JPH08224566A - Environment repair and soil treatment using bacteria - Google Patents

Environment repair and soil treatment using bacteria

Info

Publication number
JPH08224566A
JPH08224566A JP7322935A JP32293595A JPH08224566A JP H08224566 A JPH08224566 A JP H08224566A JP 7322935 A JP7322935 A JP 7322935A JP 32293595 A JP32293595 A JP 32293595A JP H08224566 A JPH08224566 A JP H08224566A
Authority
JP
Japan
Prior art keywords
soil
hydraulic conductivity
particles
microorganism
pollutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7322935A
Other languages
Japanese (ja)
Other versions
JP3155918B2 (en
Inventor
Yuji Kawabata
祐司 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP32293595A priority Critical patent/JP3155918B2/en
Publication of JPH08224566A publication Critical patent/JPH08224566A/en
Application granted granted Critical
Publication of JP3155918B2 publication Critical patent/JP3155918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE: To efficiently repair polluted soil by bacteria. 8W CONSTITUTION: This method for repairing soil polluted with a contaminant by introducing at least one of bacteria decomposing the contaminant, a nutritive substance for bacteria decomposing the contaminant and an inducing substance developing the decomposition capacity of bacteria decomposing the contaminant into the polluted soil has a process controlling the coefficient of water permeation of soil so as to uniformly distribute the substance introduced into polluted soil throughout the soil region to be repaired. Further, a soil treatment method has a process preparing the soil region to be repaired having the soil polluted with the contaminant so that the distribution of the coefficient of water permeability has a plurality of the max. values and a process controlling the coefficient of water permeability of the soil so that the max. value having the substantially min. coefficient of water permeability shows the max. ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は汚染土壌を微生物を
用いて修復する方法及び土壌の処理方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a method for repairing contaminated soil with microorganisms and a method for treating soil.

【0002】[0002]

【従来技術】急速な科学技術の進歩に伴い、衣食住をは
じめ移動や通信手段など多岐にわたって人類は恵まれた
生活環境を享受してきた。その一方で、化石燃料の排ガ
スや人工的な化学原料・化成品などによって、気水陸圏
におよぶ地球レベルの自然環境を少しずつ蝕んできた。
なかでも、陸圏は人類の生活の場であるため最も汚染の
影響を受けている。又気水陸圏において水が循環してい
ることを考えると、陸圏の環境汚染は地球レベルへと拡
大していく深刻な問題である。これまでによく知られた
土壌(陸圏)の汚染物質としては、ガソリンなどの炭化
水素、PCBなどのハロゲン化炭化水素、ダイオキシン
などの催奇性を有する農薬、あるいは放射性化合物など
が挙げられる。なかでも有機化合物類は自動車燃料,精
密部品の洗浄溶剤,ドライクリーニング用溶剤、及び殺
虫・除草目的の薬品として大量に使用され、これらによ
る土壌の汚染が現在も進行しつつある。さらに、汚染有
機化合物の一部が強い発がん性を有することが指摘さ
れ、生物界に極めて重大な影響を及ぼすことが明らかに
なった。そのため、有機化合物による土壌汚染は早急に
解決すべき課題となっている。
2. Description of the Related Art With the rapid progress of science and technology, human beings have enjoyed a blessed living environment in a wide variety of fields such as clothing, food and shelter as well as transportation and communication means. On the other hand, exhaust gas from fossil fuels, artificial chemical raw materials, and chemical products have gradually eroded the global-level natural environment that extends to the air-water terrestrial sphere.
Among them, the land area is the place where human beings live, and is therefore most affected by pollution. Considering that water circulates in the air-water terrestrial area, environmental pollution in the terrestrial area is a serious problem that spreads to the global level. Examples of well-known soil (land) pollutants include hydrocarbons such as gasoline, halogenated hydrocarbons such as PCB, teratogenic pesticides such as dioxins, and radioactive compounds. In particular, organic compounds are used in large quantities as automobile fuels, cleaning solvents for precision parts, solvents for dry cleaning, and chemicals for insecticidal and weeding purposes, and soil contamination by these compounds is still in progress. Furthermore, it was pointed out that some of the polluted organic compounds had strong carcinogenicity, and it was revealed that they exert a very serious influence on the living world. Therefore, soil contamination by organic compounds has become an issue to be solved immediately.

【0003】有機化合物で汚染された土壌の修復方法と
しては、汚染土壌を掘り起して加熱処理する方法、汚染
土壌において真空抽出する方法、あるいは汚染物質を分
解する能力を有する微生物を利用する方法などが挙げら
れる。加熱処理法ではほとんど完全に土壌から汚染物質
を取り除くことが可能である。しかし土壌掘削が必要で
あるから建造物の下の浄化処理は困難であり、また掘削
・加熱処理に要する費用が比較的高額であるため広範囲
な汚染土壌の浄化にも適用困難である。真空抽出法は安
価で簡便な浄化方法である。しかし低濃度汚染の除去に
は長い時間を必要とするため、主に高濃度汚染の浄化に
有効である。微生物による浄化方法は汚染土壌を掘削す
る必要がないため建造物下の浄化が容易であり、分解活
性の高い微生物を利用することにより低濃度の有機化合
物を短時間で浄化できる特徴を有しているので、環境に
優しい浄化方法として現在注目されている。
As a method of repairing soil contaminated with organic compounds, a method of excavating the contaminated soil and heat treatment, a method of vacuum extraction in the contaminated soil, or a method of utilizing microorganisms capable of decomposing pollutants And so on. Heat treatment methods can almost completely remove pollutants from soil. However, since soil excavation is required, it is difficult to perform purification treatment under a building, and because the cost required for excavation and heat treatment is relatively high, it is also difficult to apply to the purification of a wide range of contaminated soil. The vacuum extraction method is an inexpensive and simple purification method. However, since it takes a long time to remove low-concentration pollution, it is mainly effective for cleaning high-concentration pollution. The microbial purification method has the feature that it is easy to clean under a building because it is not necessary to excavate contaminated soil, and low-concentration organic compounds can be purified in a short time by using microorganisms with high decomposition activity. Therefore, it is currently attracting attention as an environmentally friendly purification method.

【0004】従来、土壌汚染の微生物による浄化方法
は、土壌に元来生息する土着菌を利用する方法と土壌に
生息しない外来菌を利用する方法に分けられる。前者の
場合は、分解活性を高めるための栄養素、インデューサ
ー、酸素、あるいはその他の化学物質を土壌に注入し、
浄化を行う。また後者の場合は、外来菌を土壌に注入す
ると共に、その分解活性を高めるための栄養素などの注
入工程を行う。このような微生物を利用した汚染土壌の
浄化方法においては、広範囲な土壌領域において微生物
による分解活性を長時間にわたり高く維持することが望
まれるが、少なくとも現在の微生物制御技術でこれを達
成するのは困難である。むしろ修復すべき土壌範囲を限
定し、この範囲における微生物の分解活性を制御する方
法が修復費用、修復期間および安全性を含めた総合的に
効率のよい土壌浄化方法となりうる。
Conventionally, methods for purifying soil contamination by microorganisms are divided into methods that utilize indigenous bacteria that originally inhabit the soil and methods that utilize alien bacteria that do not inhabit the soil. In the former case, nutrients, inducers, oxygen, or other chemicals to enhance decomposition activity are injected into the soil,
Purify. In the latter case, the foreign bacteria are injected into the soil, and the step of injecting nutrients and the like to enhance the decomposition activity is performed. In such a method for purifying contaminated soil using microorganisms, it is desired to maintain high decomposition activity by microorganisms in a wide range of soil areas for a long time, but at least with the current microbial control technology, this can be achieved. Have difficulty. Rather, the method of limiting the soil area to be rehabilitated and controlling the degrading activity of microorganisms in this area can be an overall efficient soil remediation method including rehabilitation cost, rehabilitation period and safety.

