pattern with an interval of 1 μm or less, and with the conventional electrode forming method in which the electrodes are formed according to the electrode pattern, it is difficult to set the electrode interval to be the track width to 1 μm or less.

【0007】また、電極パターン通りに電極が形成され
るため、電極パターン形成時に生じるロットのばらつき
がそのまま電極寸法のばらつきになってしまう。例え
ば、電極パターンの形成時での加工精度が1±0.1μ
mであれば、電極の寸法精度は当然1±0.1μmに出
来上がる。電極パターンの加工精度はフォトリソグラフ
ィで使用する露光装置の精度に大きく影響され、加工精
度の高くするには高価な露光装置が必要となる。
Further, since the electrodes are formed according to the electrode patterns, the lot variations that occur when the electrode patterns are formed are the same as the electrode dimensions. For example, the processing accuracy when forming the electrode pattern is 1 ± 0.1μ
If m, the dimensional accuracy of the electrode is naturally 1 ± 0.1 μm. The processing accuracy of the electrode pattern is greatly affected by the accuracy of the exposure apparatus used in photolithography, and an expensive exposure apparatus is required to increase the processing accuracy.

【0008】[0008]

【課題を解決するための手段】本発明では、上記課題を
解決するために、電極パターンの間隔は予め広く作って
おき、電極形成のために行うイオンミリング工程におい
て、基板に対してイオンを斜めから入射させ、レジスト
で形成される電極パターンの影になる部分はイオンミリ
ングされないようにした。
According to the present invention, in order to solve the above-mentioned problems, the electrode patterns are preliminarily widened, and ions are obliquely applied to the substrate in the ion milling process for forming the electrodes. It was made to enter from above, and the part which becomes the shadow of the electrode pattern formed of the resist was prevented from being ion milled.

【0009】[0009]

【作用】イオンの入射を斜めにすることによって、レジ
ストの影を利用して電極パターンの間隔より狭い間隔で
イオンミリングすることが可能となり、その結果電極の
間隔を狭くすることができるようになる。そのため電極
の間隔で規制されるトラック幅をフォトリソグラフィに
よる加工精度に関係なく狭めることができ、高記録密度
に対応した磁気抵抗効果型薄膜ヘッドの製造を可能とす
る。
By tilting the incidence of ions, it is possible to use the shadow of the resist to perform ion milling at a distance narrower than the distance between the electrode patterns, and as a result, the distance between the electrodes can be reduced. . Therefore, the track width regulated by the distance between the electrodes can be narrowed regardless of the processing accuracy by photolithography, and the magnetoresistive thin film head compatible with high recording density can be manufactured.

【0010】また、本発明によるとフォトリソグラフィ
によって形成された電極パターンの間隔よりも本来作製
しようとする電極の間隔を小さくできるため、フォトマ
スクの寸法精度やフォトリソグラフィ工程での加工精度
もそれほど必要としない。なぜなら電極パターン形成時
の加工ばらつきも、電極間隔と同様に電極形成時には小
さくする事ができるためである。よってフォトリソグラ
フィ工程にそれほど注意を払わなくてすみ作業が容易に
なるとともにフォトリソグラフィ工程に使用する露光装
置も加工精度の低い安価なもので済む。そのためコスト
も低減することができる。
Further, according to the present invention, the distance between the electrodes to be originally manufactured can be made smaller than the distance between the electrode patterns formed by photolithography, so that the dimensional accuracy of the photomask and the processing accuracy in the photolithography process are also required. Not. This is because the variation in processing during electrode pattern formation can be reduced during electrode formation as well as the electrode spacing. Therefore, the work can be done easily without paying much attention to the photolithography process, and the exposure apparatus used in the photolithography process can be inexpensive and have low processing accuracy. Therefore, the cost can be reduced.

【0011】[0011]

【実施例】図1は本発明の磁気抵抗効果型薄膜ヘッドの
電極の断面図であり、図2は本発明の磁気抵抗効果型薄
膜ヘッドの電極の製造工程を示した図である。まず非磁
性材料でできた基板1上にフォトリソグラフィ技術とエ
ッチング技術とを用いMR素子2を形成する。その後M
R素子2上に導電性材料である電極膜3を成膜し、その
上から感光性材料であるレジスト4をコーティングし、
図2−(a)の状態にする。
1 is a sectional view of an electrode of a magnetoresistive effect thin film head of the present invention, and FIG. 2 is a diagram showing a manufacturing process of an electrode of a magnetoresistive effect thin film head of the present invention. First, the MR element 2 is formed on the substrate 1 made of a non-magnetic material by using the photolithography technique and the etching technique. Then M
An electrode film 3 which is a conductive material is formed on the R element 2, and a resist 4 which is a photosensitive material is coated on the electrode film 3.
The state shown in FIG.

