JPH08225924A - Formation of carbon-nitrogen compound-containing film - Google Patents

Formation of carbon-nitrogen compound-containing film

Info

Publication number
JPH08225924A
JPH08225924A JP2638095A JP2638095A JPH08225924A JP H08225924 A JPH08225924 A JP H08225924A JP 2638095 A JP2638095 A JP 2638095A JP 2638095 A JP2638095 A JP 2638095A JP H08225924 A JPH08225924 A JP H08225924A
Authority
JP
Japan
Prior art keywords
film
substrate
carbon
nitrogen
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2638095A
Other languages
Japanese (ja)
Inventor
Satoru Nishiyama
哲 西山
Kiyoshi Ogata
潔 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2638095A priority Critical patent/JPH08225924A/en
Publication of JPH08225924A publication Critical patent/JPH08225924A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for forming a carbon-nitrogen compound- containing film on a substrate capable of forming a film which is hardly reduced in hardness even having a high C/N composition ratio and is superior in adherence even irradiated with ion of comparatively small accelerating energy. CONSTITUTION: Carbon is vapor-deposited on the substrate S to form a film and the irradiations of the nitrogen ion and the inert gas ion are executed simultaneously or alternately on the substrate S to form a mixed layer Sm1 with the substrate S, and a carbon-nitrogen compound-containing film Sf, or preceding to this operation, the irradiation of the nitrogen ion and/or the inert gas ion are executed beforehand on the substrate S to form an ion pouring layer S1, mixed layer Sm2 and the carbon-nitrogen compound-containing film Sf.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工具、金型、磁気ヘッ
ド或いは各種の摺動部品といった耐摩耗性や耐摺動性等
が要求される物品の基体に、その性能を向上させるため
に、炭素−窒素化合物含有膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a substrate of an article such as a tool, a mold, a magnetic head or various sliding parts which is required to have abrasion resistance and sliding resistance in order to improve its performance. , A method for forming a carbon-nitrogen compound-containing film.

【0002】[0002]

【従来の技術】炭素−窒素化合物は高硬度であることか
ら、工具、金型、磁気ヘッド或いは各種の摺動部品とい
った物品の耐摩耗性や耐摺動性を向上させるために、こ
れらの物品上への膜形成が試みられている。例えば特開
平5−287502号公報によると、所定真空度下で基
体上への炭素の蒸着と窒素イオンの照射を同時又は交互
に行うことにより、該基体上に炭素−窒素化合物膜を形
成できることが開示されている。この方法によると、比
較的低温下で炭素−窒素化合物膜を形成できると共に、
窒素イオン照射によって膜形成の初期段階に基体の表層
部に該基体の構成原子と膜構成原子との混合層が形成さ
れるため、良好な膜密着性が得られる。
2. Description of the Related Art Since carbon-nitrogen compounds have high hardness, in order to improve wear resistance and sliding resistance of articles such as tools, molds, magnetic heads and various sliding parts, these articles are used. Attempts have been made to form a film on the top. For example, according to Japanese Patent Application Laid-Open No. 5-287502, a carbon-nitrogen compound film can be formed on a substrate by simultaneously or alternately performing vapor deposition of carbon and irradiation of nitrogen ions on the substrate under a predetermined vacuum degree. It is disclosed. According to this method, a carbon-nitrogen compound film can be formed at a relatively low temperature,
By the nitrogen ion irradiation, a mixed layer of the constituent atoms of the substrate and the film constituent atoms is formed in the surface layer portion of the substrate at the initial stage of film formation, so that good film adhesion can be obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記の
特開平5−287502号公報による方法では、照射す
るイオンが窒素イオンのみであるため、基体に到達する
炭素(C)原子数と窒素(N)原子数の比(C/N輸送
比)が大きくて、膜に含まれる炭素原子数と窒素原子数
の比(C/N組成比)が大きくなる場合、窒素原子と化
合しない炭素原子が膜中に含まれることになり、膜の硬
度が低下する傾向にある。このためC/N輸送比を厳密
に制御する必要があるが、炭素は蒸着速度が安定し難い
ため、C/N輸送比の制御が困難で、その結果、必ずし
もC/N組成比を、窒素原子と化合しない炭素原子を含
まないような組成比にすることはできない。
However, in the method according to the above-mentioned Japanese Patent Laid-Open No. 5-287502, the number of carbon (C) atoms and nitrogen (N) reaching the substrate is only because the ions to be irradiated are nitrogen ions. When the ratio of the number of atoms (C / N transport ratio) is large and the ratio of the number of carbon atoms contained in the film to the number of nitrogen atoms (C / N composition ratio) is large, carbon atoms that do not combine with nitrogen atoms are contained in the film. Therefore, the hardness of the film tends to decrease. For this reason, it is necessary to strictly control the C / N transport ratio, but it is difficult to control the C / N transport ratio because carbon is difficult to stabilize the vapor deposition rate. The composition ratio cannot be such that it does not include carbon atoms that do not combine with atoms.