【0005】上記した技術に関する先行技術としてUS
P5,133,625では伸長可能な注入パイプを用い
て注入圧力、流速および温度を測定して注入圧力を制御
する方法が述べられている。この方法は、注入圧力によ
り微生物濃度や栄養素濃度等を制御して微生物の分解活
性を最適に維持させるものであり、主として微生物によ
る浄化工程の制御を目的としている。
US as a prior art relating to the above-mentioned technology
P 5,133,625 describes a method of controlling an injection pressure by measuring an injection pressure, a flow rate and a temperature using an extendable injection pipe. This method controls the concentration of microorganisms, the concentration of nutrients and the like by the injection pressure to maintain the degrading activity of the microorganisms optimally, and is mainly aimed at controlling the purification process by the microorganisms.

【0006】またUSP4,442,895およびUS
P5,032,042は、注入井より土壌中へ気体や液
体を加圧注入して土壌のクラッキング(土壌破砕)を行
うものであり、その際に微生物浄化に必要な酸素や栄養
素なども供給できることが述べられている。しかしなが
ら、この方法はできる限り広い範囲をクラッキングする
ことを目的としており、修復領域を限定することは意図
されていない。
USP 4,442,895 and US
P5,032,042 is for injecting gas or liquid into the soil under pressure from the injection well to crack the soil (crush the soil), and at that time, it can also supply oxygen and nutrients necessary for microbial purification. Is stated. However, this method is intended to crack as extensively as possible and is not intended to limit the repair area.

【0007】USP5,111,883では、注入井と
抽出井の相対位置により土壌水平方向および垂直方向に
おいて所定の領域に薬液を注入する方法が述べられてい
る。これは、幾何学的方法により土壌中の決められた位
置へ薬液を注入することを目的としており、微生物浄化
においても修復領域を限定する極めて有効な方法と考え
られるが、装 置構成が複雑となる欠点を有している。
US Pat. No. 5,111,883 describes a method of injecting a chemical solution into a predetermined region in the horizontal and vertical directions of soil depending on the relative positions of the injection well and the extraction well. This is aimed at injecting a chemical solution to a predetermined position in the soil by a geometric method, and it is considered to be an extremely effective method for limiting the repair area even in microbial purification, but the equipment configuration is complicated. It has the drawback that

【0008】注入井から限定された領域に微生物あるい
は分解活性を維持するための物質を注入するには、注入
井から所定距離の土壌位置に不透水層を形成し、これを
バリア壁として注入領域を限定する方法が考えられる。
従来このような不透水層を形成させる方法としては、地
中にプラスチックシートを敷いたり、アスファルト層を
設ける方法、あるいはセメント、水ガラス、ウレタン、
アクリルアミド、アクリル酸塩などの処理剤を土壌中に
注入する方法が知られている。日本特許(特公平2−2
6662および5−27676)では土壌中のイオンに
よって不溶化する水溶性ポリマーを用いて土壌中の所定
の位置に不透水層を形成させる方法が述べられている。
この方法は不透水層をバリアとして物質移動を制限する
ものであり、土壌中への微生物や栄養素などの注入工程
においても、その注入領域を限定する技術となりうる。
しかし、プラスチックシートの埋設やアスファルト層の
形成には土壌の掘り起しと埋め戻しが必要であり、微生
物による土壌修復の意図とは相容れない。また、セメン
トなどの処理剤や水溶性ポリマーを注入する方法では、
完全なバリア壁を形成するには数多くの処理剤注入井が
必要であり、微生物による経済的な土壌修復への適用は
困難である。
In order to inject a microorganism or a substance for maintaining degrading activity into a limited area from an injection well, an impermeable layer is formed at a soil position at a predetermined distance from the injection well, and this is used as a barrier wall for the injection area. A method of limiting
Conventionally, as a method of forming such an impermeable layer, a plastic sheet is laid in the ground, a method of providing an asphalt layer, or cement, water glass, urethane,
A method of injecting a treatment agent such as acrylamide or acrylate into the soil is known. Japanese Patent (Japanese Patent Publication 2-2
6662 and 5-27676) describe a method of forming an impermeable layer at a predetermined position in soil by using a water-soluble polymer which is insolubilized by ions in soil.
This method limits the mass transfer by using the impermeable layer as a barrier, and can be a technique for limiting the injection area even in the step of injecting microorganisms and nutrients into the soil.
However, burial of plastic sheets and formation of asphalt layers require excavation and backfilling of soil, which is incompatible with the intention of soil restoration by microorganisms. In addition, in the method of injecting a treatment agent such as cement or a water-soluble polymer,
A large number of treatment agent injection wells are required to form a complete barrier wall, which is difficult to apply to economical soil remediation by microorganisms.

【0009】また外部から土壌中に微生物等を注入する
場合、上記の技術を用いたとしても注入した微生物等を
修復すべき土壌内に均一に分布させることは困難であ
る。
When microorganisms or the like are injected into the soil from the outside, it is difficult to evenly distribute the injected microorganisms or the like in the soil to be repaired even if the above technique is used.

【0010】従って汚染土壌を十分に修復する場合には
修復すべき土壌領域内で最も注入物質が分布し難い部分
の汚染物質が分解される様に過剰量の微生物等を注入す
る必要があり、これは土壌修復のコストを増加させるこ
とになる。
Therefore, in order to sufficiently repair the contaminated soil, it is necessary to inject an excessive amount of microorganisms or the like so that the pollutant in the portion where the injected substance is most difficult to be distributed is decomposed in the soil region to be repaired, This will increase the cost of soil remediation.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みなされたもので、修復すべき土壌領域に注入される
微生物や物質を該土壌領域内に均等に分布させて効率良
く十分な土壌修復を行うことができる土壌修復方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and the microorganisms and substances injected into the soil region to be repaired are evenly distributed in the soil region to efficiently and sufficiently soil. It is an object of the present invention to provide a soil restoration method capable of performing restoration.

【0012】また本発明は土壌領域に物質を注入したと
きに該物質を該土壌領域内に均等に分布させることので
きる土壌処理方法を提供することを他の目的とする。
Another object of the present invention is to provide a soil treatment method capable of evenly distributing a substance in the soil region when the substance is injected into the soil region.