【0012】次に、図2−(b)に示す如くフォトリソ
グラフィ技術を利用してレジスト4を電極パターンに形
成する。
Next, as shown in FIG. 2- (b), a resist 4 is formed into an electrode pattern by using a photolithography technique.

【0013】その後、図2−(c)に示す如くイオンミ
リングを行う。この時、電極膜3の面に対してイオンを
斜めから入射させることにより、レジスト4で形成され
た電極パターンの影を利用して電極膜3がイオンミリン
グされる部分を狭めることができる。
After that, ion milling is performed as shown in FIG. At this time, by making ions obliquely incident on the surface of the electrode film 3, it is possible to narrow the ion-milled portion of the electrode film 3 by utilizing the shadow of the electrode pattern formed by the resist 4.

【0014】電極膜3がイオンミリングされて無くな
り、下地のMR素子2が現れた時点でイオンミリングを
終了する。その結果図2−(d)の状態となる。
Ion milling is terminated when the electrode film 3 is ion-milled and disappears and the underlying MR element 2 appears. As a result, the state shown in FIG.

【0015】その後、レジスト4を剥離液等を利用して
取り除き、最終的に図1に示す様に狭い間隔をもつ電極
10が形成される。
After that, the resist 4 is removed by using a stripping solution or the like to finally form the electrodes 10 having a narrow interval as shown in FIG.

【0016】実際に実験によりイオン入射角と電極間隔
との関係を調べてみた。図4は本発明の実験に使用した
サンプルの概略図である。実験方法としては、まずガラ
スでできた基板1上に電極膜3を成膜し、その上にレジ
スト4を膜厚tの厚さでコーティングし、フォトリソグ
ラフィによってレジスト4をL2の間隔をもつ電極パタ
ーンに形成する。その後イオン入射角θを変えてイオン
ミリングを行い、実際に形成された電極の電極間隔L1
の違いを調べた。電極膜3はCrを0.2μmの厚さで
スパッタにより成膜した。またレジスト4にはヘキスト
社製AZ4330を使用し、スピンコートによってレジ
スト厚t=3μmでコーティングした。またフォトリソ
グラフィによってできた電極パターンのパターン間隔L
2は6μmで実験を行った。フォトリソグラフィによっ
て3μmの膜厚のレジスト4を6μmの間隔をもつ電極
パターンにパターンニングすることは一般的なレベルで
あり難しい技術では無い。
The relationship between the ion incident angle and the electrode spacing was actually examined by experiments. FIG. 4 is a schematic view of the sample used in the experiment of the present invention. As an experimental method, first, an electrode film 3 is formed on a substrate 1 made of glass, a resist 4 is coated on the substrate 1 to a film thickness t, and the resist 4 is formed by photolithography into electrodes having an interval L2. Form in a pattern. After that, ion milling is performed by changing the ion incident angle θ, and the electrode spacing L1 of the electrodes actually formed.
I checked the difference. The electrode film 3 was formed by sputtering Cr with a thickness of 0.2 μm. As the resist 4, AZ4330 manufactured by Hoechst Co. was used, and the resist was coated with a resist thickness t = 3 μm by spin coating. In addition, the pattern interval L of the electrode pattern formed by photolithography
2 was 6 μm and the experiment was performed. Patterning the resist 4 having a film thickness of 3 μm into an electrode pattern having an interval of 6 μm by photolithography is a general level and not a difficult technique.