【0004】また、前記公報による方法においては、照
射イオンの加速エネルギを大きくする方が前記混合層の
形成が容易であるが、この場合、基体の種類によっては
イオン照射により熱的、機械的な損傷を受けるものがあ
り、前記混合層の形成により必ずしも膜密着性を向上さ
せることはできない。そこで本発明は、被成膜基体上に
炭素−窒素化合物含有膜を形成する方法であって、形成
される膜のC/N組成比が大きい場合、換言すれば窒素
原子と化合しない炭素原子を含むような組成比である場
合でも該膜の硬度が低下し難く、且つ、比較的小さい加
速エネルギでイオン照射しても密着性良好に膜形成する
ことができる炭素−窒素化合物含有膜の形成方法を提供
することを課題とする。
Further, in the method according to the above publication, it is easier to form the mixed layer by increasing the acceleration energy of irradiation ions, but in this case, depending on the type of the substrate, ion irradiation may cause thermal and mechanical effects. Some of them are damaged, and the film adhesion cannot always be improved by forming the mixed layer. Therefore, the present invention is a method for forming a carbon-nitrogen compound-containing film on a film formation substrate, and when the C / N composition ratio of the formed film is large, in other words, carbon atoms that do not combine with nitrogen atoms are removed. A method for forming a carbon-nitrogen compound-containing film, in which the hardness of the film does not easily decrease even when the composition ratio is such that the film is formed, and the film can be formed with good adhesion even when ion irradiation is performed with relatively small acceleration energy. The challenge is to provide.

【0005】[0005]

【課題を解決するための手段】本発明者は前記課題を解
決するために研究を重ね、以下の事実を見出した。特開
平5−287502号公報が教える膜形成方法のよう
に、被成膜基体上への炭素の蒸着と窒素イオンを含むイ
オンの照射を併用することで、該基体上に炭素−窒素化
合物含有膜を形成するにあたり、窒素イオンと共に不活
性ガスイオンを照射すると、照射イオンと蒸着炭素原子
との衝突により炭素原子が高励起化されてダイヤモンド
状又はi−C(アイカーボン)と呼ばれる高硬度な結晶
構造を形成するため、形成される膜のC/N組成比が大
きい場合でも該膜の硬度は低下しなかった。また、窒素
イオンのみを照射する場合に比べて前記混合層が容易に
形成され、膜密着性が向上した。
Means for Solving the Problems The inventors of the present invention have conducted repeated studies to solve the above problems and found the following facts. As in the film forming method taught in Japanese Patent Laid-Open No. 287502/1993, a carbon-nitrogen compound-containing film is formed on a substrate on which a film is to be formed by using a combination of vapor deposition of carbon and irradiation of ions containing nitrogen ions. When an inert gas ion is irradiated together with nitrogen ions to form a diamond, the carbon atoms are highly excited by collision between the irradiated ions and the vapor-deposited carbon atoms and a diamond-like or iC (eye carbon) high hardness crystal. Since the structure is formed, the hardness of the formed film does not decrease even when the C / N composition ratio of the formed film is large. Further, the mixed layer was easily formed and the film adhesion was improved as compared with the case of irradiating only nitrogen ions.

【0006】前記知見に基づき本発明は、被成膜基体上
へ炭素を蒸着すると同時又は交互に窒素イオン及び不活
性ガスイオンを照射することにより該基体上に炭素−窒
素化合物含有膜を形成することを特徴とする炭素−窒素
化合物含有膜の形成方法を提供する。なお、本明細書中
で用いるイオンの「照射」には、イオンの照射に伴い基
体表面部分にイオンが注入される場合も含まれる。
Based on the above findings, the present invention forms a carbon-nitrogen compound-containing film on a substrate to be deposited by simultaneously or alternately irradiating with nitrogen ions and inert gas ions. A method for forming a carbon-nitrogen compound-containing film is provided. The “irradiation” of ions used in the present specification includes the case where ions are implanted into the surface portion of the substrate along with the irradiation of ions.

【0007】本発明方法において、前記炭素の基体への
蒸着は、炭素を電子ビーム、抵抗、レーザ、高周波等に
より加熱して蒸着させる真空蒸着法や、炭素をイオンビ
ーム、マグネトロン、高周波等の手段によりスパッタす
るスパッタ蒸着法により行うことができる。本発明方法
におけるイオン照射で、窒素イオンを生成させるための
原料ガスとしては窒素(N2 )ガス、アンモニア(NH
3 )ガス等が考えられる。
In the method of the present invention, the carbon is vapor-deposited on the substrate by a vacuum vapor deposition method in which carbon is heated and vaporized by an electron beam, a resistance, a laser, a high frequency or the like, or a means such as an ion beam, a magnetron or a high frequency. Can be carried out by a sputter vapor deposition method. Nitrogen (N 2 ) gas and ammonia (NH 2 ) are used as a raw material gas for generating nitrogen ions by ion irradiation in the method of the present invention.
3 ) Gas etc. are considered.