【0013】[0013]

【課題を解決するための手段】そして本発明の汚染土壌
の修復方法は、汚染物質によって汚染された土壌中に該
汚染物質を分解する微生物、該汚染物質を分解する微生
物の為の栄養物質、該汚染物質を分解する微生物の分解
能を発現させる誘導物質の少なくとも1つを導入して微
生物で該土壌を修復する方法において、上記土壌中に導
入した物質が修復すべき土壌領域内に均一に分布するよ
うに該土壌の透水係数を制御することを特徴とする。
The method for repairing contaminated soil according to the present invention comprises a microorganism that decomposes the pollutant in soil polluted by the pollutant, a nutrient for the microorganism that decomposes the pollutant, In a method of repairing the soil with a microorganism by introducing at least one of an inducer capable of expressing the ability of a microorganism to decompose the pollutant, the material introduced into the soil is uniformly distributed in a soil region to be repaired. To control the hydraulic conductivity of the soil.

【0014】また本発明の汚染土壌の修復方法は、汚染
された土壌を微生物を用いて修復する方法であって、透
水係数の分布が複数の極大値を有し、且つ汚染物質で汚
染されている土壌を有する修復すべき土壌領域を用意す
る工程;該土壌の透水係数分布において、実質的に最少
の透水係数を持つ極大値が最大の比率を示す様に該土壌
の透水係数を制御する工程;及び透水係数が制御された
土壌に該汚染物質を分解する微生物、該汚染物質を 分
解する微生物の栄養物質、該汚染物質を分解する微生物
の汚染物質分解能を発現させる為の誘導物質の少なくと
も1つを供給して該汚染土壌を修復する工程を有するこ
とを特徴とする。
The method for repairing contaminated soil according to the present invention is a method for repairing contaminated soil by using microorganisms, and the distribution of hydraulic conductivity has a plurality of maximum values and is contaminated with pollutants. A step of preparing a soil region to be repaired having an existing soil; a step of controlling the hydraulic conductivity of the soil so that a maximum value having a substantially minimum hydraulic conductivity shows a maximum ratio in the hydraulic conductivity distribution of the soil And at least one of a microorganism that decomposes the pollutant in a soil having a controlled hydraulic conductivity, a nutrient substance of the microorganism that decomposes the pollutant, and an inducer for expressing the pollutant decomposition ability of the microorganism that decomposes the pollutant. It is characterized in that it comprises a step of supplying one to remediate the contaminated soil.

【0015】更に本発明の土壌の処理方法は透水係数の
分布が複数の極大値を有し、且つ汚染物質で汚染されて
いる土壌を有する修復すべき土壌領域を用意する工程;
及び該土壌の透水係数分布において、実質的に最少の透
水係数を持つ極大値が最大の比率を示す様に該土壌の透
水係数を制御する工程を有することを特徴とする。
Further, the method for treating soil according to the present invention comprises the step of preparing a soil region to be repaired, which has a soil having a plurality of maximum values of hydraulic conductivity and is contaminated with pollutants;
And in the distribution of hydraulic conductivity of the soil, the method has a step of controlling the hydraulic conductivity of the soil so that a maximum value having a substantially minimum hydraulic conductivity exhibits a maximum ratio.

【0016】即ち、本願出願人は前記問題点に関して種
々検討した結果、土壌中に注入された物質の土壌中での
分布は土壌の液体透過性、つまり透水係数に依存してい
ることと、そして土壌に注入した物質の該土壌内での不
均一な分布が土壌の多様な透水係数に基づくものである
ことを見出し、本発明をなしたものである。
That is, as a result of various examinations by the applicant regarding the above problems, the distribution of the substance injected into the soil in the soil depends on the liquid permeability of the soil, that is, the hydraulic conductivity, and The present invention is based on the finding that the uneven distribution of the substance injected into the soil in the soil is based on various hydraulic conductivity of the soil.

【0017】そして発明によれば汚染土壌の修復を極め
て効率良く行うことができる。
According to the invention, the contaminated soil can be repaired extremely efficiently.

【0018】また本発明によれば注入物質の拡散の程度
を制御できる為、注入物質が修復の必要の無い土壌領域
にまで拡散してそこの生態系を乱すことを避けられる。
Further, according to the present invention, since the degree of diffusion of the injected substance can be controlled, it is possible to prevent the injected substance from diffusing to the soil region where repair is not necessary and disturbing the ecosystem there.

【0019】[0019]

【発明の実施の形態】以下、本発明について詳述する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0020】まず、土壌に微生物や栄養素などの溶液を
圧力をかけて注入する場合、その注入範囲は概ね土壌の
透水係数によって決まる。しかしながら、通常は土壌の
透水係数に極めて大きな異方性が存在するので注入溶液
は均一には分布されず、土壌中の透水係数が大きい方向
へ積極的に分布される。したがって、予め修復土壌の透
水係数を均一化し、その後に微生物や栄養素などを含ん
だ溶液を注入する。なお、土壌の透水係数としては定水
位法あるいは変水位法によって求められた飽和透水係
数、Piezometer法、Tube法、Auger
−hole法、あるいはDry Auger−hole
法によって求められた現場透水係数、あるいは不飽和透
水係数を用いることができる。
First, when a solution of microorganisms and nutrients is injected into the soil under pressure, the injection range is generally determined by the hydraulic conductivity of the soil. However, since the hydraulic conductivity of soil usually has a very large anisotropy, the injected solution is not evenly distributed, but is actively distributed in the direction of large hydraulic conductivity in soil. Therefore, the hydraulic conductivity of the repaired soil is made uniform in advance, and then a solution containing microorganisms and nutrients is injected. As the soil hydraulic conductivity, the saturated hydraulic conductivity obtained by the constant water level method or the variable water level method, the Piezometer method, the Tube method, and the Auger
-Hole method, or Dry Auger-hole
On-site hydraulic conductivity or unsaturated hydraulic conductivity obtained by the method can be used.

【0021】修復土壌の透水係数を調整するには主に次
の2つの方法が考えられる。
The following two methods are mainly considered for adjusting the hydraulic conductivity of the restored soil.

【0022】第1には修復すべき土壌領域内で透水係数
が小さな土壌部分の透水係数を増大させる方法、第2に
は修復すべき土壌領域内で透水係数が大きな土壌部分の
透水係数を減少させる方法である。
The first is a method of increasing the hydraulic conductivity of a soil portion having a small hydraulic conductivity in the soil area to be restored, and the second is a reduction of the hydraulic conductivity of a soil portion having a large hydraulic conductivity in the soil area to be restored. It is a method to let.

【0023】そして本発明に於ては、上記の第2の方法
を用いることが好ましい。何故なら土壌中に注入した物
質の土壌内での拡散を制御し易く、例えば予測し得ない
領域への拡散を抑えることができるからである。
In the present invention, it is preferable to use the second method described above. This is because it is easy to control the diffusion of the substance injected into the soil in the soil, and it is possible to suppress the diffusion into an unpredictable region, for example.

【0024】そして具体的には、例えば図1に示した様
に修復すべき土壌領域内の土壌の透水係数分布が、複数
の極大値を有する場合には、図1に於て実質的に最小の
透水係数(図1では中心の値が約3.0×10-3cm/
s)を持つ極大値が該透水係数分布に於て図2に示した
様に最大の比率を持つ様に該土壌の透水係数を制御する
ことが好ましい。
Specifically, for example, when the hydraulic conductivity distribution of the soil in the soil region to be repaired has a plurality of maximum values as shown in FIG. 1, it is substantially minimum in FIG. Permeability coefficient (in Fig. 1, the center value is about 3.0 x 10 -3 cm /
It is preferable to control the hydraulic conductivity of the soil so that the maximum value having s) has the maximum ratio as shown in FIG. 2 in the hydraulic conductivity distribution.