【0017】電極膜3はレジスト4に比べて非常に薄い
ので、イオン入射角θと電極間隔L1との間には式
(1)の関係式が成り立つ。0≦tanθ≦∞ であるの
で、理論上では電極間隔L1はパターン間隔L2、レジ
スト厚tがどの様な大きさであっても1μm以下にする
ことが可能である。 L1=L2−t/tanθ ・・・・・(1)
Since the electrode film 3 is much thinner than the resist 4, the relational expression (1) holds between the ion incident angle θ and the electrode interval L1. Since 0 ≦ tan θ ≦ ∞, theoretically, the electrode interval L1 can be 1 μm or less regardless of the pattern interval L2 and the resist thickness t. L1 = L2-t / tan θ (1)

【0018】図5は実験によりイオン入射角θと電極間
隔L1との関係を調べた結果である。正方形の印が実験
結果であり、一点鎖線は式(1)による理論値である。
この結果より入射角θを小さくする即ち電極膜面に対し
て斜めにイオンを入射させるほど電極間隔L1が狭くな
ることがわかる。また、本実験結果は理論値と非常に近
い値を示しており、式(1)を用いることによって電極
間隔L1を推定することが可能であることが確認でき
た。式(1)によると本実験においてはイオン入射角θ
を27°〜31°の範囲にすることで0.1〜1μmに
電極間隔L1を狭めることができる。一般的なイオン注
入法に見られる、イオン入射角θを制御することによる
基板付近でのイオンエネルギー状態への影響は、本実験
においては特に見られなかった。また本実験サンプルが
理論値とほぼ一致しているというこうからも判るよう
に、本製造方法によるとロットごとの寸法ばらつきは非
常に少ない。これは、フォトリソグラフィで作られた電
極パターンでのばらつきも、本製造方法によれば電極形
成時に縮小されるためである。
FIG. 5 shows the results of examination of the relationship between the ion incident angle θ and the electrode interval L1 by experiments. The square mark is the experimental result, and the alternate long and short dash line is the theoretical value according to equation (1).
From this result, it is understood that the electrode interval L1 becomes narrower as the incident angle θ is made smaller, that is, the ions are obliquely incident on the electrode film surface. Further, the result of this experiment shows a value very close to the theoretical value, and it was confirmed that the electrode interval L1 can be estimated by using the formula (1). According to the equation (1), in this experiment, the ion incident angle θ
Is in the range of 27 ° to 31 °, the electrode interval L1 can be narrowed to 0.1 to 1 μm. In the present experiment, the effect of controlling the ion incident angle θ on the ion energy state in the vicinity of the substrate, which is seen in a general ion implantation method, was not particularly observed. Further, as can be seen from the fact that the present experimental sample almost agrees with the theoretical value, the dimensional variation among lots is very small according to the present manufacturing method. This is because variations in the electrode pattern formed by photolithography are also reduced during electrode formation according to the present manufacturing method.

【0019】この製造方法は磁気抵抗効果型薄膜ヘッド
のMR素子のトラック幅を規制する電極間の間隔を狭め
ることに有効であるばかりでなく、平面型磁気ヘッドの
ギャップ形成の工程にも利用できる。
This manufacturing method is not only effective for narrowing the gap between the electrodes for controlling the track width of the MR element of the magnetoresistive thin film head, but can also be used for the step of forming the gap of the planar magnetic head. .

【0020】図6は平面型磁気ヘッドの要部断面図であ
る。非磁性の基板1上に、コイル7に錯交するようにし
て磁性材料からなる下磁極5が配置されており、コイル
7と下磁極5との間は非磁性で且つ電気的絶縁性の材料
からなる絶縁層6で電気的且つ磁気的に遮られている。
そして下磁極5は上磁極8と接触しており、磁気回路を
構成している。上磁極8にはその一部に切り欠きがあ
り、その切り欠き部はヘッドの表面にでている。この切
り欠き部分をギャップと呼び、コイル7に電流を流した
ときにここから漏れる漏れ磁束によって、記録媒体に磁
気信号を記録することができる。またヘッドを外部の衝
撃から守るために、ギャップのまわりは硬質の保護層9
で覆われている。
FIG. 6 is a sectional view of a main part of a flat type magnetic head. A lower magnetic pole 5 made of a magnetic material is arranged on the non-magnetic substrate 1 so as to intersect with the coil 7, and a non-magnetic and electrically insulating material is placed between the coil 7 and the lower magnetic pole 5. Is electrically and magnetically shielded by an insulating layer 6 made of.
The lower magnetic pole 5 is in contact with the upper magnetic pole 8 and constitutes a magnetic circuit. A part of the upper magnetic pole 8 has a notch, and the notch is exposed on the surface of the head. This cutout portion is called a gap, and a magnetic signal can be recorded on the recording medium by the leakage magnetic flux leaking from here when a current is passed through the coil 7. Also, in order to protect the head from external impact, a hard protective layer 9 is provided around the gap.
Covered with.