【0008】前記イオン照射における不活性ガスイオン
としては、ヘリウム(He)イオン、ネオン(Ne)イ
オン、アルゴン(Ar)イオン、クリプトン(Kr)イ
オン、キセノン(Xe)イオン等を挙げることができ、
また、これらのイオンを生成させるための原料ガスとし
ては、それぞれヘリウムガス、ネオンガス、アルゴンガ
ス、クリプトンガス、キセノンガス等が用いられる。
Examples of the inert gas ions in the ion irradiation include helium (He) ions, neon (Ne) ions, argon (Ar) ions, krypton (Kr) ions, xenon (Xe) ions, and the like.
Further, as a source gas for generating these ions, helium gas, neon gas, argon gas, krypton gas, xenon gas or the like is used, respectively.

【0009】また、前記イオン照射においてイオン加速
エネルギは0.1keV以上40keV以下とすること
が考えられる。イオン加速エネルギが0.1keVより
小さいと、基体と膜との界面で該両者の混合層が十分に
形成されないため膜密着性が劣り、40keVより大き
いと、基体に与える熱的、機械的損傷が大きくなるので
好ましくない。
Further, it is considered that the ion acceleration energy in the ion irradiation is set to 0.1 keV or more and 40 keV or less. When the ion acceleration energy is less than 0.1 keV, the film adhesion is poor because the mixed layer of both the substrate and the film is not sufficiently formed at the interface, and when it is more than 40 keV, the substrate is thermally and mechanically damaged. It becomes large, which is not preferable.

【0010】また、前記イオン照射において、基体上に
到達する窒素(N)イオン数と不活性ガス(I)イオン
数の比(N/I輸送比)は0.1以上20以下とするこ
とが考えられる。N/I輸送比が0.1より小さいと形
成される膜が十分に窒化されず、20より大きいと不活
性ガスイオンの作用が不十分になり好ましくない。N/
I輸送比の制御は、イオン源に導入する窒素ガスと不活
性ガスの流量比を調整することで行える。
In the ion irradiation, the ratio of the number of nitrogen (N) ions reaching the substrate to the number of inert gas (I) ions (N / I transport ratio) may be 0.1 or more and 20 or less. Conceivable. If the N / I transport ratio is less than 0.1, the formed film is not sufficiently nitrided, and if it is more than 20, the action of the inert gas ions becomes insufficient, which is not preferable. N /
The I transport ratio can be controlled by adjusting the flow rate ratio of the nitrogen gas and the inert gas introduced into the ion source.

【0011】本発明方法において、基体上に到達する蒸
着炭素(C)原子数とイオン(i)数の比(C/i輸送
比)は0.1以上40以下とすることが考えられる。C
/i輸送比が0.1より小さいと照射イオンにるスパッ
タリング作用のために形成される膜の膜厚が小さくなり
過ぎる。また、40より大きいと照射イオンによって蒸
着炭素原子が高励起化され難く、その結果、形成される
膜中に高硬度な炭素の結晶構造が生成し難くなり該膜の
硬度が低下する。
In the method of the present invention, it is considered that the ratio of the number of vapor-deposited carbon (C) atoms and the number of ions (i) reaching the substrate (C / i transport ratio) is 0.1 or more and 40 or less. C
When the / i transport ratio is less than 0.1, the film thickness of the film formed due to the sputtering action of the irradiation ions becomes too small. On the other hand, if it is larger than 40, vapor-deposited carbon atoms are hard to be highly excited by the irradiation ions, and as a result, it becomes difficult to form a highly hard crystal structure of carbon in the formed film and the hardness of the film is lowered.

【0012】C/i輸送比の制御は、膜厚モニタで炭素
の蒸着量をモニタし、イオン電流測定器で照射イオン個
数をモニタすることで行える。また、本発明方法におい
て、前記炭素−窒素化合物含有膜の形成に先立ち、被成
膜基体上に窒素イオン又は(及び)不活性ガスイオンを
照射することが考えられる。これにより、基体表面が清
浄化され、また、窒素イオンを照射する場合はこれに加
えて基体表面部分が窒化されて、その外側に形成される
炭素−窒素化合物含有膜との密着性が一層向上する。
The C / i transport ratio can be controlled by monitoring the deposition amount of carbon with a film thickness monitor and monitoring the number of irradiated ions with an ion current measuring device. In the method of the present invention, it is conceivable to irradiate the film-forming substrate with nitrogen ions and / or inert gas ions prior to the formation of the carbon-nitrogen compound-containing film. As a result, the surface of the substrate is cleaned, and in the case of irradiating with nitrogen ions, the surface portion of the substrate is nitrided in addition to this, and the adhesion with the carbon-nitrogen compound-containing film formed outside is further improved. To do.

【0013】このイオン照射におけるイオン加速エネル
ギは0.1keV以上40keV以下とすることが考え
られる。また、イオン照射量は1×1013個/cm2
上1×1018個/cm2 以下とすることが考えられる。
イオン加速エネルギが0.1keVより小さい場合、又
はイオン照射量が1×1013個/cm2 より小さい場合
は、基体表面の清浄化又は窒化が不十分でその外側に形
成される膜の密着性を十分に向上させることができな
い。また、イオン加速エネルギが40keVより大きい
場合、又はイオン照射量が1×1018個/cm2 より大
きい場合は、基体に与える熱的、機械的損傷が大きくな
るので好ましくない。
It is considered that the ion acceleration energy in this ion irradiation is set to 0.1 keV or more and 40 keV or less. Further, it is considered that the ion irradiation amount is set to 1 × 10 13 pieces / cm 2 or more and 1 × 10 18 pieces / cm 2 or less.
If the ion acceleration energy is less than 0.1 keV, or if the ion irradiation dose is less than 1 × 10 13 ions / cm 2 , the cleaning or nitriding of the substrate surface is insufficient and the adhesion of the film formed on the outside thereof Cannot be improved sufficiently. Further, if the ion acceleration energy is larger than 40 keV, or if the ion irradiation amount is larger than 1 × 10 18 ions / cm 2 , thermal and mechanical damage to the substrate becomes large, which is not preferable.