【0025】即ち修復すべき土壌領域内で注入物質が最
も拡散しにくい土壌部分の透水係数に揃えることで該土
壌領域内に注入物質を均一に分布させることができる。
That is, the injected substance can be uniformly distributed in the soil region by adjusting the hydraulic conductivity of the soil portion in which the injected substance is most difficult to diffuse in the soil region to be repaired.

【0026】なお上記の「実質的に最小の透水係数を持
つ極大値」とは例えば修復すべき土壌領域内の土壌の透
水係数分布をとったときに得られる有意な比率を持つ複
数の極大値の中で最小の透水係数を持つ極大値のことを
指す。
The above-mentioned "maximum value having substantially the minimum hydraulic conductivity" means, for example, a plurality of maximum values having a significant ratio obtained when the hydraulic conductivity distribution of the soil in the soil region to be restored is taken. Refers to the maximum value with the smallest hydraulic conductivity.

【0027】例えば、修復すべき汚染土壌領域内で透水
係数の極めて小さい土壌部分が存在し、透水係数分布測
定時に極大値と検出されたとしてもその土壌部分の該土
壌領域全体の対する割合が微小であれば、そのような土
壌部分の汚染は実質的に問題にならない。即ちこのよう
な土壌部分の透水係数が該土壌領域の透水係数分布にお
いては有意な比率を持つものとは言えない。
For example, even if a soil part having a very low hydraulic conductivity exists in the contaminated soil region to be repaired, and even if it is detected as the maximum value in the hydraulic conductivity distribution measurement, the ratio of the soil part to the entire soil region is very small. If so, contamination of such soil parts is virtually non-issue. That is, it cannot be said that the hydraulic conductivity of such a soil portion has a significant ratio in the hydraulic conductivity distribution of the soil region.

【0028】具体的にはどの程度の割合が有意な比率を
有することになるかは、要求される修復の程度によって
異なるが例えば透水係数分布を取ったときに全体の10
%以上、特には8%以上、更には5%以上を占める極大
値の中で最小の透水係数を有する極大値が「実質的に最
小の透水係数を持つ極大値」として扱った場合、修復す
べき土壌領域内により均一に注入物質を分布させること
ができ好ましい。
[0028] Specifically, what proportion has a significant proportion depends on the degree of restoration required, but for example, when the hydraulic conductivity distribution is taken, the total proportion is 10
% Or more, especially 8% or more, or even 5% or more, the maximum value having the minimum hydraulic conductivity is treated as "the maximum value having the substantially minimum hydraulic conductivity" and repaired. It is preferable since the injected substance can be more uniformly distributed in the soil region to be filled.

【0029】そして透水係数を制御する具体的方法とし
ては粒子を懸濁させた分散体を土壌内に注入すると、必
然的に透水係数が大きな土壌部分にこれら流動体が導入
される。このとき土壌中の空隙は注入した粒子で充填さ
れ、透水係数が減少する。したがって、注入前に透水係
数が大きい土壌部分ほど注入後には透水係数が減少し、
全体として均一な透水係数を有する土壌となる。微生物
による土壌修復は、この工程のあとに行うのが効率的で
ある。すなわち、微生物や分解活性を維持するための物
質をこの土壌に注入すると、土壌の透水係数がほぼ均一
なため注入物質は注入井から均等に分布する。また、注
入物質の注入総体積、注入時間、注入圧力、あるいは注
入流量などにより注入井からの注入距離(到達距離)が
ほぼ決まるので、これらにより限定された領域に注入す
ることが可能となる。
As a concrete method for controlling the hydraulic conductivity, when a dispersion in which particles are suspended is injected into the soil, these fluids are inevitably introduced into a soil portion having a high hydraulic conductivity. At this time, the voids in the soil are filled with the injected particles, and the hydraulic conductivity decreases. Therefore, the permeability of the soil part with a large permeability before injection decreases after injection,
The soil has a uniform hydraulic conductivity as a whole. Microbial soil restoration is efficient after this step. That is, when a microorganism or a substance for maintaining degrading activity is injected into this soil, the injected substance is evenly distributed from the injection well because the hydraulic conductivity of the soil is almost uniform. Further, since the injection distance (arrival distance) from the injection well is substantially determined by the total injection volume of the injection material, the injection time, the injection pressure, the injection flow rate, etc., it becomes possible to inject into a limited region.

【0030】注入井から懸濁粒子を注入して透水係数を
均一化する場合、均一粒径の粒子あるいは異なる粒径の
粒子を用いることができる。粒径が等しい粒子を懸濁さ
せて注入する場合、注入処理を施す土壌の透水係数によ
って最適な粒径を決める。通常、注入される粒子の粒径
は1μm〜3mmの範囲から選択されるが、例えば透水
係数が1×10-3cms-1の土壌では10μm〜1mm
程度の粒子、望ましくは100μm程度の粒子を用い
る。さらに透水係数が小さな土壌については、その平均
的な空隙径も小さくなるので、より小さな粒径の粒子を
用いるのが効果的である。一方、土壌は極めてヘテロジ
ニアスで空隙径の分布も幅広いため、粒径が異なる粒子
を同時にあるいは順次注入する方法も有用である。すな
わち、土壌中の大きな空隙を主に大きな粒子で充填し、
これにより生じた小さな空隙および土壌に元来存在する
小さな空隙をさらに小さな粒子で充填して、全体として
均一な透水係数の土壌を実現する。なお、このときに注
入される粒子の粒径は1μm〜3mmの範囲であるが、
例えば透水係数が1×10-3cms-1の土壌では粒径が
10μm〜1mm程度に分布している粒子、望ましくは
粒径が100μm程度以下に分布した粒子を用いる。さ
らに透水係数が小さな土壌については、その平均的な空
隙径も小さくなるので、より小さな粒径分布を持つ粒子
を用いるのが効果的である。
When the suspended particles are injected from the injection well to make the hydraulic conductivity uniform, particles having a uniform particle diameter or particles having different particle diameters can be used. When particles with the same particle size are suspended and injected, the optimum particle size is determined by the hydraulic conductivity of the soil to which the injection process is applied. Usually, the particle size of the injected particles is selected from the range of 1 μm to 3 mm. For example, in soil having a water permeability of 1 × 10 −3 cms −1 , 10 μm to 1 mm.
Particles of about 100 μm are preferably used. Furthermore, for soils with a low hydraulic conductivity, it is effective to use particles with a smaller particle size, because the average pore size will also be smaller. On the other hand, since soil is extremely heterogeneous and has a wide distribution of pore diameters, a method of injecting particles having different particle diameters simultaneously or sequentially is also useful. That is, filling large voids in the soil with mainly large particles,
The resulting small voids and the small voids originally present in the soil are filled with smaller particles to achieve a soil with a uniform hydraulic conductivity as a whole. The particle size of the particles injected at this time is in the range of 1 μm to 3 mm,
For example, in soil having a water permeability of 1 × 10 −3 cms −1 , particles having a particle size of about 10 μm to 1 mm are distributed, and preferably particles having a particle size of about 100 μm or less are used. Furthermore, for soils with a low hydraulic conductivity, the average pore size is also small, so it is effective to use particles with a smaller particle size distribution.