【0021】高記録密度で磁気信号を記録媒体に記録す
るためには、このギャップをできる限り狭くする事が重
要となる。そこで磁気抵抗効果型薄膜ヘッドの電極形成
と同様に、本発明の製造方法を用いれば、ギャップ狭く
することが可能となる。
In order to record a magnetic signal on a recording medium with a high recording density, it is important to make this gap as narrow as possible. Therefore, the gap can be narrowed by using the manufacturing method of the present invention as in the case of forming the electrodes of the magnetoresistive thin film head.

【0022】[0022]

【発明の効果】本発明によれば、電極形成工程に行うイ
オンミリングにおいて、イオンの入射を斜めにすること
によって、レジストの影を利用して電極パターンの間隔
より狭い間隔でイオンミリングすることが可能となり、
その結果電極の間隔を0.1〜1μmの範囲で狭く形成
することができるようになる。そのため電極の間隔で規
制されるトラック幅を0.1〜1μmにすることが可能
となり、高記録密度に対応した磁気抵抗効果型薄膜ヘッ
ドの製造を可能とする。
According to the present invention, in the ion milling performed in the electrode forming step, by making the incidence of ions oblique, it is possible to utilize the shadow of the resist to perform the ion milling at a distance narrower than the distance between the electrode patterns. Becomes possible,
As a result, the interval between the electrodes can be narrowed in the range of 0.1 to 1 μm. Therefore, the track width regulated by the electrode interval can be set to 0.1 to 1 μm, and the magnetoresistive effect thin film head corresponding to high recording density can be manufactured.

【0023】また、本発明によるとフォトリソグラフィ
によって形成された電極パターンの間隔よりも本来作製
しようとする電極の間隔を小さくできるため、フォトマ
スクの寸法精度やフォトリソグラフィ工程での加工精度
もそれほど必要としない。なぜなら電極パターン形成時
の加工ばらつきも、電極間隔と同様に電極形成時には小
さくする事ができるためである。よってフォトリソグラ
フィ工程にそれほど注意を払わなくてすみ作業が容易に
なるとともにフォトリソグラフィ工程に使用する露光装
置も加工精度の低い安価なもので済む。そのためコスト
も低減することができる。
Further, according to the present invention, since the distance between the electrodes to be originally manufactured can be made smaller than the distance between the electrode patterns formed by photolithography, the dimensional accuracy of the photomask and the processing accuracy in the photolithography process are also required so much. Not. This is because the variation in processing during electrode pattern formation can be reduced during electrode formation as well as the electrode spacing. Therefore, the work can be done easily without paying much attention to the photolithography process, and the exposure apparatus used in the photolithography process can be inexpensive and have low processing accuracy. Therefore, the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気抵抗効果型薄膜ヘッドの電極の断
面図である。
FIG. 1 is a cross-sectional view of electrodes of a magnetoresistive thin film head according to the present invention.

【図2】本発明の磁気抵抗効果型薄膜ヘッドの電極の製
造工程図である。
FIG. 2 is a manufacturing process diagram of electrodes of the magnetoresistive thin film head of the present invention.

【図3】従来の磁気抵抗効果型薄膜ヘッドの電極の製造
工程図である。
FIG. 3 is a manufacturing process diagram of electrodes of a conventional magnetoresistive thin film head.

【図4】本発明の実験に使用したサンプルの概略図であ
る。
FIG. 4 is a schematic diagram of a sample used in an experiment of the present invention.

【図5】本発明の実験によるイオン入射角θと電極間隔
L1との関係を示す図である。
FIG. 5 is a diagram showing a relationship between an ion incident angle θ and an electrode interval L1 according to an experiment of the present invention.

【図6】平面型磁気ヘッドの要部断面図である。FIG. 6 is a cross-sectional view of a main part of a planar magnetic head.

【符号の説明】[Explanation of symbols]