【0014】本発明方法において、イオン照射に用いる
イオン源の方式は特に限定は無く、例えばカウフマン
型、バケット型等のものが考えられる。また、基体への
イオン入射角度は特に限定されず、基体を回転させなが
らイオン照射を行ってもよい。さらに、熱的なダメージ
を充分に避けなければならない基体については基体を冷
却させながら成膜(及びイオン照射)を行うこともでき
る。
In the method of the present invention, the type of ion source used for ion irradiation is not particularly limited, and, for example, a Kauffman type, a bucket type or the like can be considered. Further, the ion incident angle on the substrate is not particularly limited, and the ion irradiation may be performed while rotating the substrate. Further, for a substrate for which thermal damage must be sufficiently avoided, film formation (and ion irradiation) can be performed while cooling the substrate.

【0015】前記基体の材質は特に限定されず、例えば
各種セラミック、金属、又は高分子から成る材質等が考
えられる。
The material of the substrate is not particularly limited, and various ceramics, metals, polymers, etc. may be considered.

【0016】[0016]

【作用】本発明の炭素−窒素化合物含有膜の形成方法に
よると、窒素イオンに加えて不活性ガスイオンを照射す
ることにより蒸着炭素原子が高励起化され、炭素原子が
ダイヤモンド状の結晶構造或いはi−Cと呼ばれる高硬
度な結晶構造を形成し易くなる。このため、形成される
膜中のC/N組成比が大きい場合でも該膜の硬度は低下
し難く、所望の硬度を有する炭素−窒素化合物含有膜を
形成できるC/N組成比の許容範囲が広がり、膜形成が
容易になる。
According to the method for forming a carbon-nitrogen compound-containing film of the present invention, vapor-deposited carbon atoms are highly excited by irradiating inert gas ions in addition to nitrogen ions, and the carbon atoms have a diamond-like crystal structure or It becomes easy to form a high hardness crystal structure called iC. Therefore, even if the C / N composition ratio in the formed film is large, the hardness of the film is hard to be lowered, and the allowable range of the C / N composition ratio for forming a carbon-nitrogen compound-containing film having a desired hardness is Spreads and facilitates film formation.

【0017】また、窒素イオンに加えて不活性ガスイオ
ンを照射することにより、窒素イオンのみを照射する場
合に比べて、基体と形成される膜との界面における該両
者の構成原子からなる混合層の形成が容易になる。その
結果、イオン加速エネルギを比較的小さくしても、十分
な膜密着性が得られるだけの該混合層を形成することが
でき、イオン照射により熱的、機械的損傷を受け易い基
体上にも炭素−窒素化合物含有膜を密着性良く形成させ
ることができる。
By irradiating inert gas ions in addition to nitrogen ions, a mixed layer composed of the constituent atoms of both of them at the interface between the substrate and the film to be formed, as compared with the case of irradiating only nitrogen ions. Formation is facilitated. As a result, even if the ion acceleration energy is relatively small, it is possible to form the mixed layer having sufficient film adhesion, and even on a substrate that is easily thermally or mechanically damaged by ion irradiation. A carbon-nitrogen compound-containing film can be formed with good adhesion.

【0018】また、炭素−窒素化合物含有膜形成に先立
ち、被成膜基体上に窒素イオン又は(及び)不活性ガス
イオンを照射するときには、基体表面が照射イオンによ
るスパッタリングで清浄化され、その外側に形成される
膜の密着性が一層向上する。特に窒素イオンを照射する
場合は、基体表面の清浄化に加えて、基体表面に窒素イ
オンが注入されて該部分が窒化し、その外側に形成され
る炭素−窒素化合物含有膜との濡れ性が向上し、また整
合性が向上するため、該膜の基体への密着性は一層向上
する。
Further, prior to the formation of the carbon-nitrogen compound-containing film, when the film-forming substrate is irradiated with nitrogen ions and / or inert gas ions, the surface of the substrate is cleaned by sputtering with the irradiation ions and the outside thereof. The adhesion of the film formed on the substrate is further improved. In particular, when irradiating with nitrogen ions, in addition to cleaning the surface of the substrate, nitrogen ions are injected into the surface of the substrate to nitrid the portion, and the wettability with the carbon-nitrogen compound-containing film formed on the outside of the portion is nitrided. The improved adhesion and the improved conformity further improve the adhesion of the film to the substrate.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明方法の実施に用いる成膜装置の1例
の概略構成を示す図である。図2(A)は本発明方法の
実施により得られる炭素−窒素化合物含有膜被覆基体の
1例の一部の拡大断面図であり、図2(B)は本発明方
法の実施により得られる炭素−窒素化合物含有膜被覆基
体の他の例の一部の拡大断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of an example of a film forming apparatus used for carrying out the method of the present invention. 2A is an enlarged cross-sectional view of a part of an example of a carbon-nitrogen compound-containing film-coated substrate obtained by carrying out the method of the present invention, and FIG. 2B is a carbon obtained by carrying out the method of the present invention. FIG. 7 is a partial enlarged cross-sectional view of another example of a nitrogen compound-containing film-coated substrate.