【0031】注入する粒子としては、これまでに化学工
業、医薬品工業、食品工業あるいは排水処理システムな
どで用いられている様々な個体やゲル体が利用できる。
例えば、分粒した砂や土、多孔質ガラス、セラミック
ス、金属酸化物、活性炭、カオリナイト、ベントナイ
ト、ゼオライト、シリカゲル、アルミナ、アンスラサイ
ト、セメントなどの粒子、デンプン、寒天、キチン、キ
トサン、ポリビニルアルコール、アルギン産、ポリアク
リルアミド、カラギーナン、アガロース、ゼラチンなど
のゲル体粒子、水ガラス、セルロース、グルタルアルデ
ヒド、ポリアクリル酸、ポリウレタン、ポリエステル、
ポリビニルピロリドン、N−ビニル−2−ピロリドンな
どの天然あるいは合成ポリマー、などが用いられる。こ
れらの粒子は適当な粒径分布のものを選び、これを主に
水やポリマー水溶液に懸濁させて注入する。さらに、上
記の粒子の混合物を注入することもできる。
As the particles to be injected, various solids and gels which have been used up to now in the chemical industry, pharmaceutical industry, food industry or wastewater treatment system can be used.
For example, sized sand or soil, porous glass, ceramics, metal oxides, activated carbon, kaolinite, bentonite, zeolite, silica gel, alumina, anthracite, particles such as cement, starch, agar, chitin, chitosan, polyvinyl alcohol. , Algin, gel particles such as polyacrylamide, carrageenan, agarose, gelatin, water glass, cellulose, glutaraldehyde, polyacrylic acid, polyurethane, polyester,
Natural or synthetic polymers such as polyvinylpyrrolidone and N-vinyl-2-pyrrolidone are used. These particles have an appropriate particle size distribution and are mainly suspended in water or an aqueous polymer solution and then injected. Furthermore, it is possible to inject mixtures of the abovementioned particles.

【0032】上記の工程により土壌の透水係数の均一化
を行ったあと、微生物あるいはその分解活性を維持する
ために必要な栄養素などを注入することにより効率的に
土壌修復を行うことができる。すなわち、前処理した土
壌に注入物質を注入すると、土壌の透水係数がほぼ均一
なため注入物質は注入井から均等に分布し、このとき注
入総体積、注入時間、注入圧力、あるいは注入流量など
を調整することにより限定された領域に注入することが
できる。
After the soil water permeability is made uniform by the above steps, the soil can be efficiently restored by injecting microorganisms or nutrients necessary for maintaining the decomposition activity thereof. That is, when the injected substance is injected into the pretreated soil, the permeability coefficient of the soil is almost uniform, so the injected substance is evenly distributed from the injection well, and at this time, the total injection volume, injection time, injection pressure, or injection flow rate, etc. It can be injected into a limited area by adjusting.

【0033】ここで注入する物質としては、例えば汚染
物質の分解に土着の微生物を利用する場合には、その微
生物の成長・繁殖に必要な栄養素及び該微生物が該汚染
物質を分解する能力を発現させる誘導物質の少なくとも
一方が挙げられる。
As the substance to be injected here, for example, when an indigenous microorganism is used for decomposing a pollutant, the nutrient required for growth and reproduction of the microorganism and the ability of the microorganism to decompose the pollutant are expressed. At least one of the inducers is included.

【0034】又汚染物質の分解に外来の微生物を利用す
る場合には、該微生物又は該微生物の栄養素と誘導物質
の少なくとも一方及び該微生物を該土壌に加えればよ
い。
When an exogenous microorganism is used for decomposing the pollutant, at least one of the microorganism or the nutrient and the inducer of the microorganism and the microorganism may be added to the soil.

【0035】以下に、実施例をもって本発明を説明する
が、これらは本発明の範囲をなんら限定するものではな
い。
The present invention will be described below with reference to examples, but these do not limit the scope of the present invention.

【0036】なお下記の各実施例及び比較例に於て透水
係数はドイツ工業会基準JSF T311−1990に
基づく定水位法(constant head per
miability)によるものである。
In each of the following examples and comparative examples, the hydraulic conductivity is a constant head perm based on the German Industrial Society Standard JSF T311-1990.
This is due to miability.

【0037】(実施例1)粒径が等しい粒子を懸濁した分散体を土壌中に注入して
透水係数を均一にする方法 平均粒径1mmの粗砂、平均粒径0.5、mmの細砂、
及び平均粒径0.1mmのシルト混じりの細砂を粗く混
合し、縦1m,横1m,高さ1mのアクリル容器に満た
した。次にこの容器中の注入口周囲の5点の土壌位置の
透水係数を測定した。
Example 1 A dispersion in which particles having the same particle size are suspended is poured into soil.
Method to make uniform water permeability Coarse sand with an average particle size of 1 mm, fine sand with an average particle size of 0.5 mm,
And fine sand with silt having an average particle diameter of 0.1 mm was roughly mixed and filled in an acrylic container having a length of 1 m, a width of 1 m, and a height of 1 m. Next, the hydraulic conductivity at five soil positions around the inlet in this container was measured.

【0038】次いで、この容器の表面中央からこの土壌
中に外径10mm、内径8mmのステンレス製注入管
を、その1端が土壌表面から50cmの深さに位置する
様に挿入した。この注入管の他端はバルブを介して送液
ポンプに接続されており、タンク内の注入溶液はこの送
液ポンプにより注入口へ圧送できるようになっている。
Then, a stainless steel injection pipe having an outer diameter of 10 mm and an inner diameter of 8 mm was inserted into the soil from the center of the surface of the container so that one end thereof was located at a depth of 50 cm from the soil surface. The other end of this injection pipe is connected to a liquid feeding pump via a valve, and the injection solution in the tank can be pressure-fed to the inlet by this liquid feeding pump.

【0039】細砂を分粒し、平均粒径が約0.1mmの
粒子を選別した。次に、この粒子250gを水5リット
ルに懸濁し、粒子が沈降しないように攪拌しながら送液
ポンプにより毎分1リットルの流量で圧送した。注入
後、注入口周囲の土壌をサンプリング(5点)し、その
透水係数を求めた。
Fine sand was sized to select particles having an average particle size of about 0.1 mm. Next, 250 g of these particles were suspended in 5 liters of water, and were pressure-fed at a flow rate of 1 liter / min by a liquid-sending pump while stirring so that the particles would not settle. After the injection, the soil around the inlet was sampled (5 points) and the hydraulic conductivity thereof was determined.

【0040】注入処理前後における土壌の透水係数の平
均値、および標準偏差を表1に示す。これより、粒径が
等しい粒子を懸濁した分散体を土壌中に注入することに
より、幅広い分布をもつ土壌の透水係数を減少させ、か
つ均一化(標準偏差を小さく)できることがわかった。
Table 1 shows the average and standard deviation of soil hydraulic conductivity before and after the injection treatment. From this, it was found that by injecting a dispersion in which particles having the same particle size were suspended into the soil, the hydraulic conductivity of the soil having a wide distribution can be reduced and uniformized (the standard deviation can be reduced).