1 基板 2 MR素子 3 電極膜 4 レジスト 5 下磁極 6 絶縁層 7 コイル 8 上磁極 9 保護層 10 電極 DESCRIPTION OF SYMBOLS 1 Substrate 2 MR element 3 Electrode film 4 Resist 5 Lower magnetic pole 6 Insulating layer 7 Coil 8 Upper magnetic pole 9 Protective layer 10 Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気抵抗効果型素子と該磁気抵抗効果型
素子上の両端に所定の間隔を有して形成された一対の電
極とを具備してなる薄膜磁気ヘッドの製造方法であっ
て、前記一対の電極を形成する材料となる電極膜上に感
光性材料をコーティングし、該感光性材料をフォトリソ
グラフィ技術によって所定の間隔を有するレジストによ
り形成された一対の電極パターンを形成する工程と、そ
の後、イオンを前記電極パターンの影ができるような斜
角をなして入射を行うイオンミリングにより、前記電極
パターンの間隔よりも狭くなるような間隔を有する前記
一対の電極を形成する工程とを有することを特徴とする
薄膜磁気ヘッドの製造方法。
1. A method of manufacturing a thin-film magnetic head comprising a magnetoresistive effect element and a pair of electrodes formed on both ends of the magnetoresistive effect element with a predetermined gap therebetween. A step of coating a photosensitive material on an electrode film which is a material for forming the pair of electrodes, and forming a pair of electrode patterns formed of a resist having a predetermined interval by the photosensitive material by a photolithography technique; And then forming the pair of electrodes having an interval that is narrower than the interval between the electrode patterns by ion milling in which ions are incident at an oblique angle so as to form a shadow of the electrode pattern. A method of manufacturing a thin film magnetic head, comprising:
【請求項2】 前記一対電極の間隔をL1とし、該L1
が0.1μm≦L1≦1μmの範囲であることを特徴と
する請求項1記載の薄膜磁気ヘッドの製造方法。
2. The distance between the pair of electrodes is L1, and the L1 is
Is in a range of 0.1 μm ≦ L1 ≦ 1 μm.
JP15336194A 1994-07-05 1994-07-05 Production of thin-film magnetic head Pending JPH0822610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15336194A JPH0822610A (en) 1994-07-05 1994-07-05 Production of thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15336194A JPH0822610A (en) 1994-07-05 1994-07-05 Production of thin-film magnetic head

Publications (1)

Publication Number Publication Date
JPH0822610A true JPH0822610A (en) 1996-01-23

Family

ID=15560779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15336194A Pending JPH0822610A (en) 1994-07-05 1994-07-05 Production of thin-film magnetic head

Country Status (1)

Country Link
JP (1) JPH0822610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996894B2 (en) 2002-03-28 2006-02-14 Hitachi Global Storage Technologies Netherlands B.V. Methods of making magnetic heads with improved contiguous junctions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996894B2 (en) 2002-03-28 2006-02-14 Hitachi Global Storage Technologies Netherlands B.V. Methods of making magnetic heads with improved contiguous junctions

Similar Documents

Publication Publication Date Title
KR100264700B1 (en) A thin film magnetic transducer with self aligned magnetic poles using sacrificial mask and a method of manufacturing this transducer
KR100218755B1 (en) Upper pole structure for pole tip trimming and method for it
JP2006202393A (en) Magnetic head and its manufacturing method
US6445550B1 (en) Method of manufacturing magnetoresistive/inductive composite head and magnetoresistive/inductive composite head
US20010026425A1 (en) Magnetoresistive head, manufacture there of, and magnetic recording/reproducing apparatus with such magnetic head
JPH06334237A (en) Magnetic reluctance reading transducer
US5896251A (en) Magnetoresistance effect head with conductor film pair and magnetic field proving film pair disposed between substrate and magnetoresistance effect film
JPH0822610A (en) Production of thin-film magnetic head
US20010015871A1 (en) Magnetic head, process for fabricating magnetic head and information recorder
JP3440225B2 (en) Frame plating method and method of forming magnetic pole of thin film magnetic head
JP3366582B2 (en) Thin film magnetic head and method of manufacturing the same
JPS6045922A (en) Magneto-resistance effect type magnetic head
JP3930266B2 (en) Magnetic head element, method of manufacturing magnetic head element, and magnetic head
JP2861080B2 (en) Method for forming pattern of amorphous alloy magnetic film
JPS5829116A (en) Magnetoelectric signal converter
JPH05303719A (en) Thin-film magnetic head and its production
JPH05314432A (en) Thin-film magnetic head and manufacture thereof
JP3936085B2 (en) Manufacturing method of magnetic head
JPH08180329A (en) Magnetic head
JP2001256613A (en) Thin-film magnetic head and method of manufacture
JP2004071015A (en) Manufacturing method of thin film magnetic head
JP2001084524A (en) Magnetic head and magnetic head device
JPH0664716B2 (en) Method of manufacturing thin film magnetic head
JP2000207709A (en) Manufacture of thin film magnetic head
JP2005108348A (en) Method for manufacturing perpendicular magnetic recording head