【0020】図1に示す装置は、真空容器1を有し、容
器1内には被成膜基体Sを支持するホルダ2、並びにこ
れに対向する位置に、炭素を蒸発させる蒸発源3並びに
窒素イオン及び不活性ガスイオンを照射するイオン源4
が設置されている。また基体ホルダ2付近には、例えば
水晶振動子式膜厚モニタ等の膜厚モニタ5、及び例えば
ファラデーカップ等のイオン電流測定器6が配置されて
いる。また容器1には排気装置7が付設されて容器1内
を所定の真空度にすることができる。
The apparatus shown in FIG. 1 has a vacuum container 1 in which a holder 2 for supporting a film-forming substrate S, a vaporization source 3 for evaporating carbon, and nitrogen are provided at a position facing the holder 2. Ion source 4 for irradiating ions and inert gas ions
Is installed. Further, a film thickness monitor 5 such as a crystal oscillator type film thickness monitor and an ion current measuring device 6 such as a Faraday cup are arranged near the substrate holder 2. Further, an exhaust device 7 is attached to the container 1 so that the inside of the container 1 can have a predetermined degree of vacuum.

【0021】前記装置を用いて本発明方法を実施するに
あたっては、基体Sをホルダ2に支持させた後、真空容
器1内を所定の真空度にする。次いで、基体Sに向けて
蒸発源3から炭素3aを真空蒸着(又はスパッタ蒸着)
させ、それと同時、又は交互に、イオン源4より窒素イ
オン4a及び不活性ガスイオン4bを当該蒸着面に照射
して炭素−窒素化合物含有膜を形成する。
In carrying out the method of the present invention using the apparatus described above, after the substrate S is supported by the holder 2, the inside of the vacuum container 1 is brought to a predetermined vacuum degree. Next, the carbon 3a is vacuum-deposited (or sputter-deposited) from the evaporation source 3 toward the substrate S.
At the same time or alternately, the ion source 4 irradiates the deposition surface with nitrogen ions 4a and inert gas ions 4b to form a carbon-nitrogen compound-containing film.

【0022】前記成膜操作において、イオン照射時の加
速エネルギは0.1keV以上40keV以下とする。
また、イオン照射時の基体に到達する窒素(N)イオン
数と不活性ガス(I)イオン数の比(N/I輸送比)は
0.1以上20以下とする。さらに、基体に到達する蒸
着炭素(C)原子数とイオン(i)数の比(C/i輸送
比)は0.1以上40以下とする。
In the film forming operation, the acceleration energy during ion irradiation is set to 0.1 keV or more and 40 keV or less.
Further, the ratio of the number of nitrogen (N) ions reaching the substrate during ion irradiation and the number of inert gas (I) ions (N / I transport ratio) is 0.1 or more and 20 or less. Furthermore, the ratio of the number of vapor-deposited carbon (C) atoms and the number of ions (i) reaching the substrate (C / i transport ratio) is set to 0.1 or more and 40 or less.

【0023】これにより図2(A)に示すように、基体
S上に炭素−窒素化合物含有膜Sfが形成され、基体S
と膜Sfとの界面に該両者の混合層Sm1が形成され
る。膜Sfは、炭素を蒸着すると共に窒素イオンに加え
て不活性ガスイオンを照射することにより形成されてい
るので、炭素原子が高硬度な結晶構造を形成し易く、膜
Sf中のC/N組成比が大きい場合も硬度が低下し難
い。また、同様に不活性ガスイオンの照射により、混合
層Sm1の形成が容易になり、イオン加速エネルギを小
さくしても、膜Sfの基体Sに対する十分な密着性が得
られるだけの混合層Sm1を形成することができる。
As a result, the carbon-nitrogen compound-containing film Sf is formed on the substrate S as shown in FIG.
A mixed layer Sm1 of the both is formed at the interface between the film and the film Sf. Since the film Sf is formed by depositing carbon and irradiating inert gas ions in addition to nitrogen ions, it is easy for carbon atoms to form a high hardness crystal structure, and the C / N composition in the film Sf is high. Even if the ratio is large, the hardness does not easily decrease. Similarly, the irradiation of the inert gas ions facilitates the formation of the mixed layer Sm1, and even if the ion acceleration energy is reduced, the mixed layer Sm1 having sufficient adhesion to the substrate S can be obtained. Can be formed.