【0041】(実施例2)粒径が異なる粒子を懸濁した分散体を土壌中に注入して
透水係数を均一にする方法 実施例1と同様に試験土壌をアクリル容器に満たし、注
入管および送液ポンプを設けた。
(Example 2) A dispersion prepared by suspending particles having different particle sizes was poured into soil.
Method for making the water permeability uniform As in Example 1, the test soil was filled in an acrylic container, and an injection pipe and a liquid feed pump were provided.

【0042】細砂を分粒し、平均粒径が約10μm、約
20μm、約50μm、および約100μmの粒子を選
別した。次に、これらの粒子60gを水1.25リット
ルにそれぞれ懸濁し、粒子が沈降しないように攪拌しな
がら平均粒径が大きなものから順次送液ポンプにより毎
分1リットルの流量で圧送した。注入後、注入口周囲の
土壌をサンプリング(5点)し、その透水係数を求め
た。
Fine sand was sized to select particles having an average particle size of about 10 μm, about 20 μm, about 50 μm, and about 100 μm. Next, 60 g of these particles were suspended in 1.25 liters of water, respectively, and the particles were sequentially fed at a flow rate of 1 liter / min by a liquid-sending pump in descending order of average particle size while stirring so that the particles would not settle. After the injection, the soil around the inlet was sampled (5 points) and the hydraulic conductivity thereof was determined.

【0043】注入処理前後における土壌の透水係数の平
均値、および標準偏差を表1に示す。これより、粒径が
異なる粒子を懸濁した分散体を順次土壌中に注入するこ
とにより、土壌の幅広い透水係数を全体として減少さ
せ、かつ均一化(標準偏差を小さく)できることがわか
った。
Table 1 shows the average value and the standard deviation of the soil hydraulic conductivity before and after the injection treatment. From this, it was found that by sequentially injecting the dispersions in which the particles having different particle diameters are suspended into the soil, the wide permeability coefficient of the soil can be reduced as a whole and the soil can be made uniform (the standard deviation can be reduced).

【0044】又、透水係数を均一化する効果は実施例1
より優れていることも分った。
In addition, the effect of equalizing the water permeability is the same as in Example 1.
I also found it to be better.

【0045】[0045]

【表1】 [Table 1]

【0046】(実施例3)粒径が等しい粒子を懸濁した分散体を土壌中に注入して
透水係数を均一にする方法 縦1m,横1m,高さ1mのアクリル容器に粗砂(平均
粒径1mm)を30cmの厚さに敷き、次いで細砂(平
均粒径0.5mm)を40cmの厚さに敷き、最後に微
砂(平均粒径0.1mm)を30cmの厚さに敷き、多
様な透水係数を有する実際の土壌と類似したモデル試験
土壌を作製した。次に、該土壌の透水係数分布を求め
た。図1本実施例の土壌領域の透水係数分布を示す。
(Example 3) A dispersion in which particles having the same particle size are suspended is poured into soil.
Method to make uniform water permeability Coarse sand (average particle size 1 mm) is laid in a thickness of 30 cm in an acrylic container 1 m long, 1 m wide, and 1 m high, and then fine sand (average particle size 0.5 mm) of 40 cm It was spread to a thickness, and finally, fine sand (average particle size 0.1 mm) was spread to a thickness of 30 cm to prepare a model test soil similar to an actual soil having various hydraulic conductivity. Next, the hydraulic conductivity distribution of the soil was obtained. Figure 1 shows the hydraulic conductivity distribution in the soil region of this example.

【0047】次いでアクリル容器内の土壌に、容器の表
面中央から外径10mm、内径8mmのステンレス製注
入管の先端が表土から50cmの深さになるように挿入
した。なお、注入管の反対側はバルブを介して送液ポン
プに接続されており、タンク内の注入溶液はこの送液ポ
ンプにより注入口へ圧送できるようになっている。
Next, the stainless steel injection pipe having an outer diameter of 10 mm and an inner diameter of 8 mm was inserted into the soil in the acrylic container so that the tip of the injection pipe was 50 cm deep from the top soil. The other side of the injection pipe is connected to a liquid feed pump via a valve, and the liquid injected in the tank can be pressure-fed to the inlet by this liquid feed pump.

【0048】次に細砂を分粒し、平均粒径が約0.1m
mの粒子を選別し、この粒子250gを水5リットルに
懸濁し、粒子が沈降しないように攪拌しながら送液ポン
プにより毎分1リットルの流量で圧送した。注入後、再
び該土壌領域の透水係数分布を求めた。その結果を図2
に示す。
Next, fine sand is sized so that the average particle size is about 0.1 m.
Particles of m were selected, 250 g of the particles were suspended in 5 liters of water, and the suspension was pressure-fed at a flow rate of 1 liter per minute with a liquid-sending pump while stirring so that the particles would not settle. After the injection, the permeability distribution of the soil region was obtained again. The result is shown in Figure 2.
Shown in

【0049】図1に於て最小の透水係数(ピークの中心
の値が約3.0×10-3cm/s)を有する極大が、図
2に於ては透水係数分布の最大の比率を示すように透水
係数が制御されていた。
In FIG. 1, the maximum having the minimum hydraulic conductivity (the value at the center of the peak is about 3.0 × 10 −3 cm / s) has the maximum ratio of the hydraulic conductivity distribution in FIG. 2. The hydraulic conductivity was controlled as shown.

【0050】(実施例4)粒径が異なる粒子を懸濁した分散体を土壌中に注入して
透水係数を均一にする方法 実施例3と同様にモデル試験土壌をアクリル容器に満た
し、次いで該容器に実施例3と同様にして注入管および
送液ポンプを設けた。
(Example 4) A dispersion prepared by suspending particles having different particle sizes was poured into soil.
Method for homogenizing water permeability The acrylic test container was filled with the model test soil in the same manner as in Example 3, and then the container was provided with an injection pipe and a liquid feeding pump in the same manner as in Example 3.

【0051】細砂を分粒し、平均粒径が約10μm、約
20μm、約50μm、および約100μmの粒子を選
別した。次に、これらの粒子60gを水1.25リット
ルにそれぞれ懸濁し、粒子が沈降しないように攪拌しな
がら平均粒径が大きなものから順次送液ポンプにより毎
分1リットルの流量で圧送した。再度透水係数分布を測
定した。その結果を図3に示す。
Fine sand was sized to select particles having an average particle size of about 10 μm, about 20 μm, about 50 μm, and about 100 μm. Next, 60 g of these particles were suspended in 1.25 liters of water, respectively, and the particles were sequentially fed at a flow rate of 1 liter / min by a liquid-sending pump in descending order of average particle size while stirring so that the particles would not settle. The permeability distribution was measured again. The result is shown in FIG.

【0052】図1及び図3から明らかな様に最小の透水
係数(ピークの中心の値が約3.5×10-3cm/s)
を有する極大が、注入処理後には、透水係数分布の最大
の比率を示すように透水係数が制御されていた。
As is clear from FIGS. 1 and 3, the minimum hydraulic conductivity (the value at the center of the peak is about 3.5 × 10 −3 cm / s).
The hydraulic conductivity was controlled so that the maximum value having the value of ## EQU1 ## shows the maximum ratio of the hydraulic conductivity distribution after the injection treatment.

【0053】(実施例5)微生物による均等かつ限定された土壌領域における効率
的な土壌修復 実施例3と同様にして各種土壌を作成し、アクリル容器
に満たした。
(Example 5) Efficiency by microorganisms in a uniform and limited soil area
To create various soil in the same manner as specific soil remediation Example 3 was filled in an acrylic container.

【0054】次に土壌表面からトリクロロエチレン水溶
液を散布して、土壌1g当りトリクロロエチレンの濃度
が約10ppmとなるような汚染土壌を作製した。次に
実施例3と同様に注入管および送液ポンプを設けた。
Next, an aqueous trichlorethylene solution was sprayed from the soil surface to prepare a contaminated soil in which the concentration of trichlorethylene was about 10 ppm per 1 g of soil. Next, an injection pipe and a liquid feed pump were provided as in the case of Example 3.

【0055】次いで実施例3と同様にして、平均粒径が
約0.1mmの粒子250gを水5リットルに懸濁し、
粒子が沈降しないように攪拌しながら送液ポンプにより
毎分1リットルの流量で圧送して透水係数の制御を行な
った。そして再び透水係数分布を求めたところ、図2に
示した様に、実質的に最小の透水係数を有する極大値が
該土壌の透水係数分布の約40%を占めるように透水係
数が制御された。
Then, in the same manner as in Example 3, 250 g of particles having an average particle size of about 0.1 mm were suspended in 5 liters of water,
The water permeability was controlled by pressure feeding with a liquid feed pump at a flow rate of 1 liter per minute while stirring so that the particles would not settle. Then, when the permeability distribution was obtained again, as shown in FIG. 2, the permeability was controlled so that the maximum value having substantially the minimum permeability occupies about 40% of the permeability distribution of the soil. .

【0056】一方トリクロロエチレン分解用微生物とし
て、コリネバクテリウム・スピーシズJ1(生命工学工
業技術研究所受託番号:FERM P−14332号)
を培養し、108cell/mlとなるまで増殖させ
た。また、0.1%酵母エキス、0.2%乳酸ナトリウ
ム、および100ppmフェノールを含む溶液を調製
し、この溶液に酸素ガスを通気させ溶液の酸素濃度を飽
和させて、注入物質とした。次に、該微生物と該注入物
質を体積比1:1000で混合し、上記透水係数を制御
した汚染土壌に注入管を通して毎分1リットルの流量で
5分間注入し、修復実験を行った。その結果、2日後に
は注入管の先端から約50cm以内における土壌中のト
リクロロエチレン濃度は約1ppmまで減少した。一
方、注入管の先端から約80cmの土壌位置におけるト
リクロロエチレン濃度は約10ppmとほとんど変化せ
ず、注入位置から均等かつ限定された領域のみが効率的
に浄化されることがわかった。
On the other hand, as a microorganism for decomposing trichlorethylene, Corynebacterium species J1 (Bitechnotechnical Laboratory) deposit number: FERM P-14332)
Were cultured and grown to 10 8 cells / ml. Further, a solution containing 0.1% yeast extract, 0.2% sodium lactate, and 100 ppm phenol was prepared, and oxygen gas was passed through this solution to saturate the oxygen concentration of the solution to prepare an injection substance. Next, the microorganism and the injected substance were mixed at a volume ratio of 1: 1000, and the mixture was injected into the contaminated soil having the controlled water permeability through an injection pipe at a flow rate of 1 liter per minute for 5 minutes to conduct a repair experiment. As a result, after 2 days, the concentration of trichlorethylene in the soil within about 50 cm from the tip of the injection pipe decreased to about 1 ppm. On the other hand, it was found that the trichlorethylene concentration at the soil position about 80 cm from the tip of the injection pipe hardly changed to about 10 ppm, and only the uniform and limited area from the injection position was efficiently purified.

【0057】(比較例1)実施例3に於て透水係数の制
御を行なわない以外はほぼ実施例3と同様にして土壌修
復を行なった。
(Comparative Example 1) Soil restoration was carried out in substantially the same manner as in Example 3 except that the permeability coefficient was not controlled.

【0058】その結果、土壌中に挿入してある注入管の
先端から約50cm以内に於けるトリクロロエチレンの
濃度は土壌位置によって約1〜10ppmであって、ト
リクロロエチレンが分解されているところと、分解され
ていないところが土壌領域に存在した。即ち、微生物の
分布が不均一であった。
As a result, the concentration of trichlorethylene within about 50 cm from the tip of the injection pipe inserted into the soil was about 1 to 10 ppm depending on the soil position, and the place where trichlorethylene was decomposed was decomposed. Not where there was in the soil area. That is, the distribution of microorganisms was uneven.

【0059】[0059]

【発明の効果】以上説明した様に、本発明の一実施態様
によれば、汚染土壌の修復に先だって対象領域の透水係
数を均一化させる調整を行うことにより、汚染土壌の効
率的な修復が可能となる。
As described above, according to one embodiment of the present invention, effective repair of contaminated soil can be achieved by adjusting the hydraulic conductivity of the target region to be uniform prior to the repair of contaminated soil. It will be possible.

【0060】又本発明の一実施態様によれば、修復すべ
き汚染土壌領域内の土壌の透水係数を、該土壌領域内の
土壌の透水係数分布の、実質的に最小の透水係数を有す
る極大値が該透水係数分布の中で最大の比率を示すよう
に調整することで、過剰量の微生物、栄養素、誘導物質
を注入する必要がなく汚染土壌を効率的に修復すること
ができる。
According to one embodiment of the present invention, the hydraulic conductivity of the soil in the contaminated soil area to be rehabilitated is maximized in the hydraulic conductivity distribution of the soil in the soil area having a substantially minimum hydraulic conductivity. By adjusting the value to show the maximum ratio in the hydraulic conductivity distribution, it is possible to efficiently repair the contaminated soil without the need to inject an excessive amount of microorganisms, nutrients and inducers.

【0061】更にこの実施態様によれば注入パイプから
の注入物質の土壌中への拡散を制御できる為修復すべき
土壌領域外への注入物質の漏出を抑えることができる。
Further, according to this embodiment, since the diffusion of the injected substance from the injection pipe into the soil can be controlled, the leakage of the injected substance to the outside of the soil region to be repaired can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3で処理した土壌の透水係数制御前の透
水係数分布図
FIG. 1 Permeability coefficient distribution map of soil treated in Example 3 before permeability control

【図2】実施例3で処理した土壌の透水係数制御後の透
水係数分布図
FIG. 2 Permeability coefficient distribution map of soil treated in Example 3 after permeability control