【0024】また、他の実施例方法では、図1に示す装
置を用いた前記の炭素−窒素化合物含有膜Sfの形成に
おいて、真空容器1内を所定真空度にした後、膜Sfの
形成に先立ち、基体Sに向けてイオン源4から窒素イオ
ン4a又は(及び)不活性ガスイオン4bを照射する。
このときイオン加速エネルギは0.1keV以上40k
eV以下とし、イオン照射量は1×1013個/cm2
上1×1018個/cm2 以下とする。
In another embodiment method, in forming the carbon-nitrogen compound-containing film Sf using the apparatus shown in FIG. 1, after the inside of the vacuum container 1 is set to a predetermined vacuum degree, the film Sf is formed. Prior to this, the substrate S is irradiated with nitrogen ions 4a or (and) inert gas ions 4b from the ion source 4.
At this time, the ion acceleration energy is 0.1 keV or more and 40 k
The ion irradiation dose is set to 1 × 10 13 pieces / cm 2 or more and 1 × 10 18 pieces / cm 2 or less.

【0025】このようにして基体S表面部分に窒素イオ
ン又は(及び)不活性ガスイオンが注入された層S1が
形成される。さらに層S1上に前記と同様の操作で膜S
fを形成する。これにより、図2(B)に示すように、
基体S表面部分に窒素イオン又は(及び)不活性ガスイ
オン注入層S1を有し、基体Sの外側に炭素−窒素化合
物含有膜Sfが形成され、層S1と膜Sfとの界面に該
両者の混合層Sm2が形成される。
In this way, the layer S1 in which nitrogen ions and / or inert gas ions are implanted into the surface of the substrate S is formed. Further, the film S is formed on the layer S1 by the same operation as described above.
f is formed. As a result, as shown in FIG.
A nitrogen ion or / and inert gas ion-implanted layer S1 is provided on the surface of the substrate S, a carbon-nitrogen compound-containing film Sf is formed outside the substrate S, and the carbon-nitrogen compound-containing film Sf is formed at the interface between the layer S1 and the film Sf. The mixed layer Sm2 is formed.

【0026】イオン照射により基体S表面は清浄化さ
れ、また窒素イオンが照射される場合は層S1は窒化さ
れているため、層S1、混合層Sm2及び膜Sf相互の
濡れ性や整合性が向上し、膜Sfの基体Sに対する密着
性が一層向上する。次に図1に示す装置による本発明方
法実施の具体例と、それによって得られる炭素−窒素化
合物含有膜被覆基体について説明する。 実験例1 図1に示す装置を用いて、ステンレススチールSUS3
04よりなる基体Sを水冷した基体ホルダ2に設置し、
真空容器1内を1×10-6Torr以下の真空度とし
た。その後、純度99.9%(3N)の炭素ペレット3
aを電子ビーム蒸発源3を用いて蒸気化し、基体S上に
成膜した。それと同時にイオン源4に窒素ガス及びアル
ゴン(Ar)ガスを1:1の流量比で真空容器1内が5
×10-5Torrの真空度になるまで導入し、イオン化
させ、該窒素イオン4a及びアルゴンイオン4bを5k
eVの加速エネルギで基体Sに対して垂直に照射した。
このときのC/i輸送比は2であった。なお、イオン源
にはバケット型イオン源を用いた。
The surface of the substrate S is cleaned by the ion irradiation, and the layer S1 is nitrided when irradiated with nitrogen ions. Therefore, the wettability and the consistency of the layer S1, the mixed layer Sm2 and the film Sf are improved. Then, the adhesion of the film Sf to the substrate S is further improved. Next, a specific example of carrying out the method of the present invention using the apparatus shown in FIG. 1 and a carbon-nitrogen compound-containing film-coated substrate thus obtained will be described. Experimental Example 1 Using the apparatus shown in FIG. 1, stainless steel SUS3
The substrate S made of 04 is placed in the water-cooled substrate holder 2,
The inside of the vacuum container 1 was set to a vacuum degree of 1 × 10 −6 Torr or less. Then, carbon pellets 3 with a purity of 99.9% (3N)
a was vaporized by using the electron beam evaporation source 3 to form a film on the substrate S. At the same time, nitrogen gas and argon (Ar) gas are supplied to the ion source 4 at a flow rate ratio of 1: 1 in the vacuum chamber 1.
It is introduced to a vacuum degree of × 10 -5 Torr and ionized, and the nitrogen ion 4a and the argon ion 4b are 5k.
The substrate S was irradiated vertically with an acceleration energy of eV.
At this time, the C / i transport ratio was 2. A bucket type ion source was used as the ion source.

【0027】以上の成膜操作により基体S上に膜厚約5
00nmの炭素−窒素化合物含有膜Sfを形成した。そ
れに伴い基体Sとの界面部分に混合層Sm1が形成され
た。 実験例2 図1に示す装置を用いて、ステンレススチールSUS3
04よりなる基体Sを基体ホルダ2に設置し、真空容器
1内を1×10-6Torr以下の真空度とした。次い
で、イオン源4に窒素ガスを容器1内が5×10-5To
rrの真空度になるまで導入し、イオン化させ、該窒素
イオン4aを2keVの加速エネルギで、基体Sに対し
て垂直に、1×1016個/cm2 を照射した。このよう
にして基体S表面部分に窒素イオン注入層S1を形成し
た。
A film thickness of about 5 is formed on the substrate S by the above film forming operation.
A carbon-nitrogen compound-containing film Sf having a thickness of 00 nm was formed. Along with this, the mixed layer Sm1 was formed at the interface with the substrate S. Experimental Example 2 Using the device shown in FIG. 1, stainless steel SUS3
The substrate S of No. 04 was placed on the substrate holder 2 and the inside of the vacuum container 1 was set to a vacuum degree of 1 × 10 −6 Torr or less. Then, nitrogen gas is supplied to the ion source 4 in the container 1 at 5 × 10 −5 To
It was introduced to a vacuum degree of rr and ionized, and the nitrogen ions 4a were irradiated at an acceleration energy of 2 keV perpendicularly to the substrate S at 1 × 10 16 / cm 2 . Thus, the nitrogen ion-implanted layer S1 was formed on the surface of the substrate S.

【0028】次いで実験例1と同様にして基体Sの層S
1上に膜厚約500nmの炭素−窒素化合物含有膜Sf
を形成した。それに伴い層S1との界面部分に混合層S
m2が形成された。 実験例3 実験例2において、膜Sfの形成に先立つイオン照射に
用いるガスとして、窒素ガスに代えてアルゴンガスを用
い、その他は実験例2と同様にして層S1、膜Sf及び
混合層Sm2を形成した。 比較例 実験例1において、膜Sf形成のためのイオン照射に用
いるガスとして窒素ガスのみを用い、その他は実験例1
と同様にして基体S上に膜厚約500nmの炭素−窒素
化合物含有膜を形成した。
Then, in the same manner as in Experimental Example 1, the layer S of the substrate S is formed.
1. A carbon-nitrogen compound-containing film Sf having a film thickness of about 500 nm on
Was formed. Accordingly, the mixed layer S is formed at the interface with the layer S1.
m2 was formed. Experimental Example 3 In Experimental Example 2, as a gas used for ion irradiation prior to formation of the film Sf, argon gas was used instead of nitrogen gas, and otherwise the same as in Experimental Example 2 except that the layer S1, the film Sf, and the mixed layer Sm2 were formed. Formed. Comparative Example In Experimental Example 1, only nitrogen gas was used as the gas used for the ion irradiation for forming the film Sf, and the others were Experimental Example 1
A carbon-nitrogen compound-containing film having a thickness of about 500 nm was formed on the substrate S in the same manner as in.

【0029】次に、実験例1、2、3及び比較例により
得られた各炭素−窒素化合物含有膜について硬度及び膜
密着性を評価した。硬度は10gヌープ硬度を測定し、
密着性はスクラッチ試験器で測定することで評価した。
結果を次表に示す。 ヌープ硬度(kg/mm2) 密着力(N) 実験例1 3500 20 実験例2 4000 25 実験例3 3500 23 比較例1 3000 10 実験例1、2及び3による膜は、比較例による膜に比べ
て、硬度、膜密着性の何れにおいても優れていた。ま
た、実験例2及び3による膜は実験例1による膜に比べ
て、基体S表面部分にイオン注入層S1が形成された
分、膜密着性が優れていた。
Next, the hardness and film adhesion of each carbon-nitrogen compound-containing film obtained in Experimental Examples 1, 2, 3 and Comparative Example were evaluated. Hardness measures 10g Knoop hardness,
Adhesion was evaluated by measuring with a scratch tester.
The results are shown in the table below. Knoop hardness (kg / mm 2 ) Adhesion (N) Experimental Example 1 3500 20 Experimental Example 2 4000 25 Experimental Example 3 3500 23 Comparative Example 1 3000 10 The membranes of Experimental Examples 1, 2 and 3 were compared with the membranes of Comparative Examples. And was excellent in both hardness and film adhesion. Further, the films according to Experimental Examples 2 and 3 were superior to the film according to Experimental Example 1 in film adhesion because the ion-implanted layer S1 was formed on the surface portion of the substrate S.

【0030】[0030]

【発明の効果】本発明によると、被成膜基体上に炭素−
窒素化合物含有膜を形成する方法であって、形成される
膜のC/N組成比が大きい場合でも該膜の硬度が低下し
難く、且つ、比較的小さい加速エネルギでイオン照射し
ても密着性良好に膜形成することができる炭素−窒素化
合物含有膜の形成方法を提供することができる。
According to the present invention, carbon-
A method for forming a nitrogen compound-containing film, wherein the hardness of the film is not easily lowered even when the C / N composition ratio of the film formed is large, and the adhesiveness is obtained even by ion irradiation with relatively small acceleration energy. It is possible to provide a method for forming a carbon-nitrogen compound-containing film capable of forming a good film.

【0031】また、前記の炭素−窒素化合物含有膜形成
に先立ち、被成膜基体上に窒素イオン又は(及び)不活
性ガスイオンを照射するときには、その外側に形成され
る炭素−窒素化合物含有膜の密着性が一層向上する。
Further, prior to the formation of the carbon-nitrogen compound-containing film, when the film-forming substrate is irradiated with nitrogen ions and / or inert gas ions, the carbon-nitrogen compound-containing film formed on the outside thereof. The adhesiveness of is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に用いる成膜装置の1例の概
略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an example of a film forming apparatus used for carrying out a method of the present invention.

【図2】図(A)は本発明方法の実施により得られる炭
素−窒素化合物含有膜被覆基体の1例の一部の拡大断面
図であり、図(B)は本発明方法の実施により得られる
炭素−窒素化合物含有膜被覆基体の他の例の一部の拡大
断面図である。
FIG. 2 (A) is a partially enlarged sectional view of an example of a carbon-nitrogen compound-containing film-coated substrate obtained by carrying out the method of the present invention, and FIG. 2 (B) is obtained by carrying out the method of the present invention. FIG. 7 is an enlarged cross-sectional view of a part of another example of the carbon-nitrogen compound-containing film-coated substrate that is used.

【符号の説明】[Explanation of symbols]

1 真空容器 2 基体ホルダ 3 蒸発源 3a 炭素 4 イオン源 4a 窒素イオン 4b 不活性ガスイオン 5 膜厚モニタ 6 イオン電流測定器 7 排気装置 S 基体 S1 イオン注入層 Sf 炭素−窒素化合物含有膜 Sm1、Sm2 混合層 DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Substrate holder 3 Evaporation source 3a Carbon 4 Ion source 4a Nitrogen ion 4b Inert gas ion 5 Film thickness monitor 6 Ion current measuring device 7 Exhaust device S Substrate S1 Ion implantation layer Sf Carbon-nitrogen compound containing film Sm1, Sm2 Mixed layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被成膜基体上へ炭素を蒸着すると同時又
は交互に窒素イオン及び不活性ガスイオンを照射するこ
とにより該基体上に炭素−窒素化合物含有膜を形成する
ことを特徴とする炭素−窒素化合物含有膜の形成方法。
1. A carbon-nitrogen compound-containing film is formed on a substrate to be deposited by simultaneously or alternately irradiating with nitrogen ions and inert gas ions. -A method for forming a nitrogen compound-containing film.
【請求項2】 前記炭素−窒素化合物含有膜の形成に先
立ち、被成膜基体上に窒素イオン又は(及び)不活性ガ
スイオンを照射する請求項1記載の炭素−窒素化合物含
有膜の形成方法。
2. The method for forming a carbon-nitrogen compound-containing film according to claim 1, wherein the film-forming substrate is irradiated with nitrogen ions and / or inert gas ions prior to the formation of the carbon-nitrogen compound-containing film. .
JP2638095A 1995-02-15 1995-02-15 Formation of carbon-nitrogen compound-containing film Pending JPH08225924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2638095A JPH08225924A (en) 1995-02-15 1995-02-15 Formation of carbon-nitrogen compound-containing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2638095A JPH08225924A (en) 1995-02-15 1995-02-15 Formation of carbon-nitrogen compound-containing film

Publications (1)

Publication Number Publication Date
JPH08225924A true JPH08225924A (en) 1996-09-03

Family

ID=12191925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2638095A Pending JPH08225924A (en) 1995-02-15 1995-02-15 Formation of carbon-nitrogen compound-containing film

Country Status (1)

Country Link
JP (1) JPH08225924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099982A (en) * 2002-09-10 2004-04-02 National Institute Of Advanced Industrial & Technology Process for synthesizing carbon nitride
JP2013057093A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Sliding member, method for manufacturing the same, and sliding structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099982A (en) * 2002-09-10 2004-04-02 National Institute Of Advanced Industrial & Technology Process for synthesizing carbon nitride
JP2013057093A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Sliding member, method for manufacturing the same, and sliding structure

Similar Documents

Publication Publication Date Title
EP0439135B1 (en) Method for producing boron nitride film
US20050136656A1 (en) Process for depositing composite coating on a surface
JPH08225924A (en) Formation of carbon-nitrogen compound-containing film
JP2593441B2 (en) High-hardness film-coated tool material and its manufacturing method
JPS6326349A (en) Formation of cubic boron nitride film
JPS62161952A (en) Formation of thin film of cubic boron nitride
JPH08232059A (en) Substrate coated with film containing carbon-nitrogen compound
JP2611521B2 (en) Method of forming boron nitride thin film
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JP2611633B2 (en) Method for producing chromium nitride film-coated substrate
JP2535886B2 (en) Carbon-based film coating method
JPH05132754A (en) Formation of titanium carbide thin film
JP2821903B2 (en) Surface treatment of stainless steel by ion implantation
JP3716451B2 (en) Film coating and method for producing the same
JPH0565637A (en) Ion beam sputtering device
JPH01168857A (en) Formation of titanium nitride film
JP2600092B2 (en) Surface modification method for metallic materials
JPS63262457A (en) Preparation of boron nitride film
JPH1068069A (en) Formation of metallic boride coating film
JP2636577B2 (en) Method of forming titanium nitride film
JP2611522B2 (en) Method of forming boron nitride thin film
JPH0874032A (en) Hard carbon film coated member and its production
JPH0259863B2 (en)
JPH0674497B2 (en) Ceramic hard film coating method
JPH05112863A (en) Formation of thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050113

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628