【図3】実施例4で処理した土壌の透水係数制御前の透
水係数分布図
FIG. 3 is a hydraulic conductivity distribution map of soil treated in Example 4 before the hydraulic conductivity control.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 汚染物質によって汚染された土壌中に該
汚染物質を分解する微生物、該汚染物質を分解する微生
物の為の栄養物質、該汚染物質を分解する微生物の分解
能を発現させる誘導物質の少なくとも1つを導入して微
生物で該土壌を修復する方法において、 上記土壌中に導入した物質が修復すべき土壌領域内に均
一に分布するように該土壌の透水係数を制御することを
特徴とする汚染土壌の修復方法。
1. A microorganism that decomposes a pollutant in soil polluted by the pollutant, a nutrient for the microorganism that decomposes the pollutant, and an inducer that expresses the degradability of the microorganism that decomposes the pollutant. In a method of repairing the soil with a microorganism by introducing at least one of them, the hydraulic conductivity of the soil is controlled so that the substance introduced into the soil is uniformly distributed in the soil region to be repaired. To repair contaminated soil.
【請求項2】 透水係数を制御する工程が、粒子を懸濁
させた分散体の注入である請求項1に記載の方法。
2. The method of claim 1, wherein the step of controlling the hydraulic conductivity is the injection of a dispersion of particles in suspension.
【請求項3】 該粒子は、ほぼ均一の粒径の粒子からな
る請求項2に記載の方法。
3. The method of claim 2, wherein the particles consist of particles of substantially uniform size.
【請求項4】 該粒子は、異なる粒径の粒子からなる請
求項2に記載の方法。
4. The method of claim 2, wherein the particles are of different particle size.
【請求項5】 注入が、大きな粒子を小さな粒子より先
に行うことを特徴とする請求項4に記載の方法。
5. The method of claim 4, wherein the implanting is done with large particles before small particles.
【請求項6】 粒子は、固体あるいはゲル体であること
を特徴とする請求項2に記載の方法。
6. The method according to claim 2, wherein the particles are solid or gel.
【請求項7】 分散体の分散媒体は、水であることを特
徴とする請求項2に記載の方法。
7. The method according to claim 2, wherein the dispersion medium of the dispersion is water.
【請求項8】 汚染された土壌を含む環境を微生物を用
いて修復する方法であって、透水係数の分布が複数の極
大値を有し、且つ汚染物質で汚染されている土壌を有す
る修復すべき環境を用意する工程;該土壌の透水係数分
布において、実質的に最少の透水係数を持つ極大値が最
大の比率を示す様に該土壌の透水係数を制御する工程;
及び透水係数が制御された土壌に該汚染物質を分解する
微生物、該汚染物質を分解する微生物の栄養物質、該汚
染物質を分解する微生物の汚染物質分解能を発現させる
為の誘導物質の少なくとも1つを供給して該汚染土壌を
修復する工程を有することを特徴とする環境の修復方
法。
8. A method for repairing an environment containing contaminated soil by using a microorganism, wherein the repair has soil having a plurality of maximum distributions of hydraulic conductivity and polluted soil. To prepare a proper environment; in the hydraulic conductivity distribution of the soil, controlling the hydraulic conductivity of the soil so that the maximum value having substantially the smallest hydraulic conductivity exhibits the maximum ratio;
And at least one of a microorganism that decomposes the pollutant in soil having a controlled water permeability, a nutrient substance of the microorganism that decomposes the pollutant, and an inducer for expressing the pollutant decomposing ability of the microorganism that decomposes the pollutant. And a method for repairing the contaminated soil, the method comprising repairing the environment.
【請求項9】 透水係数の分布が複数の極大値を有し、
且つ汚染物質で汚染されている土壌を有する修復すべき
土壌領域を用意する工程;及び該土壌の透水係数分布に
おいて、実質的に最少の透水係数を持つ極大値が最大の
比率を示す様に該土壌の透水係数を制御する工程を有す
ることを特徴とする土壌の処理方法。
9. The distribution of hydraulic conductivity has a plurality of maximum values,
And preparing a soil region to be rehabilitated having soil contaminated with pollutants; and in the hydraulic conductivity distribution of the soil such that the maximum with substantially the smallest hydraulic conductivity exhibits the maximum ratio. A method for treating soil, comprising the step of controlling the hydraulic conductivity of the soil.
JP32293595A 1994-12-12 1995-12-12 Environmental restoration method and soil treatment method using microorganisms Expired - Fee Related JP3155918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32293595A JP3155918B2 (en) 1994-12-12 1995-12-12 Environmental restoration method and soil treatment method using microorganisms

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30727394 1994-12-12
JP6-307273 1994-12-12
JP32293595A JP3155918B2 (en) 1994-12-12 1995-12-12 Environmental restoration method and soil treatment method using microorganisms

Publications (2)

Publication Number Publication Date
JPH08224566A true JPH08224566A (en) 1996-09-03
JP3155918B2 JP3155918B2 (en) 2001-04-16

Family

ID=26565043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32293595A Expired - Fee Related JP3155918B2 (en) 1994-12-12 1995-12-12 Environmental restoration method and soil treatment method using microorganisms

Country Status (1)

Country Link
JP (1) JP3155918B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867238A3 (en) * 1997-03-26 2000-04-05 Canon Kabushiki Kaisha Method for soil remediation
JP2007289861A (en) * 2006-04-25 2007-11-08 Kec:Kk Soil cleaning method and pouring monitor used for this

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867238A3 (en) * 1997-03-26 2000-04-05 Canon Kabushiki Kaisha Method for soil remediation
JP2007289861A (en) * 2006-04-25 2007-11-08 Kec:Kk Soil cleaning method and pouring monitor used for this

Also Published As

Publication number Publication date
JP3155918B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
JP3086182B2 (en) Soil purification method
EP0519897B1 (en) Vapor-phase nutrient delivery system for in situ bioremediation of soil
DE69824692T2 (en) Device for cleaning floors and method for remediation of contaminated floors
JP3332600B2 (en) Contaminated soil and groundwater purification methods
CN108503155B (en) In-situ sediment repair method
JPH09276841A (en) Method and apparatus for purifying contaminated soil
CN1245452A (en) In situ remediation of contaminated soils
JP3530588B2 (en) Method of forming in-situ microbial degradation region
CA2233034C (en) Method for soil remediation
JP2000229279A (en) Method for pouring microorganism into soil
EP0715903B1 (en) A process for remedying an environment using microorganism and a process for treating soil
JPH0796289A (en) Apparatus and method for purifying contaminated ground water due to soil contamination
US7255791B2 (en) In situ method and apparatus for biodegradation of alkyl ethers and tertiary butyl alcohol
JP3155918B2 (en) Environmental restoration method and soil treatment method using microorganisms
JP3363615B2 (en) How to clean and remediate contaminated soil
JP3930785B2 (en) Contaminated strata purification method and polluted strata purification system used therefor
CN212916997U (en) Device for comprehensively repairing soil and underground water based on horizontal directional drilling process
CN110548761B (en) Microbial treatment method for lead and cadmium polluted soil foundation
JP2003311258A (en) On-site restoration method and apparatus of contaminated soil by means of micro-organism
JP3645651B2 (en) Purification method for contaminated soil
JPH09276831A (en) Restoration of petroleum contaminated soil
JPH11169839A (en) Soil decontamination method and device therefor
JP2003326244A (en) Method and apparatus for restoring contaminated soil by microbe on-site
JP3428840B2 (en) Environmental restoration method, contaminated soil restoration method, environmental restoration apparatus, liquid injection and diffusion method to environment, and liquid injection apparatus to environment
JPH11207315A (en) Microbial purifying method for contaminated soil and purifying device therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees